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Abstract: One of the most puzzling and important facts about communication is that people do 
not always mean what they say; speakers often use imprecise, exaggerated, or otherwise literally 
false descriptions to communicate experiences and opinions. Here we focus on the nonliteral 
interpretation of number words, in particular hyperbole (interpreting unlikely numbers as 
exaggerated and conveying affect) and pragmatic halo (interpreting round numbers imprecisely). 
We provide a computational model of number interpretation as social inference regarding the 
communicative goal, meaning, and affective subtext of an utterance. We show that our model 
predicts humans’ interpretation of number words with high accuracy. Our model is the first 
computational model that quantitatively predicts a range of nonliteral effects in number 
interpretation, and our modeling framework provides a theory of nonliteral language 
understanding more generally.  
Main Text:  

Imagine a friend describing a new restaurant where she recently dined. Your friend says, 
“It took 30 minutes to get a table.” You are likely to interpret this to mean she waited 
approximately 30 minutes. Suppose she says: “It took 32 minutes to get a table.” You are more 
likely to interpret this to mean exactly 32 minutes. Now, suppose she says: “It took a million 
hours to get a table.” You will probably interpret this to mean that the wait was shorter than a 
million hours, but importantly that she thinks it took much too long. One of the most important 
facts about communication is that people do not always mean what they say--a crucial part of a 
listener’s job is to understand an utterance even when its literal meaning is false. The ease with 
which people interpret nonliteral language presents a puzzle for research on language 
understanding. Although there is a rich body of literature examining the psychological effects of 
using and processing nonliteral language (1-4), there has been little work on building formal 
models that predict the quantitative details of these effects or explain the computational basis of 
nonliteral language understanding.  

Many linguists and psychologists have traditionally viewed communication as an 
interaction between rational and cooperative agents (5, 6). A recent body of work formalizes 
these views by modeling pragmatic language understanding as probabilistic inference over 
recursive social models. These Rational Speech Act models are able to quantitatively explain a 
range of phenomena in human pragmatic reasoning (7, 8, 9, 10). At the core of these models, a 
listener and a speaker recursively reason about each other to arrive at pragmatically enriched 
meanings. Given an intended meaning m, speaker Sn reasons about listener Ln-1 and chooses 
utterance u based on its informativeness (9): 

𝑆!(𝑢|𝑚) ∝ 𝐿!!! 𝑚 𝑢 𝑒! !  



The listener Ln then reasons about Sn and uses Bayes’ Rule to infer the meaning m given 
utterance u: 

𝐿!(𝑚|𝑢) ∝ 𝑃(𝑚)𝑆! 𝑢 𝑚  

The recursion begins with a naïve listener, L0, who interprets u literally. This framework 
crucially predicts that it is never optimal for a speaker to choose an utterance whose literal 
meaning directly contradicts her intended meaning. However, this is precisely the case in 
nonliteral language. For example, “Juliet is the sun” conveys that Juliet is a beautiful woman and 
not, in fact, the sun, and “It took a million hours to get a table” conveys that the wait time was 
long but not, in fact, a million hours. This suggests that speakers and listeners must consider 
additional factors to enable nonliteral communication.  

Previous work has revealed people’s reasons for using figurative language: often to 
convey emotion or emphasis (1). Here we propose that nonliteral language understanding relies 
on considering these alternative communicative goals during interpretation. We introduce a 
model in which the listener is uncertain about the speaker’s communicative goal and performs 
joint inference on both the goal and the intended meaning. Importantly, the interpretation space 
has multiple dimensions, and different communicative goals will be satisfied by different aspects 
of the inferred meaning. A speaker’s goal may be to maximize the informativeness of her 
utterance along one dimension of meaning but not another, which makes it possible for a literally 
false utterance to be optimal as long as it is informative along the target dimension. Since 
speakers often use language to express subjective opinions and emotions, we explore the case 
where the interpretation space has two dimensions: the state of the world and the speaker’s 
affect. The speaker is now modeled as 

Sn (u | g) ∝ 𝐿! 𝑠,𝑎 𝑢 𝑔 𝑠,𝑎!,!    ∙ 𝑒!!(!)              

where the intended meaning includes 𝑠 (the state of the world) and  𝑎 (the speaker’s affect). 𝑔 is 
a function that denotes whether a communicative goal is satisfied by 𝑠 and 𝑎, and 𝐶 is a function 
for utterance costs (see Supplementary Materials for details). The listener then performs joint 
inference on both the goal and the meaning: 

𝐿! 𝑠,𝑎 𝑢)   ∝    𝑃! 𝑠 𝑃! 𝑎 𝑠 𝑃! 𝑔 𝑠,𝑎 𝑆!!!(𝑢|𝑔)
!

 

This formulation of language understanding as joint inference of the communicative goal, 
state of the world, and affective subtext of an utterance provides a computational model of 
nonliteral number word interpretation. We focus on number words for two reasons: first, despite 
their flexible and nonliteral usages in everyday language, numbers have precise literal meanings 
that can be easily formalized. Second, number words can be systematically manipulated on a 
continuous scale to yield quantitative predictions. We aim to model two particular well-known 
phenomena regarding number interpretation: hyperbole and pragmatic halo. Hyperbole is a 
figure of speech that uses exaggeration to convey emphasis and emotion. While hyperbolic 
utterances are literally false, such indirect communication is readily understood and serves many 
purposes (1, 11-13). Pragmatic halo refers to people’s tendency to interpret simple number 
expressions imprecisely and complex number expressions precisely (14). While this effect has 
been formalized via game theory as a rational choice given different utterance costs and a notion 
of pragmatic slack (15, 16), our model uses alternative communicative goals (to be precise or 
imprecise) coupled with differential utterance costs to model this effect.  



We next show that our framework for pragmatic inference makes quantitative predictions 
for a range of nonliteral effects in language understanding. Given that knowledge of a domain’s 
prior distribution drives hyperbolic interpretations, we predict that the same number word used in 
different domains will elicit different interpretations. We test our model on number words 
referring to the prices of three types of everyday items: electric kettles, watches, and laptops. We 
selected these items because they have distinct price distributions, which we measured 
empirically by asking participants to rate the probability of various prices for the three items (see 
Experiment 3a in Supplementary Materials). We also obtained an affect prior by asking 
participants to rate the probability of a speaker thinking that an item is too expensive given a 
price state (see Experiment 3b). A speaker can say, “The electric kettle cost u dollars,” for u ∈  U, 
and a listener can interpret this to mean that the kettle cost s dollars, for s ∈ S. Each utterance is 
either “round” (divisible by 10 and less costly to utter) or “sharp” (not divisible by 10 and more 
costly to utter). A formal description of these model assumptions is in Supplementary Materials. 

Using the price priors and affect priors measured for each of the three items, we obtained 
the full posterior meaning distribution predicted by the model for each utterance (see Figure S1). 
Figure 1 summarizes this distribution into different types of interpretations. The first three are 
model interpretations regarding the price state: exact (e.g.,  “1000” interpreted as 1000), fuzzy 
(e.g. “1000” interpreted as 1001 or “1001” interpreted as 1000), and hyperbolic (e.g. “1000” 
interpreted as “100”). Utterances whose literal meanings are less likely given the price prior are 
more likely to be interpreted hyperbolically (e.g. “1000” is more likely to be interpreted 
hyperbolically for electric kettles than laptops), which shows the model captures a basic feature 
of hyperbole. Round utterances such as “500” and “1000” are interpreted less exactly and more 
fuzzily than their sharp counterparts, which shows the model captures pragmatic halo. On the 
affect dimension, affective interpretation refers to the probability that an utterance conveys the 
speaker’s opinion that the price is too expensive. Utterances whose literal meanings are 
associated with higher affect priors (such as “10000” and “10001”) are more likely to be 
interpreted as conveying affect, which shows the model predicts the affective subtext of 
hyperbole.  

To build intuition for these predictions, consider a pragmatic listener who recursively 
reasons about a speaker and analyzes her choice of utterance. The pragmatic listener hears 
“10,000 dollars” and knows its literal meaning is extremely unlikely. However, given that the 
speaker reasons about a literal listener who interprets “10,000 dollars” literally and believes that 
the speaker very likely thinks it is expensive, “10,000 dollars” is an optimally informative 
utterance if the speaker’s goal is to communicate that the kettle is expensive (without concern for 
the actual price). Since the pragmatic listener uses this information to perform joint inference on 
the speaker’s communicative goal and the meaning of the utterance, he infers that “10,000 
dollars” is likely to mean less than 10,000 dollars but that the speaker thinks it is too expensive 
(i.e., strong affect).  

We conducted Experiment 1 to evaluate model predictions for interpreted price. 
Participants read scenarios in which a buyer produces an utterance about the price of an item he 
bought, for example: “The electric kettle cost 1000 dollars.” Participants then rate the likelihood 
that the item actually cost s dollars for s ∈ S (see Experiment 1 in Supplementary Materials). 
Figure S2 shows humans’ interpretation distributions across all utterances. We found that 
participants were more likely to interpret utterances as hyperbolic when their literal meanings 
have lower probabilities under the item’s prior price distribution (F(1, 10) = 44.06, p < 0.0001). 



To examine the halo effect, we computed the difference between the probability of an exact 
interpretation and the probability of a fuzzy interpretation for each utterance. This difference is 
significantly smaller for round numbers than for sharp numbers (F(1, 28)=18.94,  p < 0.001), 
which indicates that round numbers tend to be interpreted less precisely than sharp numbers. 
These results match the model’s qualitative predictions for hyperbole and halo. To quantitatively 
evaluate the model’s fit, we compared model and human interpretation probabilities across all 
utterances and show that model predictions are highly correlated with human interpretations of 
number words (r=0.974, p<0.0001) (Figure 2(A)).  

We explore simpler comparison models to show that each component of the proposed 
model is responsible for capturing effects observed in the human data. Figure 2(B) compares 
model interpretations of the utterance “The electric kettle cost 1,000 dollars” given 
considerations of different communicative goals. A model that does not consider alternative 
communicative goals interprets the utterance entirely literally. A model that considers a speaker 
whose goal may be to communicate precisely or imprecisely interprets the utterance as meaning 
either 1000 or 1001. A model that considers a speaker whose goal may be to communicate the 
precise price state or her affect prefers price states with higher prior probabilities. Finally, a 
model that considers the full range of goals produces interpretations that demonstrate hyperbole 
and halo effects that closely match humans’ interpretations. This suggests that reasoning about a 
speaker's communicative goals is crucial for the nonliteral interpretation of number words. 
Figure 3(A) shows probabilities of an utterance being interpreted hyperbolically by humans, the 
full model, and a version of the model that takes a uniform price prior for each item type. The 
full model faithfully captures the human data, while the “lesioned” model fails to differentiate 
among hyperbole effects for the three item domains. This confirms the hypothesis that people 
use their knowledge of a domain’s prior distribution to infer hyperbolic interpretations. Figure 
3(B) shows the halo effect in humans, the full model that assigns higher utterance costs to sharp 
numbers, and a version of the model where the costs of utterances are uniform. The full model 
replicates humans’ pragmatic halo effect, while the simpler model does not. This suggests that 
people consider utterance costs and communicative efficiency when inferring exact versus fuzzy 
interpretations.  

We conducted Experiment 2 to examine humans’ inference of affect in hyperbolic versus 
literal utterances. Participants read scenarios in which a speaker bought an item that cost s dollars 
and says it cost u dollars, where u ≥ s. They then rate how likely it is that the buyer thinks the 
item was too expensive (see Experiment 2 in Supplementary Materials). Results showed that 
utterances u where u > s are rated as significantly more likely to convey affect than utterances 
where u = s (F(1, 25) = 12.57, p < 0.005). This confirms the hypothesis that listeners infer 
affective subtext from hyperbolic utterances. Quantitatively, we compared model and human 
interpretations of affect for each of the 45 items where u ≥ s. While there is a significant amount 
of noise in the human judgments (average split-half correlation is 0.833), the model predicts 
human interpretations of the utterances’ affective subtext significantly better than chance 
(r=0.772, p < 0.00001), capturing most of the reliable variation in these data (Figure 4(A)). 
Figure 4(B) shows probabilities of inferring affect given a price state and a literal or hyperbolic 
utterance for humans, the full model, and a version of the model that takes in uniform affect 
priors. The human data shows that higher actual price states are associated with higher 
probability of affect. Within the same price state, hyperbolic utterances are interpreted as 
conveying more affect than literal utterances. Both effects are replicated by the full model, but 



not by the “lesioned” model. This shows that the rhetorical effect of hyperbole is driven in part 
by prior knowledge of affect associated with different prices.  

We have presented the first computational model of nonliteral language understanding 
that quantitatively predicts humans’ interpretation of number words. Our model and behavioral 
results show that complex patterns in nonliteral number interpretation depend on the listener’s 
prior knowledge, consideration of communicative efficiency, and reasoning about the speaker’s 
communicative goal. Our model’s quantitative predictions closely match humans’ judgments of 
hyperbole, a complex phenomenon previously beyond the scope of computational models. These 
advances result in an innovative formal framework that explains nonliteral language 
understanding more broadly, suggesting extensions to phenomena such as irony and metaphor. 
We believe that this framework significantly advances the flexibility and richness of formal 
models of language understanding, such that some day probabilistic models will explain 
everything (hyperbolically speaking).  
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Fig. 1. Each vertical panel column shows the probabilities of different kinds of interpretations 
given utterances about an item (see text). 

  

Fig. 2. (A) Model predictions (x-axis) versus average human responses (y-axis) for 300 data 
points (3 Items × 10 Utterances × 10 Price States) in Experiment 1. (B) Human interpretations 
of a sample utterance and model predictions given different communicative goals. A model that 
considers both affect and precision goals closely matches human data. 

 

Fig. 3. (A) Probability of hyperbolic interpretation across utterances and items. The leftmost 
panel shows human data (error bars are standard errors). A full model that uses empirical price 
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priors matches human data; a model that uses uniform price priors does not distinguish among 
item types and shows weaker hyperbole effects. (B) Bias for exact interpretation for round/sharp 
utterance types. Humans have a bias for exact interpretations of sharp utterances. A full model 
that assigns higher costs to sharp numbers matches human data; a model that uses uniform 
utterance costs does not. 

 

Fig. 4. (A) Model predictions of affect (x-axis) versus human responses (y-axis) for 45 data 
points (3 Items × 15 Utterance-Price state pairs where u ≥ s) in Experiment 2. (B) Probability of 
inferring affect given a price state and a hyperbolic or literal utterance. Humans infer higher 
probability of affect given higher price states and higher affect given hyperbolic utterances. A 
full model that uses empirical affect priors matches human data; a model that uses uniform affect 
priors predicts neither affect across price states or the rhetorical effect of hyperbole. 

Supplementary Materials: 
Materials and Methods:  

Model. Here we describe our model in detail. Let u be the utterance a speaker utters. The 
meaning of the utterance has two dimensions, one concerning the actual price state s, and one 
concerning the speaker’s affect a. We defined the set of price states S={50, 51, 500, 501, 1000, 
1001, 5000, 5001, 10000, 10001} and assumed that the set of utterances U is identical to S. We 
defined the set of affect states A={0, 1} (0 means no affect and 1 means with affect). Given the 
set of price states S and set of affect states A, the set of possible meanings M is given by M = S 
X A. We denote each possible meaning as s, a, where s ∈ S and a ∈ A.  

Let g be the communicative goal, which also has two dimensions, one concerning the 
price state, and the other concerning the speaker's affect. We denote each communicative goal as 
gs,a where s ∈ 2S is an equivalence class of price states and a ∈ 2A is an equivalence class of 
affect states. These equivalence classes represent states of the world that are sufficiently close to 
the true state of the world, for the purposes of the speaker.  Formally, the goal gs,a is a function 
gs,a: M →{0,1}, such that gs,a (s,a) = 1 if and only if s ∈ s, a ∈ a. Thus, a meaning satisfies this 
goal if it belongs to the state and affect equivalence classes of the goal. We assume that there are 
two types of price-related goals: the speaker either wants to communicate the price state exactly 
or approximately. Exact goals are represented by subsets that consist of a single price state, i.e. 
s={i} (for some i ∈ S), and approximate goals are represented by subsets that consist of the price 

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6 0.8
Model

H
um

an

isHyperbole

hyperbole
literal

domain

electric kettle
laptop
watch

Human Full model Uniform affect prior

0.4

0.6

0.8

0.4

0.6

0.8

0.4

0.6

0.8

electric kettle
laptop

watch

50

500

1000

5000

10000

50

500

1000

5000

10000

50

500

1000

5000

10000

Price state rounded
P(

af
fe

ct
 | 

ut
te

ra
nc

e 
an

d 
pr

ic
e 

st
at

e)

Literalness

hyperbole
literal



states within a distance of 1 of some state, i.e. s={j | j ∈ S, |j-i|  ≤ 1}. Subsets of price states 
which do not satisfy either of these conditions are assigned probability 0 by the model. 

The prior probability of a price state s is taken from an empirically derived price prior 
PS(s), and the probability of an affect a given a price state s is taken from an empirically derived 
conditional affect prior PA(a|s) (see Experiments 3a and 3b). The probability distribution PG(∙|s,a) 
over goals given that the speaker knows meaning s, a is defined to be uniform over goals 
consistent with s, a, i.e. uniform over goals gs,a such that gs,a (s,a) = 1. This is equivalent to 
assuming that the speaker either wants to communicate her meaning exactly or approximately.  

A literal listener L0 provides the base case for recursive social reasoning between the 
speaker and listener. L0 interprets an utterance u literally without taking into account the 
speaker's communicative goals: 

L0 (s, a | u) = P! 𝑎 𝑠                               if  𝑠 = 𝑢
0                                            otherwise

        (1) 

The speaker Sn is assumed to be a rational planner who optimizes the probability that the 
listener will infer a meaning m that satisfies her communicative goal while minimizing the cost 
of her utterance. Sn chooses utterances according to a softmax decision rule that describes an 
approximately rational planner (17): 

Sn (u | gs,a) ∝ 𝑒!! !     !𝒔,𝒂)                (2) 
Optimizing the probability of the speaker’s goal being satisfied can be accomplished by 

minimizing the goal’s information-theoretic surprisal. Given an utterance u, the listener Ln will 
guess that the meaning is s, a with probability 𝐿! 𝑠,𝑎 𝑢 . The probability of the speaker’s goal 
being satisfied is therefore the following: 

𝐿! 𝑠,𝑎 𝑢 𝑔𝐬,𝐚 𝑠,𝑎!,!               (3) 

The utility function 𝑈! is composed of both the negative surprisal of the goal and the negative of 
the utterance cost C(u).  𝑈! is therefore defined by:  

𝑈!   𝑢   𝑔𝐬,𝐚) = log( 𝐿! 𝑠,𝑎 𝑢 𝑔𝐬,𝐚 𝑠,𝑎!,! )− 𝐶(𝑢)              (4) 

Combined with equation 2, this leads to: 

Sn (u | gs,a) ∝ 𝐿! 𝑠,𝑎 𝑢 𝑔𝐬,𝐚 𝑠,𝑎!,!    ∙ 𝑒!!(!)              (5) 

We used C(u) = 1 when  u is a round number and C(u) = 1.8 when u is a sharp number for all 
model simulations reported. 

The listener Ln performs Bayesian inference to guess the intended meaning given the 
prior P and his internal model of the speaker. To determine the speaker's intended meaning, the 
listener will marginalize over the possible goals under consideration. 

𝐿! 𝑠,𝑎 𝑢)   ∝    𝑃! 𝑠 𝑃! 𝑎 𝑠 𝑃! 𝑔 𝑠,𝑎 𝑆!!!(𝑢|𝑔)!               (6) 

We obtained a posterior distribution for all possible meanings s, a given an utterance u. 
Raw data for model predictions are here: http://stanford.edu/~justinek/hyperbole-
paper/data/model-predictions.csv. Figure S1 shows the full posterior distributions for all 
utterances. 



Experiment 1: Halo and Hyperbole. 120 participants were recruited on Amazon's 
Mechanical Turk. We restricted participants to those with IP addresses in the United States. Each 
participant read 15 scenarios in which a person (e.g. Bob) buys an item (e.g. a watch) and is 
asked by a friend whether the item is expensive. We randomized the order of the trials as well as 
the names of the buyers. Bob responds by saying “It cost u dollars,” where u ∈ {50, 50 ± k, 500, 
500 ± k, 1000, 1000 ± k, 5000, 5000 ± k, 10000, 10000 ± k}, where k was randomly selected 
from the set {1, 2, 3} for each trial. We will refer to this set of utterances as U. Numbers 
devisable by 10 are considered “round” numbers, while numbers not devisable by 10 are “sharp” 
numbers.  

Given an utterance u, participants rated the probability of Bob thinking that the item was 
expensive. They then rated the probability of the item costing the following amounts of money: 
50, 50 ± k, 500, 500 ± k, 1000, 1000 ± k, 5000, 5000 ± k, 10000, 10000 ± k, where k was 
randomly selected from the set {1, 2, 3} for each trial. We will refer to this set of prices as S. 
Ratings for each price state were on a continuous scale from “impossible” to “extremely likely”, 
represented as real values between 0 and 1. There are a total of 30 possible trial configurations (3 
Items X 10 Utterances). The stimuli for Experiment 1 can be found here: 
http://stanford.edu/~justinek/hyperbole-paper/materials/experiment1.html. 

We normalized participants’ ratings across price states for each trial to sum up to 1. There 
are a total of 300 normalized average ratings (3 Items X 10 Utterances X 10 Price States). The 
average normalized ratings across participants for each item/utterance pair is shown in Figure S2. 
The raw ratings can be found here: http://stanford.edu/~justinek/hyperbole-
paper/data/experiment1-raw.csv, and the normalized ratings are here: 
http://stanford.edu/~justinek/hyperbole-paper/data/experiment1-normalized.csv. To adjust for 
humans’ biases against using the extreme ends of the slider bars, we performed a Luce choice 
transformation on the model’s distribution. We multiplied the model’s predicted probability for 
each meaning by a free parameter 𝜆 and renormalized the probabilities to sum up to 1 for each 
utterance. Fitting the 𝜆 to the behavioral data to optimize correlation, we obtained the best fit 
with 𝜆 = 0.34, resulting in a correlation between model predictions and participant ratings of r = 
0.974 (see main text). All figures and analyses that we report in the main text are with this 
transformation. Without Luce choice transformation and with no free parameters in the model, 
correlation between model predictions and participant ratings is still very high (r = 0.907). 

For the analysis reported in Figure 3(A), we computed the probability of a participant 
interpreting an utterance u as hyperbolic by summing up his or her probability ratings for each 
interpreted price state s, where 𝑢 > 𝑠. Since our analysis of hyperbole does not involve utterance 
costs, we collapsed across round and sharp versions of utterances and price states. For example, 
“1001” interpreted as “1000” does not count as hyperbole. Since 50 and 51 are the lowest 
available price states, the probabilities for hyperbolic interpretation of utterances “50” and “51” 
are 0. We computed the average probability of a hyperbolic interpretation across subjects for 
each utterance. We then showed the hyperbole effect by building a linear regression model with 
prior probabilities for the utterances’ literal meanings as predictor and the probabilities for 
hyperbolic interpretation as response. Results indicated that participants were more likely to 
interpret utterances as hyperbolic when their literal meanings have lower probabilities under the 
item’s prior price distribution (F(1, 10) = 44.06, p < 0.0001). 

For the analysis reported in Figure 3(B), we analyzed the pragmatic halo effect by 
computing each subject’s bias for interpreting an utterance u exactly (“1000” interpreted as 



1000) versus fuzzily (“1000” interpreted as 1001). Bias was measured by subtracting the 
probability of a fuzzy interpretation from the probability of an exact interpretation. We then 
obtained the average bias for each utterance across subjects. We showed that the average bias for 
exact interpretation is significantly higher for sharp utterances than for round utterances (F(1, 
28)=18.94,  p < 0.001).  

Experiment 2: Affective subtext. 160 participants were recruited on Amazon’s 
Mechanical Turk. We restricted participants to those with IP addresses in the United States. Each 
participant read 30 scenarios in which a person (e.g. Bob) buys an item that costs s dollars and is 
asked by a friend whether the item is expensive. We randomized the order of the trials as well as 
the names of the buyers. Bob responds by saying “It cost u dollars,” where u ∈ U and 𝑢 ≥ 𝑠. 
Participants then rated how likely Bob thinks the item was expensive on a continuous scale 
ranging from “impossible” to “absolutely certain,” represented as real values between 0 and 1. 
There are a total of 180 trial configurations (3 Items X 60 {𝑢, 𝑠} pairs where 𝑢 ≥ 𝑠). The stimuli 
for Experiment 2 can be found here: http://stanford.edu/~justinek/hyperbole-
paper/materials/experiment2.html; the raw data is here: http://stanford.edu/~justinek/hyperbole-
paper/data/experiment2-raw.csv 

 Since our analysis of affective subtext does not involve utterance cost, for the analyses 
reported in Figure 4(A) and 4(B), we collapsed round and sharp versions of each utterance and 
price state such that there are a total of 45 combinations of utterances and price states under 
consideration. Utterances u for which 𝑢 = 𝑠 are considered literal; utterances u for which 𝑢 > 𝑠 
are hyperbolic. For the analysis reported in Figure 4(B), we obtained average ratings of affect for 
each utterance given that it is literal or hyperbolic. A linear regression model showed that 
hyperbolic utterances are rated as having significantly higher affect than literal utterances across 
price states (F(1, 25) = 12.57, p < 0.005).  

Experiment 3a: Price prior. To obtain people’s prior knowledge of the price 
distributions for electric kettles, laptops, and watches, 30 participants were recruited from 
Amazon's Mechanical Turk. We restricted participants to those with IP addresses in the United 
States. Each participant rated the probability of an electric kettle, laptop, and watch costing s 
dollars, where s ∈ S. We randomized the order of the trials as well as the names of the buyers. 
Ratings for each price state were on a continuous scale from “impossible” to “extremely likely”, 
represented as real values between 0 and 1. The stimuli for Experiment 3a can be found here: 
http://stanford.edu/~justinek/hyperbole-paper/materials/experiment3a.html  

We normalized participants’ ratings across price points for each trial to sum up to 1. The 
average normalized ratings across participants for each item were taken as the prior probability 
distribution of item prices. These price distributions were used in the model to determine the 
prior probability of each price state. The normalized ratings can be found here: 
http://stanford.edu/~justinek/hyperbole-paper/data/experiment3a-normalized.csv  

Experiment 3b: Affect prior. To obtain people’s prior knowledge of the affect 
likelihood given a price state, 30 participants were recruited from Amazon’s Mechanical Turk. 
We restricted participants to those with IP addresses in the United States. Each participant read 
15 scenarios where someone had just bought an item that cost s dollars (s ∈  S). We randomized 
the order of the trials. They then rated how likely the buyer thinks the item was expensive on a 
continuous scale ranging from “impossible” to “absolutely certain,” represented as real values 



between 0 and 1. The stimuli for Experiment 3b can be found here: 
http://stanford.edu/~justinek/hyperbole-paper/materials/experiment3b.html  

The average ratings for each item/price state pair were taken as the prior probability of an 
affect given a price state. This was used in the model to determine the prior probability of an 
affect given each price state. The data can be found here: http://stanford.edu/~justinek/hyperbole-
paper/data/experiment3b-raw.csv  

 

 
Fig. S1. Full posterior meaning distribution predicted by the model for each utterance. Each 
column of panels is an utterance, and each row of panels is an item type. Each panel represents 
the interpretation distribution given an utterance for an item. 
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Fig. S2. Full meaning distribution produced by humans for each utterance. Each column of 
panels is an utterance, and each row is an item type. Each panel represents the interpretation 
distribution given an utterance for an item. Error bars are standard errors. 
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