## STATS 375: Homework 2 Solutions

## Problem (1)

As before, we assume that an empty set is an independent set, by definition. An independent set not containing the root $\varnothing$ is formed by choosing an independent set from each subtree rooted at one of the children of $\varnothing$. Also, an independent set containing the root $\varnothing$ cannot have any of the children of $\varnothing$ and thus is formed of $\varnothing$ in addition to independent sets not containing the root in the subtrees of the children of $\varnothing$. This yields the following recursion equations:

$$
\begin{aligned}
Z_{l+1}(0) & =\left(Z_{l}(0)+Z_{l}(1)\right)^{k} \\
Z_{l+1}(1) & =Z_{l}(0)^{k} \\
\text { with } Z_{0}(0) & =Z_{0}(1)=1
\end{aligned}
$$

## Problem (2)

We have the following immediately:

$$
\begin{aligned}
p_{l+1} & =\frac{Z_{l+1}(1)}{Z_{l+1}(0)+Z_{l+1}(1)} \\
& =\frac{Z_{l}(0)^{k}}{\left(Z_{l}(0)+Z_{l}(1)\right)^{k}+Z_{l}(0)^{k}} \\
& =\frac{1}{1+\left(1-p_{l}\right)^{-k}}
\end{aligned}
$$

## Problem(3)

The following code plots $p_{l}$ for the relevant values of $k$ and $l$ :
$\mathrm{k}_{-} \mathrm{vals}=\left[\begin{array}{llll}1 & 2 & 3 & 10\end{array}\right]$;
iters = length(k_vals);
l_vals $=1: 50$;
$\mathrm{p}=$ zeros(iters, $1+$ length(l_vals));
$\mathrm{p}(:, 1)=0.5 *$ ones(iters, 1$)$; \%initialization
spec $=\left\{{ }^{\prime}{ }^{\prime}{ }^{\prime}\right.$ 'g' 'r' 'k'\};
figure (1)

```
hold on
for i = 1:iters
    k = k_vals(i);
    for l = 1:length(l_vals)
        p(i, l+1) = (1-p(i, l) )^k/(1+(1-p(i, l) )^k);
    end
    plot([0 l_vals], p(i,:), spec{i});
end
hold off
legend('1', '2', '3', '10');
```

The plot is as follows:


The recursion converges to a fixed point for $k=1,2,3$ but fails to (or appears to fail to) converge for $k=10$.

Proof of convergence for $k=1,2,3$
Let $f_{k}:[0,1] \rightarrow[0,1]$ be the mapping (as in the recursion) parametrized by $k$ :

$$
f_{k}(x)=\frac{(1-x)^{k}}{1+(1-x)^{k}}
$$

We use Banach's fixed point theorem to prove convergence.
Theorem 1 (Banach). Let $X$ be a complete metric space and $f: X \rightarrow X$ be a contraction mapping. Then $f$ has a unique fixed point $x^{*}$. Also the sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ generated by $x_{i}=f\left(x_{i-1}\right)$ converges to $x^{*}$.

Definition 1. Let $X$ be a metric space and $d(\cdot, \cdot)$ be the associated metric. $f: X \rightarrow X$ is a contraction mapping with parameter $\beta$ on $X$ if $\exists 0 \leq \beta<1$ such that:

$$
\forall x_{1}, x_{2} \in X: \quad d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq \beta d\left(x_{1}, x_{2}\right)
$$

In our case, the space is the interval $[0,1]$ with the associated metric being the absolute value of the difference: $d\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right|$.

We know that a fixed point exists as the mappings $f_{k}$ are continuous, decreasing and map onto $[0,0.5]$ for all $k$. However, this does not guarantee that the recursion converges. To use the fixed point theorem, we prove that for $k=1,2,3, f_{k}$ are contraction mappings. For this we use the following lemma:

Lemma 1. Let $f:[a, b] \rightarrow[a, b]$ be a differentiable function such that $\left|f^{\prime}(x)\right|$ is bounded uniformly by $\beta<1$ in its domain. Then $f$ is a contraction mapping with parameter $\beta$, the distance metric being the absolute value of the difference.

Proof. Consider $a \leq x_{1}<x_{2} \leq b$. By the intermediate value theorem, $\exists c \in\left[x_{1}, x_{2}\right]$ such that $f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)$. Thus $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|f^{\prime}(c)\right|\left|\left(x_{2}-x_{1}\right)\right| \leq \beta\left|\left(x_{2}-x_{1}\right)\right|$.

A little calculus shows that the maximum value of $\left|f^{\prime}{ }_{k}(x)\right|$ occurs at $x=1-\left(\frac{k-1}{k+1}\right)^{\frac{1}{k}}$, whereby we get:

$$
\left|f^{\prime}{ }_{k}(x)\right| \leq \frac{(k+1)^{2}}{4 k}\left(\frac{k-1}{k+1}\right)^{\frac{k-1}{k}}
$$

For $k=2,3$ this yields that $f_{k}$ is indeed a contraction map by Lemma 1. Thus, by the fixed point theorem, the recursion converges to its unique fixed point. For $k=1$, we cannot use this directly as the maximum is at $x=0$ and $f^{\prime}{ }_{1}(0)=-1$. However this can be remedied by restricting the domain of $f_{1}$ to $[\epsilon, 1]$ for some small $\epsilon>0$ whereupon it becomes a contraction map on the restricted domain since $\left|f^{\prime}{ }_{1}\right| \leq \frac{1}{(1+\epsilon)^{2}}$.

Non-convergence for $k>4$
One argument for the non-convergence of the recursion for larger $k$ is the following condition: there must exist a neighborhood around the fixed point $x^{*}$ in which $\left|f^{\prime}{ }_{k}(x)\right|<1$ holds. This is because the linearization of $f_{k}$ around its fixed point must be a stable linear system, i.e. have eigenvalues within the unit circle. For values of $k>4$, in particular for the value $k=10$, this condition fails to hold.

