Inhomogeneous circular laws for random matrices with non-identically distributed entries

Nick Cook

with Walid Hachem (Telecom ParisTech), Jamal Najim (Paris-Est) and David Renfrew (SUNY Binghamton/IST Austria)

UC Davis, 2017/04/19
The Circular Law

Empirical spectral distribution (ESD) for $M \in \mathcal{M}_n(C)$ with eigenvalues $\lambda_1, \ldots, \lambda_n \in C$:

$$\mu_M = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}.$$

iid matrix model:

- **Atom variable:** $\xi \in C$ with $E \xi = 0$, $E |\xi|^2 = 1$.
- For $n \geq 1$ let X_n be $n \times n$ with iid entries $\xi_{ij}^{(n)} \overset{d}{=} \xi$.

Theorem (Mehta ’67, Girko ’84, Edelman ’97, Bai ’97, Götze–Tikhomirov ’05, ’07, Pan–Zhou ’07, Tao–Vu ’07, Tao–Vu ’08)

Almost surely, $\mu \frac{1}{\sqrt{n}} X_n$ converges weakly to $\frac{1}{\pi} 1_{B(0,1)} dx dy$ as $n \to \infty$.
Applications: stability for mean field models of dynamical systems

- Model a neural network with a nonlinear system of ODEs:

\[
\dot{x}_i(t) = -x_i(t) + \sum_{j=1}^{n} Y_{ij} \tanh(x_j(t))
\]

where \(x_i\) is the membrane potential for the \(i\)th neuron and \(\tanh(x_i)\) is its firing rate.

- Sompolinsky, Crisanti, Sommers '88: modeled the synaptic matrix \(Y\) with a random matrix. (Similar to approach by [May '72] in ecology.)

- More recent work [Rajan, Abbott '06], [Tao '09], [Aljadeff, Renfrew, Stern '14] has tried to incorporate other structural features of neural networks into the distribution of \(Y\).

- Desirable to consider \(Y\) with a general, possibly sparse variance profile, i.e.

\[
Y_n = \frac{1}{\sqrt{n}} A_n \circ X_n = \left(\frac{1}{\sqrt{n}} \sigma_{ij} \xi_{ij} \right).
\]
Simulated ESDs for $Y_n = \left(\frac{1}{\sqrt{n}} \sigma_{ij} \xi_{ij} \right)$.

$n = 2000$

$\xi \in \{ \pm \frac{1}{\sqrt{2}} \pm i \frac{1}{\sqrt{2}} \}$ uniform.

$\sigma_{ij} = \sigma \left(\frac{i}{n}, \frac{j}{n} \right)$, with

$\sigma(x, y) = 1(|x - y| \leq 0.05)$
Simulated ESDs for $Y_n = \left(\frac{1}{\sqrt{n}} \sigma_{ij} \xi_{ij}\right)$

- $n = 2000$
- $\xi \in \{\pm \frac{1}{\sqrt{2}} \pm i \frac{1}{\sqrt{2}}\}$ uniform.
- $\sigma_{ij} = \sigma(\frac{i}{n}, \frac{j}{n})$, with
- $\sigma(x, y) = (x + y)^2 \mathbb{1}(|x - y| \leq 0.1)$
Simulated ESDs for $Y_n = \left(\frac{1}{\sqrt{n}} \sigma_{ij} \xi_{ij} \right)$

$n = 2001$

$\xi \in \{ \pm \frac{1}{\sqrt{2}} \pm i \frac{1}{\sqrt{2}} \}$ uniform.

$A_n = (\sigma_{ij}) = \begin{pmatrix} 0 & 1_{n/3} & 1_{n/3} \\ 1_{n/3} & 0 & 0 \\ 1_{n/3} & 0 & 0 \end{pmatrix}$.
The model and assumptions

\[Y_n = \frac{1}{\sqrt{n}} A_n \circ X_n = \left(\frac{1}{\sqrt{n}} \sigma_{ij}^{(n)} \xi_{ij}^{(n)} \right). \]

Inputs:

- **Atom variable** \(\xi \in \mathbb{C} \) with \(\mathbb{E} \xi = 0, \mathbb{E} |\xi|^2 = 1, \mathbb{E} |\xi|^{4+\varepsilon} < \infty \).

\[X_n = (\xi_{ij}^{(n)}) \] sequence of iid matrices with atom variable \(\xi \).

- **Standard deviation profiles** \(A_n = (\sigma_{ij}^{(n)}) \) with uniformly bounded entries, i.e. \(\sigma_{ij}^{(n)} \in [0, 1] \). Additionally assume \(A_n \) is “robustly irreducible” for all \(n \).

Assumptions allow for vanishing variances \((\sigma_{ij}^{(n)} = 0 \) for (say) 99% of entries).
Results

\[Y_n = \frac{1}{\sqrt{n}} A_n \circ X_n = \left(\frac{1}{\sqrt{n}} \sigma_{ij}^{(n)} \xi_{ij}^{(n)} \right), \]

with

- \[\mathbb{E} |\xi|^{4+\varepsilon} < \infty, \]
- \[\sigma_{ij}^{(n)} \in [0, 1], \]
- \[A_n \text{ “robustly irreducible”}. \]

Theorem (C., Hachem, Najim, Renfrew ’16)

(Abridged) In the above setup, for each \(n \), \(A_n \) determines a deterministic, compactly supported, rotationally invariant probability measure \(\mu_n \) over \(\mathbb{C} \) such that \(\mu_{Y_n} \sim \mu_n \) in probability, i.e.

\[
\int_{\mathbb{C}} f \, d\mu_{Y_n} - \int_{\mathbb{C}} f \, d\mu_n \to 0 \quad \text{in probability} \quad \forall f \in C_b(\mathbb{C}).
\]

Refer to measures \(\mu_n \) as deterministic equivalents for \(\mu_{Y_n} \).

Recent work of Alt, Erdős and Krüger gives a local version under stronger hypotheses (\(\xi \) having bounded density and all moments, \(\sigma_{ij}^{(n)} \geq \sigma_{\text{min}} > 0 \)).
Results

\[Y_n = \frac{1}{\sqrt{n}} A_n \circ X_n = \left(\frac{1}{\sqrt{n}} \sigma_{ij}^{(n)} \xi_{ij}^{(n)} \right), \] with

- \(\mathbb{E} |\xi|^{4+\varepsilon} < \infty \),
- \(\sigma_{ij}^{(n)} \) uniformly bounded,
- \(A_n \) “robustly irreducible”. \(V_n = \left(\frac{1}{n} \sigma_{ij}^2 \right) \) doubly stochastic.

Theorem (Circular law for doubly stochastic variance profile)

With \(Y_n \) as above, \(\mu_{Y_n} \rightarrow \frac{1}{\pi} 1_{B(0,1)} dx dy \) in probability.

Analogue of a result of Anderson and Zeitouni ’06 for Hermitian random matrices.
How does A_n determine μ_n? Through the Master Equations

For $s > 0$ consider the following system in unknowns $q, \tilde{q} \in \mathbb{R}^n$:

$$ME(s) : \begin{cases}
q_i = \frac{(V_n^T q)_i}{s^2 + (V_n \tilde{q})_i (V_n^T q)_i}, \\
\tilde{q}_i = \frac{(V_n q)_i}{s^2 + (V_n \tilde{q})_i (V_n^T q)_i}, \\
\sum_{i=1}^{n} q_i = \sum_{i=1}^{n} \tilde{q}_i.
\end{cases}$$

Can show that if V_n is irreducible, $s \in (0, \sqrt{\rho(V_n)})$, \\
$\Rightarrow \exists$ unique non-trivial solution $(q(s), \tilde{q}(s)) \in \mathbb{R}^{2n}_{\geq 0}$.

μ_n is the radially symmetric probability measure on \mathbb{C} with

$$\mu_n(B(0, s)) = 1 - \frac{1}{n} q(s)^T V_n \tilde{q}(s) \quad \forall s \in (0, \infty)$$

where we set $q(s) = \tilde{q}(s) = \vec{0}$ for $s \geq \sqrt{\rho(V_n)}$.
Plot of $F_n(s) = 1 - \frac{1}{n} q(s)^T V_n \tilde{q}(s)$ (curve) vs empirical realization (+).

$n = 2001$

$\xi \in \{\pm \frac{1}{\sqrt{2}} \pm i \frac{1}{\sqrt{2}}\}$ uniform.

$A_n = (\sigma_{ij}) = \begin{pmatrix} 0 & 1_{n/3} & 1_{n/3} \\ 1_{n/3} & 0 & 0 \\ 1_{n/3} & 0 & 0 \end{pmatrix}$.

N. Cook, W. Hachem, J. Najim, D. Renfrew

UC Davis, 2017/04/19
Useful transforms for proving convergence of measures

- For sums of independent scalar r.v.’s use the Fourier transform (characteristic function).
- For μ supported on \mathbb{R} (such as ESDs of Hermitian matrices) we have the Stieltjes transform $s_\mu : \mathbb{C}_+ \to \mathbb{C}_+$,

$$s_\mu(w) = \int_{\mathbb{R}} \frac{d\mu(x)}{x - w}, \quad \mu = \lim_{t \downarrow 0} \frac{1}{\pi} \Im s_\mu(\cdot + it) = \lim_{t \downarrow 0} \mu \ast \text{Cauchy}(t).$$

- For μ supported on \mathbb{C} (such as ESDs of non-Hermitian matrices) we have the log transform (or Coulomb potential)

$$U_\mu(z) = -\int_{\mathbb{C}} \log |\lambda - z| d\mu(\lambda), \quad \mu = -\frac{1}{2\pi} \Delta U_\mu.$$
Girko’s Hermitization approach

log transform for probability measure μ on \mathbb{C}:

$$U_\mu(z) = -\int_\mathbb{C} \log |\lambda - z| \mu(d\lambda), \quad \mu = -\frac{1}{2\pi} \Delta U_\mu.$$

For the ESD of $Y_n = \frac{1}{\sqrt{n}} A_n \circ X_n$,

$$U_{\mu_{Y_n}}(z) = -\frac{1}{n} \sum_{i=1}^{n} \log |\lambda_i(Y_n) - z| = -\frac{1}{n} \log |\det(Y_n - z)|$$

$$= -\frac{1}{2n} \log |\det(Y_n^z)| = -\int_\mathbb{R} \log |x| d\mu_{Y_n^z}(x)$$

where $Y_n^z := \begin{pmatrix} 0 & Y_n - z \\ Y_n^* - \overline{z} & 0 \end{pmatrix}$ is a $2n \times 2n$ Hermitian matrix with eigenvalues $\{\pm s_i(Y_n - z)\}_{i=1}^{n} \subset \mathbb{R}$.
Girko’s Hermitization approach

\[
Y_n^z = \begin{pmatrix}
0 & Y_n - z \\
Y^*_n - \bar{z} & 0
\end{pmatrix}, \quad U_{\mu_{Y_n}}(z) = -\int_{\mathbb{R}} \log |x| d\mu_{Y_n^z}(x).
\]

Two steps. For a.e. \(z \in \mathbb{C} \):

1. Find deterministic equivalents \(\nu_n^z \sim \mu_{Y_n^z} \).
2. Prove these measures uniformly (in \(n \)) integrate \(\log |\cdot| \).

Now we can use the Stieltjes transform

\[
s_n^z(w) := \int_{\mathbb{R}} \frac{d\mu_{Y_n^z}(x)}{x - w} = \frac{1}{2n} \sum_{i=1}^{2n} \frac{1}{\lambda_i(Y_n^z) - w} = \frac{1}{2n} \text{Tr} \, R_n^z(w)
\]

where \(R_n^z(w) := (Y_n^z - w)^{-1} \) is the resolvent of \(Y_n^z \).
Deterministic equivalents for resolvents $R_n^z(w)$: Complex Gaussian case

$$I_{2n} = R_n^z(w)^{-1}R_n^z(w) = \begin{pmatrix} -w & Y_n - z \\ Y_n^* - \bar{z} & -w \end{pmatrix} \begin{pmatrix} S & T \\ \tilde{T} & \tilde{S} \end{pmatrix} = \begin{pmatrix} -wS - z\tilde{T} + Y\tilde{T} & * \\ * & * \end{pmatrix}$$

$$1 = -w E S_{ii} - z E \tilde{T}_{ii} + \sum_{j=1}^n E Y_{ij} \tilde{T}_{ji}$$

(Gaussian IBP) $$= -w E S_{ii} - z E \tilde{T}_{ii} + \sum_{j=1}^n \frac{1}{n} \sigma_{ij}^2 E \partial_{Y_{ij}} \tilde{T}_{ji}$$

(Resolvent derivative formula) $$\approx -w E S_{ii} - z E \tilde{T}_{ii} - \frac{1}{n} \sum_{j=1}^n \sigma_{ij}^2 E S_{ii} \tilde{S}_{jj}$$

(Cauchy–Schwarz & Poincaré) $$\approx -w E S_{ii} - z E \tilde{T}_{ii} - \frac{1}{n} \left(E S_{ii} \right) \sum_{j=1}^n \sigma_{ij}^2 \left(E \tilde{S}_{jj} \right).$$
Deterministic equivalents for resolvents $R_n^z(w) = (Y_n^z - w)^{-1} = (\frac{S}{T} \tilde{S})$

Similarly obtain equations for

$$
\mathbb{E} S_{ii}, \mathbb{E} \tilde{S}_{ii}, \mathbb{E} T_{ii}, \mathbb{E} \tilde{T}_{ii}, \quad 1 \leq i \leq n
$$

from diagonal entries of the other three blocks. Eventually reduce to a perturbed cubic system of $2n$ equations:

$$
\mathbb{E} S_{ii} = \frac{(V_n^T s)_i + w}{|z|^2 - [(V_n^T s)_i + w][(V_n \tilde{s})_i + w]} + \mathcal{E}_n,
$$

$$
\mathbb{E} \tilde{S}_{ii} = \frac{(V_n \tilde{s})_i + w}{|z|^2 - [(V_n^T s)_i + w][(V_n \tilde{s})_i + w]} + \mathcal{E}'_n,
$$

where $s := (\mathbb{E} S_{ii})_{i=1}^n$, $\tilde{s} := (\mathbb{E} \tilde{S}_{ii})_{i=1}^n$, and $\mathcal{E}_n, \mathcal{E}'_n$ are small errors.
Deterministic equivalents for resolvents $R_n^z(w) = (Y_n^z - w)^{-1} = (s \bar{T} s)$

Stability analysis $\Rightarrow s, \bar{s}$ are close to solutions $p(|z|, w), \bar{p}(|z|, w)$ of the unperturbed system (the Schwinger–Dyson loop equations):

$$LE(|z|, w): \begin{cases} p_i &= \frac{(V_n^T p)_i + w}{|z|^2 - [(V_n^T p)_i + w][(V_n \bar{p})_i + w]}, \\
\bar{p}_i &= \frac{(V_n \bar{p})_i + w}{|z|^2 - [(V_n^T p)_i + w][(V_n \bar{p})_i + w]}. \end{cases}$$

In particular:

$$\mathbb{E} s_n^z(w) = \mathbb{E} \frac{1}{2n} \operatorname{Tr} R_n^z(w) = \mathbb{E} \frac{1}{2n} \left(\sum_{i=1}^n S_{ii} + \sum_{i=1}^n \bar{S}_{ii} \right) \sim \frac{1}{2n} \left(\sum_{i=1}^n p_i + \sum_{i=1}^n \bar{p}_i \right) = \frac{1}{n} \sum_{i=1}^n p_i.$$
Deterministic equivalents for resolvents $R_n^z(w) = (Y_n^z - w)^{-1} = (S \tilde{T} S)$

\[\mathbb{E} s_n^z(w) \sim \frac{1}{n} \sum_{i=1}^{n} p_i. \]

- Extend to the non-Gaussian case by a Lindeberg swapping argument, and remove the expectation with concentration of measure. Get

\[s_n^z(w) \sim \frac{1}{n} \sum_{i=1}^{n} p_i \text{ a.s.} \]

in the general case (and we can quantify the error).

- RHS is the Stieltjes transform of a probability measure ν_n^z on \mathbb{R}, so

\[\mu Y_n^z \sim \nu_n^z \text{ a.s.} \]
Integrability of log

We obtained deterministic equivalents ν_n^z for the “Hermitized” ESDs $\mu_{Y_n^z}$. Remains to show for a.e. $z \in \mathbb{C}$, $\mu_{Y_n^z}$ and ν_n^z uniformly integrate log, i.e.

$$\forall \varepsilon > 0 \ \exists T > 0 : \left| \int_{|\log|x|| \geq T} \log|x| d\mu_{Y_n^z}(x) \right| \leq \varepsilon$$

with probability $\geq 1 - \varepsilon$, and similarly for ν_n^z.

Singularity of log at ∞ is easy to handle.

Two-step approach to singularity at 0:

1. (Wegner estimate) Use bounds on the Stieltjes transform to show $\mu_{Y_n^z}([-t, t]) = O(t)$ for $t \geq n^{-c}$.

2. (Invertibility) Prove $|\lambda_{\min}|(Y_n^z) = s_{\min}(Y_n - z) \geq n^{-C} \text{ w.h.p.}$
Integrability of log: Wegner estimates

Stieltjes transform controls the density of eigenvalues in short intervals:

\[
\frac{1}{t} \mu Y^z_n([-t, t]) \lesssim \mu Y^z_n \ast \text{Cauchy}(t) = \text{Im} s^z_n(it).
\]

From the loop equations:

\[
\text{Im} s^z_n(it) \approx \frac{1}{n} \sum_{i=1}^{n} \text{Im} p_i(|z|, it).
\]

Key Proposition

Let \(z \neq 0, t > 0 \), and let \(p(|z|, it), \tilde{p}(|z|, it) \) be solutions to \(LE(|z|, it) \). If \(A_n \) is robustly irreducible, then

\[
\frac{1}{n} \sum_{i=1}^{n} \text{Im} p_i(|z|, it) \leq K
\]

for some constant \(K < \infty \) independent of \(n, t \).
Integrability of log \rightarrow Invertibility of structured random matrices

Want to show $s_{\min}(Y_n - z) \geq n^{-C}$ with high probability (w.h.p.).

Recall $s_{\min}(M) = 0$ iff M is singular, and otherwise $s_{\min}(M) = 1/\|M^{-1}\|$.

Say a random matrix M is well-invertible w.h.p. if

$$\mathbb{P}\left\{ \|M^{-1}\| \geq n^\alpha \right\} = O(n^{-\beta})$$

for some constants $\alpha, \beta > 0$.

Question: For what choices of $n \times n$ matrices $A = (a_{ij}), B = (b_{ij})$ is

$$Y = \frac{1}{\sqrt{n}} A \circ X + B = \left(\frac{1}{\sqrt{n}} a_{ij} \xi_{ij} + b_{ij} \right)$$

well-invertible w.h.p.?

(For convergence of ESDs we are interested in the shifts $B = -zl_n$.)

N. Cook, W. Hachem, J. Najim, D. Renfrew
Invertibility of \(\frac{1}{\sqrt{n}} A \circ X + B = (\frac{1}{\sqrt{n}} a_{ij} \xi_{ij} + b_{ij}) \)

Condition number \(\|X\|\|X^{-1}\| \) for iid matrices is well-studied

Norm: \(\|X\| = O(\sqrt{n}) \) w.h.p. (folklore / Bai–Yin)

Norm of the inverse:

\[
\begin{align*}
\mathbb{P} \left\{ \|X^{-1}\| \geq n^\alpha(\beta) \right\} & \lesssim n^{-\beta} & \text{Tao–Vu ’05,’07} \\
\mathbb{P} \left\{ \|X^{-1}\| \geq \sqrt{n}/\varepsilon \right\} & \lesssim \varepsilon + e^{-cn} & \text{Rudelson–Vershynin ’07 (\(\xi \) sub-Gaussian)}.
\end{align*}
\]

So \(\|X\|\|X^{-1}\| = n^{O(1)} \) w.h.p.
Invertibility of \(\frac{1}{\sqrt{n}} A \circ X + B = (\frac{1}{\sqrt{n}} a_{ij} \xi_{ij} + b_{ij}) \)

Structured matrices: \(\frac{1}{\sqrt{n}} A \circ X + B \) is well-invertible w.h.p. when

\[a_{ij} \geq \sigma_0 > 0, \quad \|B\| \leq n^{O(1)} \]

\(A \) is broadly connected, \(\|B\| = O(1) \)

Bordenave–Chafaï ’11

Rudelson–Zeitouni ’12 for \(\xi \sim N_{\mathbb{R}}(0, 1) \), C. ’16 general case.

The above give bounds that are uniform in the shift \(B \), i.e.

\[
\sup_{B: \|B\| \leq n^{O(1)}} \mathbb{P} \left\{ \left\| \left(\frac{1}{\sqrt{n}} A \circ X + B \right)^{-1} \right\| \geq n^{\alpha} \right\} = O(n^{-\beta}).
\]

Can we further relax hypotheses on \(A \) if \(B \) is well-invertible (such as \(B = -zI_n \) for fixed \(z \neq 0 \))?
Theorem (C. ’16)

Let $Y = \frac{1}{\sqrt{n}} A \circ X + Z$, where

1. $X = (\xi_{ij})$ iid matrix with $\mathbb{E} \xi_{ij} = 0$, $\mathbb{E} |\xi_{ij}|^2 = 1$, $\mathbb{E} |\xi_{ij}|^{4+\varepsilon} = \gamma < \infty$;
2. $A \in [0, 1]^{n \times n}$ arbitrary;
3. $Z = \text{diag}(z_i)_{i=1}^n$, $|z_i| \in [r, R] \subset (0, +\infty)$ for all $i \in [n]$.

There exist $\alpha, \beta > 0$, $C < \infty$ depending only on $\varepsilon, \gamma, r, R$ such that

$$
\mathbb{P} \left(\| Y^{-1} \| \geq n^\alpha \right) \leq C n^{-\beta}.
$$

Note: Proof gives $\alpha = \text{twr}[O_\varepsilon(1) \exp((\gamma/r)^{O(1)})]$. The tower exponential is due to use of Szemerédi’s regularity lemma.

Conjecture

Above holds if Z is any matrix with $s_i(Z) \in [r, R]$ for all $i \in [n]$.