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1) Starting point:  Simple things one can say about the coefficients of loglinear 
models that derive directly from the functional form of the models. 
 
Let's say we have a simple model, 
 
1a) Log(U)=Const+ B1X1 +B2X2+... 
 
Where the B's are model coefficients, and the X's are the variables (usually dummy 
variables) and the U are predicted counts. 
 
When X1=0, we have: 
 
1b) Log(U)=Const+ 0 +B2X2+... 
 
and when X1=1 
 
We have 
 
1c) Log(U)=Const+ B1 +B2X2+... 
 
So we can always say, as a simple function, that the coefficient B1 represents an increase 
in the log of predicted counts.  If B1=2, for instance, we could say that 'this model shows 
that factor X1 increases the predicted log count by 2 (all other factors held constant)' 
because equation 1b- equation 1a= B1.  This is true but not the most helpful thing to say. 
 
Remembering that e0=1, we can also say, When X1=0, we can exponentiate equation 1b 
to get 
 
1d) U=eConst1eB2X2 

 

and when X1=1, we can exponentiate equation 1c to get 
 
1e) U=eConsteB1eB2X2 

 
If we take the ratio of 1e/1d, we get eB1.  If we give B1 the arbitrary value of 2, e2=7.4, we 
could say that 'B1 increases the predicted counts by a factor of 7.4, that when X1 is true, 
predicted counts increase by 640% (all other factors being held constant).  Alternatively 
if B1=-0.2, e-0.2=.82, we could say that when X1 is true the predicted counts are reduced 
by 18%, (all other factors being held constant). 
 



 
2.  Why the interaction terms are really log odds ratios 
 
I have also claimed that interaction coefficients in the loglinear models correspond to log 
odds ratios.  We have demonstrated this in the first homework, and it can be easily 
demonstrated algebraicly. 
 
Let's start with a saturated model for the 2x2 table: 
 
Log(U)= Const+ B1R +B2C +B3RC 
 
Where RC is the interaction of the row and column parameters.  We can show that B3 
represents the log odds ratio of the interaction between the Row and Column variables. 
 
If we take eB3, then we have the odds ratio of the Row variable interacted with the 
Column variable.  Take, for example, homework 1, dataset A, the race by occupation 
table from the 2000 Current Population Survey. 
 
  Race  

  White 
Non 

White 
occupation White Collar 17,216 2,361 
 Other 42,012 7,146 

 
 
We can calculate the Odds Ratio by hand, it is simply the cross product of the 4 cells, 
AD/BC=1.24, and the log odds ratio is log(1.24)=0.215.   
 
We can also calculate the asymptotic standard error of this log odds ratio by hand, and it 
is square root of (1/A +1/B+1/C+1/D)=0.025 
 
The interpretation of the odds ratio is as follows.  The odds of being in a white collar job 
for subjects who are White are 17216/42012= 0.41.  The odds of being in a white collar 
job for non-White subjects is somewhat lower, 2361/7146=0.33.  The odds ratio is simply 
the ratio of the odds, 0.41/0.33=1.24.  One may say that the 'odds of being in the white 
collar sector are 24% higher for Whites than for non-Whites', or, equivalently, 'the odds 
of being White are 24% higher for persons in the white collar sector'.  We can also invert 
the odds ratio.  The odds ratio of non-White representation in the white collar sector is 
0.33/0.41=0.80.  One might say 'the odds of being in the white collar sector are lower for 
non-whites by a factor of 0.8', or one might say 'the odds of being in the white collar 
sector are 20% lower for non-Whites than for Whites.' 
 
It is easy to keep in mind the symmetry of the situation when using the log odds ratio, 
since the log odds ratio for White representation in the white collar sector is 0.215, and 
the log odds ratio for non-White representation in the White collar sector is -0.215. 
 



Here is the loglinear model output from STATA for the coefficients of the saturated 
model for this 2x2 dataset.  The race by occupation interaction coefficient is 0.215, and 
its standard error is 0.025, which is exactly what we calculated by hand for the log odds 
ratio. 
 
. desmat: poisson count race*occ 
------------------------------------------------------------------------------- 
------------------------------------------------------------------------------- 
nr Effect                                                     Coeff        s.e. 
------------------------------------------------------------------------------- 
   count 
     race 
1      w                                                      1.771**     0.013 
     occ 
2      WC                                                    -1.107**     0.024 
     race.occ 
3      w.WC                                                   0.215**     0.025 
4    _cons                                                    8.874**     0.012 
------------------------------------------------------------------------------- 
 
 
Why does the interaction coefficient equal the log odds ratio?  Here's why. 
 
Let's start with our standard 2x2 table,  
 

  Var 2  
  0 1 

Var 1 0 A B 
 1 C D 

 
If we take the first category as the excluded category (this is an arbitrary decision which 
has no substantive effect), then the row effect will be value 1 compared to zero, and the 
column effect will be value 1 compared to zero, and the interaction term will zero 
everywhere except for the cell where Var 1= Var 2=1.  Again, any other reasonable 
construction of the contrasts will yield the same result. 
 
If we run the saturated model, which fits the data exactly and which is the only model 
that includes our interaction term, we get the following: 
 
log (A)= const 
log (B)= const +Col effect 
log (C)= const+ Row effect 
log (D)= const+ Col effect + Row effect + Row and Col interaction. 
 
log(A)+log (D)-log(B)-log(C)=Row and Col interaction. 
 
But log(A)+log (D)-log(B)-log(C)=log(AD/BC), which is our log odds ratio 
 
so  
 



Row and Col interaction=log(AD/BC) 
 
That's why the interaction coefficient in our loglinear model is really a log odds ratio. 



3) What to say about combinations of coefficients 
 
Now let's say we have many variables in our dataset including: race, occupation, and 
year.  The years in this hypothetical dataset will be 2000, 2001, and 2002.  The log odds 
ratio in 2000 for Whites interacted with white collar jobs is the one piece of true data 
here, and something we already know, 0.215. 
 

Coefficients: S.E. 
Odds 
Ratio 

race*occ 
interaction   
 0.215 0.025 1.24 
    
Year*race*occ   

2000 (comparison category) 
2001 0.1 0.03 1.11 
2002 0.15 0.034 1.16 

    
    
Combining them by addition:  
    
Year*race*occ   

2000 0.215 a 1.24 
2001 0.315 a 1.37 
2002 0.365 a 1.44 

 
Note a:  The standard errors of the combined coefficients can be obtained by hand if you 
ask STATA or whatever software you are using to give the variance- covariance matrix 
of the estimates.  Var (A+B)= Var(A) + Var(B) + 2Cov(A,B).  In stata you can use the 
lincom command to give you the value and standard error of any linear combination of 
coefficients from your most recently estimated model. 
 
So here are a few things you could say about this hypothetical data. 
1) The odds ratio of overrepresentation of Whites in the white collar sector increased by 
11% from 2000 to 2001, and by 16% in 2000-2002.   
2) In log odds ratio terms, the interaction between race and occupation is 0.215 in 2000, 
and 0.315 in 2001, and 0.365 in 2002, an increase of 47% from 2000-2001, and an 
increase of 70% from 2000 to 2002.  These increases are a lot larger than one would 
expect from real data. 
3) The increases in the overrepresentation of Whites in white collar jobs over time appear 
to be significant- 0.1/0.03=3.33 corresponds to a P value of less than 0.05.   
 


