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Abstract

Risk and time are intertwined. The present is known while the future is
inherently risky. Discounted expected utility provides a simple, coherent struc-
ture for analyzing decisions in intertemporal, uncertain environments. Critical
to such analysis is the notion that certain and uncertain utility are functionally
interchangeable. We document an important and robust violation of discounted
expected utility, which is essentially a violation of this interchangeability. In pa-
rameter estimations, certain utility is found to be almost linear while uncertain
utility is found to be substantially more concave. These results have implications
for discounted expected utility theory and decision theory in general. Applica-
tions are made to dynamic inconsistency, the uncertainty effect, the estimation
of risk preferences and probability weighting.
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1 Introduction

“. . . I viewed the principle of independence as incompatible with the preference for

security in the neighbourhood of certainty. . . this led me to devise some counter-

examples. One of them, formulated in 1952, has become famous as the ‘Allais

Paradox’. Today, it is as widespread as its real meaning is generally misunder-

stood.” (Allais, 2008, p. 4-5)

Research on decision making under uncertainty has a long tradition. A core of

tools designed to explore risky decisions has evolved, pinned down by the Savage (1954)

axioms and the expected utility (EU) framework. There are, however, a number of well-

documented departures from EU such as the Allais (1953) common consequence and

common ratio paradoxes whose featured ‘certainty effects’ informed the development of

prospect theory (PT) (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992).

More recently, several authors have documented an ‘uncertainty effect’ (Gneezy et al.,

2006; Simonsohn, 2009), incompatible with either PT or EU, where lotteries are valued

lower than the certainty of their worst possible outcome.

An organizing principle behind these important violations of expected utility is

that they seem to arise in situations where certainty and uncertainty are combined.

Indeed this is exactly the desired demonstration of the Allais Paradox.1 Allais (1953,

p. 530) argued that when two options are far from certain, individuals act effectively as

expected utility maximizers, while when one option is certain and another is uncertain

a disproportionate preference for certainty prevails.2

In few decision environments is the mix of certainty and uncertainty more prevalent

1The common consequence paradox became known as the ‘Allais paradox’, and is presented prior
to the common ratio paradox in Allais (1953).

2Allais’ intuition has at least partially carried through to economic experiments. In their reviews
of the experimental literature, Harless and Camerer (1994); Camerer and Ho (1994) note that viola-
tions of expected utility are less prevalent when all options are uncertain (i.e., on the interior of the
Marschak-Machina triangle).
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than intertemporal settings. The present is certain, while the future is inherently risky.

The discounted expected utility (DEU) model is the standard approach to addressing

decision-making in such contexts. Interestingly, there are relatively few noted violations

of the expected utility aspect of the DEU model.3

We document an important violation of expected utility in an intertemporal setting.

An implication of the standard DEU model is that intertemporal allocations should

depend only on relative intertemporal risk. For example, if sooner consumption will

be realized 50% of the time and later consumption will be realized 50% of the time,

intertemporal allocations should be identical to a situation where all consumption is

risk-free.

In an experiment with 80 undergraduate subjects at the University of California,

San Diego, we implement Andreoni and Sprenger (2009) Convex Time Budgets (CTBs)

under varying risk conditions. CTBs ask individuals to allocate a budget of experi-

mental tokens to sooner and later payments. The relative value of sooner versus later

tokens determines the gross interest rate. CTB allocation decisions are therefore equiv-

alent to intertemporal optimization subject to a convex budget constraint. Andreoni

and Sprenger (2009) show that preference parameters for both discounting and utility

function curvature are easily estimable from CTB allocations.

We implement CTBs in two basic within-subject risk conditions: 1) A risk-free

condition where all payments, both sooner and later, will be paid 100% of the time;

and 2) a risky condition where, independently, sooner and later payments will be paid

only 50% of the time. Under the standard DEU model, CTB allocations in the two

3Loewenstein and Thaler (1989) and Loewenstein and Prelec (1992) document a number of anoma-
lies in the discounting aspect of discounted utility models. Machina (1989) demonstrates that non-EU
preferences generate dynamic inconsistencies and Halevy (2008) shows that hyperbolic discounting
can be reformulated in terms of non-EU probability weighting. The only evidence of intertemporal
violations of EU known to the authors is Baucells and Heukamp (2009) and Gneezy et al. (2006) who
show that temporal delay can generate an effect akin to the classic common ratio effect and that the
uncertainty effect is present for hypothetical intertemporal decisions, respectively.
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conditions should be identical. The pattern of results clearly violates DEU and is

further inconsistent with non-EU concepts such as probability weighting (e.g., Tversky

and Fox, 1995). In estimations of utility parameters, aggregate discounting is found to

be around 30% per year, close to the findings of Andreoni and Sprenger (2009), and

is virtually identical in both conditions. Interestingly, subjects exhibit almost linear

preferences in the risk-free first condition, but substantial utility function curvature in

the risky second condition.

A foundational assumption in the construction of the DEU model is the assumption

that utility is continuous in probability. Continuity in probability implies that certain

and uncertain utility are functionally identical.4 We term this ‘interchangeability’.

The importance of interchangeability is clear: it implies that time-dated consump-

tion is evaluated using the same utility function whether this consumption is risky

or risk-free. The DEU violation we identify is more clearly viewed as a violation of

interchangeability. Our results suggest a real difference between the utility functions

that govern the evaluation of certain and uncertain consumption.5

To explore interchangeability in greater detail, we examine four additional experi-

mental conditions with differential risk. In the first two conditions one payment, either

sooner or later, is paid 50% of the time while the other is paid only 40% of the time.

Allais argued that in these situations, far from certainty, individuals should behave ap-

proximately as expected utility maximizers. Indeed they do. In two further conditions,

one payment is certain while the other is paid only 80% of the time. We demonstrate a

disproportionate preference for certain payments that is inconsistent with interchange-

4Continuity is defined over bundles and states that given any three bundles in the domain of
outcomes with a preference ordering x1 � x2 � x3, there exists a probability, p ∈ [0, 1], such that
x2 ∼ p ◦ x1 + (1 − p) ◦ x3. If no such p exists, then utility is discontinuous in probability. If certain
and uncertain utility are different then it is possible to find a set of three bundles for which there will
exist no probability mixture satisfying the definition of continuity.

5Other violations of continuity exist in decision theory. For example, quasi-hyperbolic discounting
is an example of preferences that are discontinuous over time. In Section 5, we demonstrate that
quasi-hyperbolic discounting can arise from our observed violation of interchangeability.
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ability, but can be readily resolved if certain and uncertain consumption are evaluated

using different preference parameters. The observed effects are closely in line with the

desired demonstration of the Allais paradox.

Our results have substantial implications for both experimental research on time

and risk preferences and theoretical developments based on the DEU model. Specific

applications of our results can be made to: hyperbolic discounting; the existence of an

uncertainty effect; the measurement of risk preferences; and the identification of proba-

bility weighting. First, much attention has been given to dynamic inconsistencies such

as quasi-hyperbolic discounting. We demonstrate that the quasi-hyperbolic pattern of

discounting can be generated by differential assessment of certain and uncertain con-

sumption. Second, the existence of an uncertainty effect is impossible in both EU and

PT.6 However, if certain and uncertain consumption are evaluated with different utility

parameters, the uncertainty effect is no longer anomalous. Third, in the experimental

measurement of risk preferences, subjects are often asked to give certainty equivalents

for uncertain lotteries. Such methodology frequently generates extreme measures of

risk aversion at odds with standard EU theory (Rabin, 2000). Our results suggest that

we could potentially resolve this issue by allowing for differential assessment of certain

and uncertain consumption. Fourth, probability weighting phenomena are generally

identified from certainty equivalents experiments similar to those employed to measure

risk preferences.7 Our results indicate that differences between certain and uncertain

utility can generate probability weighting phenomena.

The paper proceeds as follows: Section 2 presents a conceptual development of

discounted expected utility, building to a testable hypothesis of decision making in

6In fact the uncertainty effect will be at odds with any utility theory satisfying a betweenness
property.

7For example, in Tversky and Fox (1995), subjects were asked to provide the certainty equivalent x
of a lottery with empirical probability p and payout y. Assuming a power utility function, U(x) = xα,
with α = 0.88 obtained by Tversky and Kahneman (1992), the authors then back out the probability
weight, π(p) as the the value that solves xα = π(p)yα.
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certain and uncertain situations. Section 3 describes our experimental design. Sec-

tion 4 presents results and Section 5 discusses the above-mentioned applications and

concludes.

2 Conceptual Background

The continuity-in-probability of utility frequently assumed in decision theory implies

that individuals assess certain consumption identically to uncertain consumption.

Given some utility function for certain consumption, u(·), and a utility function for

uncertain consumption, v(·), assumed to be separable and linearly additive over prob-

abilistic states, interchangeability states that:

u(·) ≡ v(·).

When decisions are intertemporal and utility is time separable, this gives rise to

the standard DEU model:

U = u(ct) +
T∑
k=0

δkE[u(ct+k)]

where present consumption is certain while future consumption is both discounted

and uncertain. The expectation, E[·], is taken via a standard linear-in-probabilities

weighting over N states: E[u(ct+k)] =
∑N

s=1 psu(ct+k,s) =
∑N

s=1 psv(ct+k,s). If all

consumption is certain, the expectation disappears:

Ũ = u(ct) +
T∑
k=0

δku(ct+k)

If consumption at time t will be realized only with probability p1 while later consump-
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tion will be realized with probability p2, utility is:

˜̃U = p1u(ct) +
T∑
k=0

p2δ
ku(ct+k) + Z

Where Z represents a sum of discounted and linear probability-weighted u(0) terms.

In this framework, we consider two risky prospects temporally separated by k pe-

riods. Let the first prospect yield ct with probability p1 and zero otherwise. Let the

second prospect yield ct+k with probability p2 and zero otherwise. We term this a risky

situation and denote it with (p1, p2). Under the standard construction, the utility of

the risky situation is:

p1u(ct) + p2δ
ku(ct+k) + ((1− p1) + (1− p2)δ

k)u(0)

Suppose an individual maximizes utility of the risky situation subject to the future

value budget constraint

(1 + r)ct + ct+k = m

yielding the marginal condition:

p1u
′(ct)

p2δku′(ct+k)
= (1 + r)

or

u′(ct)

δku′(ct+k)
= (1 + r)

p2

p1

The tangency condition, in combination with the budget constraint, generally yields

solution functions of the form:

c∗t (p1, p2, k, 1 + r,m)

A key observation in this construction is that intertemporal allocations will depend
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only on the relative risk, p2/p1, and not on p2 or p1 separately. If p2/p1 = 1, then

behavior should be identical to a risk-free situation. This is a critical and testable

implication of the DEU model.8

Hypothesis: For a given a risky situation (p1, p2), if p2/p1 = 1, then

c∗t (p1, p2, k, 1 + r,m) = c∗t (1, 1, k, 1 + r,m) ∀ k, (1 + r),m.

It is important to understand the degree to which this hypothesis hinges upon

interchangeability. If u(·) 6= v(·), then there is no reason to expect c∗t (p1, p2, k, 1 +

r,m) = c∗t (1, 1, k, 1 + r,m) when p2/p1 = 1. This is because the marginal conditions in

the two situations will generally be satisfied at different allocation levels.9

In our later exposition it will be notationally convenient to use θ to indicate the

risk adjusted gross interest rate:

θ = (1 + r)
p2

p1

such that the tangency can be written as:

u′(ct)

δku′(ct+k)
= θ

Provided that u′(·) > 0, u′′(·) < 0, c∗t will be decreasing in p2/p1 and 1 + r. As such, c∗t

will also be decreasing in θ.

8Note that restricting discounting to be exponential is an unnecessary simplification. Discounting
could take a general form D(t, k) and the implication would be maintained.

9In the risky situation the marginal condition will be v′(ct)/δkv′(ct+k) = (1 + r)p2/p1 = (1 + r),
while in the risk-free situation the condition will be: u′(c′t)/δ

ku′(c′t+k) = (1 + r). And c′t = ct; c′t+k =
ct+k only if the marginal utility functions u′(·) and v′(·) are equal. Though this may occur without
u(·) = v(·), it generally will not.
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3 Experimental Design

In order to explore the evaluation of certain and uncertain intertemporal consumption,

an experiment using Andreoni and Sprenger (2009) Convex Time Budgets under vary-

ing risk conditions was conducted at the Univeristy of California, San Diego in April

of 2009. In each CTB decision, subjects were given a budget of experimental tokens

to be allocated across a sooner payment, paid at time t, and a later payment, paid at

time t + k, k > 0. Two basic CTB environments consisting of 7 allocation decisions

each were implemented under six different risk conditions. This generated a total of

84 experimental decisions for each subject.

3.1 CTB Design Features

• Choice of t and k: Sooner payments in each decision were always seven days from

the experiment date (t = 7 days). The design choice of using a ‘front-end-delay’

was made to avoid any direct impact of immediacy on decisions and to help

eliminate differential transactions costs across sooner and later payments.10 In

one of the basic CTB environments, later payments were delayed 28 days (k = 28

days) and in the other, later payments were delayed 56 days (k = 56 days).

The choice of t and k combinations was determined by the academic calendar.

Payment dates were set to avoid holidays, school vacation days and final exam-

ination week. Payments were scheduled to arrive on the same day of the week

(i.e., t and k both multiples of 7), to avoid differential week-day effects.

• Token Budgets and Interest Rates: In each CTB decision, subjects were given a

token budget of 100 tokens. Tokens allocated to the sooner experimental payment

10See below for the recruitment and payment efforts that allowed sooner payments to be imple-
mented in the same manner as later payments. For discussions of front-end-delays in time preference
experiments see Coller and Williams (1999); Harrison et al. (2005).
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had a value of ρt while tokens allocated to the later experimental payment had

a value of ρt+k. In all cases, ρt+k was $.20 per token and ρt varied from $.20

to $.14 per token. Note that ρt+k/ρt = (1 + r), the gross interest rate over k

days, and (1 + r)1/k − 1 gives the standardized daily net interest rate. Daily net

interest rates in the experiment varied considerably across the basic budgets, from

0 to 1.3 percent, implying annual interest rates of between 0 and 2100 percent

(compounded quarterly). Table 1 shows the token values, gross interest rates,

standardized daily interest rates and corresponding annual interest rates for the

basic CTB budgets.

• Risk Conditions The basic CTB decisions described above were implemented in

a total of six risk conditions.

1. 100%-100% Condition: All payments, both sooner and later were made

100% of the time, (p1, p2) = (1, 1).

2. 50%-50% Condition: All payments, both sooner and later were made 50%

of the time, (p1, p2) = (0.5, 0.5).

3. 50%-40% Condition: Sooner payments were made 50% of the time. Later

payments were made 40% of the time, (p1, p2) = (0.5, 0.4).

4. 40%-50% Condition: Sooner payments were made 40% of the time. Later

payments were made 50% of the time, (p1, p2) = (0.4, 0.5).

5. 100%-80% Condition: Sooner payments were made 100% of the time. Later

payments were made 80% of the time, (p1, p2) = (1, 0.8).

6. 80%-100% Condition: Sooner payments were made 80% of the time. Later

payments were made 100% of the time, (p1, p2) = (0.8, 1).

For each payment involving uncertainty, a ten-sided die was rolled at the end of
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the experiment to determine whether the payment would be sent or not. The

risk conditions were chosen for several reasons. The first two situations allow for

a test of interchangeability as behavior in conditions 1 and 2 should be identical.

If there are utility parameters that govern uncertain situations, then behavior in

conditions 3 and 4 should be well predicted by behavior in condition 2. If not,

then behavior in conditions 3 and 4 should be identical to behavior in conditions

5 and 6.11 Condition 5 is of particular interest because it follows the pattern of

risk seen in real-life intertemporal decisions and at times, inadvertently, created

in laboratory settings. The sooner payment is certain while the future payment

is risky.

3.2 Implementation and Protocol

One of the most challenging aspects of implementing any time discounting study is

making all choices equivalent except for their timing. That is, transactions costs as-

sociated with receiving payments, including physical costs and confidence, must be

equalized across all time periods. We took several unique steps in our subject recruit-

ment process and our payment procedure in order to equate transaction costs over

time.

3.2.1 Recruitment

In order to participate in the experiment, subjects were required to live on campus. All

campus residents are provided with an individual mailbox at their dormitory. Students

frequently use these mailboxes as all postal service mail and university organized intra-

campus mail are received at this mailbox. Each mailbox is locked and individuals

11Conditions 3 and 5 share the common ratio p2/p1 = 1.25 and conditions 4 and 6 share the common
ratio p2/p1 = 0.8.
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have keyed access 24 hours per day. We recruited 80 undergraduate freshman and

sophomores who lived on campus and so had campus mailboxes.

3.2.2 Experimental Payments

Using the campus mailboxes allowed us to equate physical transaction costs across

sooner and later payments. All payments, both sooner and later, were placed in sub-

jects’ campus mailboxes. Subjects were fully informed of the method of payment.12

Several other measures were also taken to equate transaction costs. Upon beginning

the experiment, subjects were told that they would receive a $10 minimum payment

for participating. This $10 was to be received in two payments: $5 sooner and $5

later. All experimental earnings were added to these $5 minimum payments, such that

subjects would receive at least $5 sooner and at least $5 later. Two blank envelopes

were provided. After receiving directions about the two minimum payments, subjects

were asked to address the envelopes to themselves at their campus mailbox. At the

end of the experiment, subjects were asked to write their payment amounts and dates

on the inside flap of each envelope such that they would see the amounts written in

their own handwriting when payments arrived.

One choice for each subject was chosen for payment by drawing a numbered card

at random. All experimental payments were made by personal check from Professor

James Andreoni drawn on an account at the university credit union.13 Individuals were

informed that they could cash their checks (if they so desired) at the university credit

union. They were also given the business card of Professor James Andreoni and told

12See Section A.2 for the information provided to subjects.
13Payment choice was guided by a separate survey of N = 249 undergraduate economics students

eliciting payment preferences. Personal checks from Professor Andreoni, Amazon.com gift cards,
PayPal transfers and the university stored value system TritonCash were each compared to cash
payments. Subjects were asked if they would prefer a twenty dollar payment made via each payment
method or $X cash, where X was varied from 19 to 10. Personal check payments were found to have
the highest cash equivalent value.
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to immediately report any problems in receiving timely payment.

3.2.3 Protocol

The experiment was done with paper and pencil. Upon entering the lab subjects were

read an introduction with detailed information on the payment process and a sample

decision with different payment dates, token values and payment risks than those used

in the experiment.14 Subjects were informed that they would work through 6 decision

tasks. Each task consisted of 14 CTB decisions: seven with t = 7, k = 28 on one sheet

and seven with t = 7, k = 56 on a second sheet. Each decision sheet had a calendar on

the left hand side, highlighting the experiment date (in yellow), the sooner payment

date (in green) and the later payment date (in blue). This allowed subjects to visualize

the payment dates and delay lengths.

Figure 1 shows a sample decision sheet. Identical instructions were read at the

beginning of each task providing payment dates and the chance of being paid for

each decision.15 Subjects were provided with a calculator and a calculation sheet

transforming tokens to payments amounts at various token values.

Four sessions were conducted over two days. Two orders of risk conditions were

implemented to examine order effects: 1) (p1, p2) = (1, 1), (1, 0.8), (0.8, 1), (0.5, 0.5),

(0.5, 0.4), (0.4, 0.5); and 2) (p1, p2) = (0.5, 0.5), (0.5, 0.4), (0.4, 0.5), (1, 1), (1, 0.8),

(0.8, 1).16

14See Appendix A.3 for introductory text, instructions and examples.
15See Appendix Section A.3 for a sample of the task instructions.
16Each day consisted of an early session (12 pm) and a late session (2 pm). The early session on

the first day and the late session on the second day share a common order as do the late session on
the first day and the early session on the second day. There are no identifiable order or session effects
in the data (see below).
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4 Results

The results are presented in two broad sections. First, we examine behavior in the two

basic situations: 1) (p1, p2) = (1, 1) and 2) (p1, p2) = (0.5, 0.5). We document a critical

violation of the DEU model and show that the pattern of results is generally incompat-

ible with various probability weighting concepts. In estimates of utility parameters, we

show clear differences between the utility functions for certain and uncertain consump-

tion. Second, we explore behavior in two further contexts: one where all payments

are uncertain, but there is differential risk; and another where one payment is certain

while the other is uncertain. We demonstrate a pattern of behavior consistent with

the notion that individuals behave as expected utility maximizers away from certainty

but exhibit a disproportionate preference for certainty when it is available.

4.1 Behavior Under Certainty and Uncertainty

The development of Section 2 provides a testable hypothesis for behavior across certain

and uncertain intertemporal settings. For a risky situation, (p1, p2), if p2/p1 = 1 then

behavior should be identical to a similarly dated risk-free situation, at all gross interest

rates, 1 + r, and all delay lengths, k.17 Figure 2 graphs aggregate behavior for the sit-

uations: 1) (p1, p2) = (1, 1) and 2) (p1, p2) = (0.5, 0.5) across the experimentally varied

gross interest rates and delay lengths. The mean earlier choice of ct is graphed along

with error bars corresponding to 95 percent confidence intervals (+/− 1.96 standard

errors).

Though, under the DEU model, behavior should be identical across the two con-

ditions, we find strong evidence to the contrary. At the lowest gross interest rate,

1 + r = 1, subjects choose smaller allocations of ct when (p1, p2) = (0.5, 0.5) . At all

17We ignore m because the experimental budget was held constant across all choices.
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higher interest rates, subjects choose larger allocations of ct when (p1, p2) = (0.5, 0.5).18

In a hypothesis test of equality across the two risky situations, the overall difference is

found to be highly significant: F14,2212 = 15.66, p < .001.19

The results presented in Figure 2 are surprising from a classical decision theory

perspective and are in clear violation of discounted expected utility. Revealed prefer-

ence behavior is found to be significantly different across risk-free and risky situations.

Though this is suggestive evidence against interchangeability, there may be alternative

explanations. Principal among these alternatives is prospect theory and, in particular,

the existence of probability weighting (e.g., Tversky and Fox, 1995).

Probability weighting generally states that individuals ‘edit’ probabilities internally

via a weighting function, π(p). π(p) is monotonically increasing in the interval [0, 1],

but is S -shaped such that low probabilities are up-weighted and high probabilities are

down-weighted. Standard probability weighting is unable to explain the phenomena

observed in Figure 2. If p1 = p2, then π(p1) = π(p2); π(p2)/π(p1) = 1 and behavior

should again be identical to a risk-free situation.

Another potential explanation is that probabilities are weighted by their temporal

proximity (see e.g., Halevy, 2008). Under this formulation, subjective probabilities are

arrived at through some temporally dependent function g(p, t) : [0, 1] × < → [0, 1]

where t represents the time at which payments will be made. Provided freedom to

pick the functional form of g(·) one could easily arrive at differences between the ratios

18This difference in allocations across conditions is obtained for all sessions and for all orders indi-
cating no presence of order or day effects. Results available on request.

19Test statistic generated after analysis of variance with 2240 observations (28 per subject × 80
subjects) controlling for levels of interest rate (6 degrees of freedom), delay length (1 d.f), (interest
rate) × (delay length) (6 d.f) and (risk condition) × (interest rate) × (delay length) (14 d.f). 2240 -
6 - 1 - 6 - 14 - 1(constant) = 2212 d.f. The F -test corresponds to testing the null hypotheses that the
14 (risk condition) × (interest rate) × (delay length) terms have zero explanatory power. ANOVA
results available on request.
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g(1, t+ k)/g(1, t) and g(0.5, t+ k)/g(0.5, t).20

These differences lead to a new risk adjusted interest rate similar to the θ defined

in Section 2:

θ̃p1,p2 ≡
g(p2, t+ k)

g(p1, t)
(1 + r)

and note that either θ̃1,1 > θ̃0.5,0.5 ∀ (1 + r) or θ̃1,1 < θ̃0.5,0.5 ∀ (1 + r), depending on the

form of g(·) chosen. Once one obtains a prediction as to the relationship between θ̃1,1

and θ̃0.5,0.5, it must hold for all gross interest rates.

Provided a concave utility function, ct allocations should be decreasing in θ̃. As

such, one should never observe a switch in behavior where for one gross interest rate

ct allocations are higher when (p1, p2) = (1, 1) and for another gross interest rate

ct allocations are higher when (p1, p2) = (0.5, 0.5). This switch in behavior, which is

observed in our data, is not consistent with temporally dependent probability weighting

of the form proposed by Halevy (2008). Given the freedom granted in determining the

function, g(·), even some hybrid of temporally dependent weighting and probability

editing would be generally unable to generate this switch in behavior.

4.1.1 Estimating Risk-Dependent Preferences

The observed data in the cases of (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5) are in-

consistent with the interchangeability assumption of the DEU model and are difficult

to reconcile with notions of probability weighting. Whereas allocations of ct when

20Halevy (2008) gives the example of g(p, t) = g(pt) such that g(0) = 0; g(1) = 1. In this case:

g(1, t+ k)
g(1, t)

=
g(1t+k)
g(1t)

= 1 6= g(0.5, t+ k)
g(0.5, t)

=
g(0.5t+k)
g(0.5t)

provided g(·) does not take on identical values at 0.5t and 0.5t+k. If one further assumes g(·) is strictly
monotonic and differentiable such that g′(·) > 0, then

g(1, t+ k)
g(1, t)

=
g(1t+k)
g(1t)

= 1 >
g(0.5, t+ k)
g(0.5, t)

=
g(0.5t+k)
g(0.5t)
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(p1, p2) = (1, 1) vary substantially with the interest rate, the sensitivity of allocations

to interest rates is lower when (p1, p2) = (0.5, 0.5).

The sensitivity of intertemporal allocations to interest rates, that is the elasticity

of intertemporal substitution, is generally determined by both time preferences and

utility function curvature. Our experimental design allows us to identify and, given

some structural assumptions, estimate both discounting and curvature. Following the

methodology outlined in Andreoni and Sprenger (2009), we assume utility function:

u(ct) = (ct − ω)α

where α represents utility function curvature and ω is a background parameter that

could be interpreted as a Stone-Geary minimum parameter.21 Under this formulation

of the DEU model, the solution function c∗t can be written as:

c∗t (p1, p2, t, k, 1+r,m) =
[1− (p2

p1
(1 + r)δk)

1
α−1 ]

[1 + (1 + r)(p2
p1

(1 + r)δk)
1

α−1 ]
ω+

[(p2
p1

(1 + r)δk)
1

α−1 ]

[1 + (1 + r)(p2
p1

(1 + r)δk)
1

α−1 ]
m

or

c∗t (θ, t, k, 1 + r,m) =
[1− (θδk)

1
α−1 ]

[1 + (1 + r)(θδk)
1

α−1 ]
ω +

[(θδk)
1

α−1 ]

[1 + (1 + r)(θδk)
1

α−1 ]
m (0)

We estimate the parameters of this function via non-linear least squares with stan-

dard errors clustered on the individual level to obtain α̂, δ̂ and ω̂. An estimate of

the annual discount rate is generated as 1/δ̂365 − 1, with corresponding standard error

obtained via the delta method.

Table 2 presents discounting and curvature parameters estimated from the two

21Frequently in the time preference literature, the simplification ω = 0 is imposed or ω is interpreted
as negative background consumption and calculated from an external data source. In Andreoni and
Sprenger (2009) we show the sensitivity of parameter estimates to these simplifications.
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conditions (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5). In column (1), we estimate a

baseline model where discounting and curvature are restricted to be identical across

the two risk conditions. The aggregate discount rate is estimated to be around 27%

per year and aggregate curvature is estimated to be 0.98.

In column (2) we estimate separate discounting and curvature parameters for the

two risk conditions. That is, we estimate a risk-free u(·) and a risky v(·). Discounting

is found to be similar across the conditions at around 30% per year.22 In the risk

free condition, (p1, p2) = (1, 1), we find almost linear utility while in the the risky

condition, (p1, p2) = (0.5, 0.5), we estimate utility to be markedly more concave. A

similar result is observed in column (3) where discounting is restricted to be the same

across risk conditions. Hypotheses of equal utility function curvature across conditions

are rejected in both specifications: F1,79 = 37.97, p < .001; F1,79 = 38.09, p < .001,

respectively. To illustrate how well these estimates fit the data, Figure 2 also displays

solid lines corresponding to predicted behavior based on the parameters estimated in

column (3). The general pattern of aggregate responses is well matched.23

Though discounting is estimated to be similar across conditions, substantial differ-

ence in curvature is estimated between (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5). Figure

3 demonstrates the economic importance of this result, plotting the estimated two

utility functions along with 95% confidence intervals of the estimates. While utility

deviates only slightly from linear preferences when (p1, p2) = (1, 1), the deviation is

sizeable when (p1, p2) = (0.5, 0.5), even over the monetary values used in the experi-

ment. These results are suggestive evidence against the interchangeability assumption.

22For comparison, Andreoni and Sprenger (2009) find aggregate discount rate between 30-37% and
aggregate curvature of around 0.92 in risk-free situations.

23Figure 2 additionally reports separate R2 values for the two conditions: R2
1,1 = 0.594; R2

0.5,0.5 =
0.761, indicating that the solution function estimation approach does an adequate job of fitting the
aggregate data. For comparison a simple linear regression of ct on the levels of interest rates, delay
lengths and their interaction in each condition would produce R̃2 values of R̃2

1,1 = 0.443; R̃2
0.5,0.5 =

0.346. Results available on request.
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Our estimation suggest that certain and uncertain payments are evaluated using dif-

ferent utility functions.

4.2 Behavior with Differential Risk

In this section we analyze behavior in conditions with differential risk. First, we exam-

ine conditions where all payments are uncertain but sooner and later payments differ

in their level of risk. Second, we examine two hybrid conditions where one payment is

certain while the other is uncertain.

4.2.1 Expected Utility Under Uncertainty

The individual’s marginal condition under DEU establishes a tradeoff between relative

risk, p2/p1, and the gross interest rate, 1+r. This tradeoff is captured in the variable θ,

the risk adjusted interest rate. As noted in Section 2, given a concave utility function,

ct allocations should be decreasing in both the relative risk and the gross interest rate.

As such, ct allocations should also be decreasing in θ. Note that this additionally

implies that if θ is constant across situations, ct allocations will be higher where the

interest rate is lower.

Figure 4 presents aggregate behavior from three risky situtations: 2) (p1, p2) =

(0.5, 0.5) (in red, as before); 3) (p1, p2) = (0.5, 0.4) (in green); and 4) (p1, p2) = (0.4, 0.5)

(in orange) over the experimentally varied values of θ and delay length. The mean ear-

lier choice of ct is graphed along with error bars corresponding to 95 percent confidence

intervals (+/− 1.96 standard errors). We also plot predicted behavior based on the

aggregate responses in the (p1, p2) = (0.5, 0.5) condition. That is, based on α̂0.5,0.5, δ̂

and ω̂ estimated in Table 2, column (3), we predict out of sample behavior for the two

conditions (p1, p2) = (0.5, 0.4) and (p1, p2) = (0.4, 0.5). These predictions are plotted

as solid lines in green and orange.
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We highlight two dimensions of Figure 4. First, the theoretical predictions are 1)

that ct should be declining in θ; and 2) that if two decisions have identical θ then

ct should be higher in the condition with the lower interest rate. These features are

observed in the data. Allocations of ct decline with θ and, where overlap of θ exists ct

is generally higher for lower gross interest rates.24 Second, out of sample predictions

match actual aggregate behavior. Indeed, the out of sample calculated R2 values are

high: 0.878 for (p1, p2) = (0.5, 0.4) and 0.580 for (p1, p2) = (0.4, 0.5).25

Figure 4 demonstrates that in situations where all payments are risky, utility pa-

rameters measured under uncertainty do well at describing behavior. That is, away

from certainty, subjects act as expected utility maximizers, trading off relative risk and

interest rates as predicted by the DEU model.

4.2.2 Differential Curvature: A Preference for Certainty

When all options are uncertain, individuals appear to recognize the trade-off between

relative risk and interest rates. The results demonstrated in Figure 4 are in line with

both Allais’ intuition and the prior work on the identification of EU violations when

all options are uncertain (see Harless and Camerer, 1994; Camerer and Ho, 1994).

Interchangeability, however, requires that the same trade-offs between relative risk and

interest rates be made when one option is certain. That is, interchangeability requires

that behavior when (p1, p2) = (0.5, 0.4) be identical to behavior when (p1, p2) = (1, 0.8),

and that behavior when (p1, p2) = (0.4, 0.5) be identical to behavior when (p1, p2) =

(0.8, 1). These conditions share common ratios of p2/p1.

Figure 5 graphs behavior in these four conditions, demonstrating that allocations

24This pattern of allocations is obtained for all sessions and for all orders indicating no presence of
order or day effects. Results available on request.

25By comparison, making similar out of sample predictions using utility estimates from (p1, p2) =
(1, 1) yields predictions that diverge dramatically from actual behavior (see Figure A1) and lowers R2

values to 0.767 and 0.462, respectively. This suggests that accounting for differential utility function
curvature in risky situations allows for an improvement of fit on the order of 15-25%.
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when all payments are risky differ dramatically from allocations where some payments

are certain.26 Hypotheses of equality across conditions are rejected in both cases.27

Subjects show a disproportionate preference for certainty when it is available. This

result follows naturally from our Table 2 estimates, which show that utility function

curvature is markedly more pronounced in uncertain situations relative to certain situ-

ations. Stated differently, the marginal utility of consumption is estimated to be higher

under certainty. This higher marginal utility translates into a differential preference

for certainty when it is available.

To explore the influence of combined certainty and uncertainty on experimental

responses, Figure 6 plots aggregate behavior in three conditions: 1) (p1, p2) = (1, 1)

(in blue, as before); 5) (p1, p2) = (1, 0.8) (in gray); and 6) (p1, p2) = (0.8, 1) (in purple)

over the experimentally varied values of θ and delay length. The mean earlier choice

of ct is graphed along with error bars corresponding to 95 percent confidence intervals

(+/− 1.96 standard errors).

Under interchangeability, Figure 6 should be identical to Figure 4. Aggregate re-

sponses should be declining in θ and the gross interest rate, as before. Unlike the

findings of Figure 4, ct allocations are not decreasing in θ. Additionally, lower interest

rates do not generally lead to higher ct allocations when θ is equal across conditions.

The cross-over in allocations across the (p1, p2) = (1, 0.8) and (p1, p2) = (1, 1)

conditions is particularly striking. When θ = 1, ct allocations are higher in the

(p1, p2) = (1, 1) condition, while at larger values of θ, ct allocations are higher in

the (p1, p2) = (1, 0.8) condition. Such behavior is at odds with EU theory and cannot

be explained by non-EU probability weighting.28 Behavior in the (p1, p2) = (0.8, 1)

26This difference in allocations across conditions is obtained for all sessions and for all orders indi-
cating no presence of order or day effects. Results available on request.

27For equality across (p1, p2) = (0.5, 0.4) and (p1, p2) = (1, 0.8), F14,2212 = 14.60, p < .001 and for
equality across (p1, p2) = (0.4, 0.5) and (p1, p2) = (0.8, 1), F14,2212 = 23.82, p < .001

28The argument is identical to the one presented in Section 4.1.
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condition seems to fit better with the (p1, p2) = (1, 1) condition, however, allocations

are generally quite low in this region, precluding strong inference.29

In Figure 6 we also plot predicted behavior based on the estimates of Table 2,

column (3). The prediction is made under the assumption that certain consumption is

evaluated using α̂1,1 and uncertain consumption is evaluated using α̂0.5,0.5. We predict

out of sample for the conditions (p1, p2) = (1, 0.8) and (p1, p2) = (0.8, 1).30 These

predictions are plotted as solid lines in gray and purple.

Though the behavior illustrated in Figure 6 is at odds with interchangeability, its

stylistic properties are easily explained if we allow uncertain and certain consumption to

be governed by different utility functions. The solid lines show exactly this effect. The

cross-over in behavior between the (p1, p2) = (1, 0.8) and (p1, p2) = (1, 1) conditions is

predicted and the out of sample R2 value of 0.854 for the (p1, p2) = (1, 0.8) condition

is notably high. Behavior when (p1, p2) = (0.8, 1) is predicted to piece together with

behavior when (p1, p2) = (1, 1), though the out of sample R2 value of 0.133 is notably

low.

In sum, the data and corresponding estimations demonstrate that separate utilities

govern the assessment of certain and uncertain consumption. Uncertain utility is able

to predict behavior well in uncertain situations, where subjects act effectively as ex-

pected utility maximizers. However, subjects exhibit a preference for certainty when it

is available. This behavior follows naturally from the finding that certain consumption

has lower utility function curvature and so higher marginal utility than uncertain con-

sumption. Indeed in hybrid situations where some payments are certain and others are

not, this difference in utility parameters is able to explain behavior that is at odds with

both standard DEU and PT theories. Finding differences between certain and uncer-

29This pattern of allocations is obtained for all sessions and for all orders indicating no presence of
order or day effects. Results available on request.

30One does not arrive at an analytic solution function for c∗t in these hybrid cases. Instead ct is
solved for as the root of a polynomial function. See Appendix A.4 for the solution procedure.
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tain utility parameters has broad applications in decision theory. In our discussion, we

sketch several applications.

5 Discussion

Intertemporal decision-making involves a combination of certainty and uncertainty.

The present is known while the future is inherently risky. Though expected utility (EU)

violations are frequently found in decision environments combining risk and certainty,

there are few known violations of the EU aspect of discounted expected utility. In an

experiment with Andreoni and Sprenger (2009) Convex Time Budgets under varying

risk conditions, we document an important violation of discounted expected utility. The

violation we document is more closely a violation of what we term interchangeability, or

the notion that certain and uncertain consumption are assessed using identical utility

parameters.

Our findings indicate that certain and uncertain consumption are evaluated very

differently. Substantially less utility function curvature is associated with certain con-

sumption relative to uncertain consumption. Additionally, individuals behave approxi-

mately as expected utility maximizers in uncertain situations, but exhibit a dispropor-

tionate preference for certainty when it is available. We interpret our findings as being

consistent with both prior research on expected utility violations and the intuition of

the Allais Paradox (Allais, 1953).

Demonstrating a difference between certain and uncertain utility has substantial

impacts for decision theory. We highlight applications in four domains: 1) quasi-

hyperbolic discounting; 2) the ‘uncertainty effect’; 3) the measurement of risk prefer-

ences; and 4) the identification of probability weighting.

First, dynamic inconsistencies such as quasi-hyperbolic discounting are frequently
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documented (for a review, see Frederick et al., 2002). Recently, the hallmark of dynamic

inconsistency, diminishing impatience through time, has been argued to be generated

by differential risk on present and future payments (for psychological evidence, see

Keren and Roelofsma, 1995; Weber and Chapman, 2005). Halevy (2008) argues that

differential risk leads to dynamic inconsistency because individuals have a temporally

dependent probability weighting function that is convex (see Section 4.1 for details).

Our results suggest that one need not call on a complex probability weighting function

to explain the phenomenon. If individuals exhibit a disproportionate preference for cer-

tainty when it is available, then present consumption will be disproportionately favored

over future consumption. When all consumption is uncertain, this effect disappears,

generating dynamic inconsistency.

Second, the ‘uncertainty effect’ (Gneezy et al., 2006; Simonsohn, 2009) of valuing a

lottery lower than the certainty of its worst possible outcome is at odds with a number

of utility theories, including both expected utility and prospect theory. Our results

provide a simple resolution to this EU violation. If uncertain and certain consumption

are assessed with different utility parameters, then the uncertainty effect is a compari-

son of two values: the expected utility of an uncertain gamble and the certain utility of

its worst outcome. If, as we find, uncertain utility is more concave than certain utility

one could well expect a gamble to be valued lower than its worst possible outcome. For

example, consider the standard uncertainty effect, comparing a 50-50 lottery paying

$50 or $100 to the certainty of $50. Let certain consumption be evaluated with CRRA

utility and a curvature parameter of 0.99 and let the lottery options be evaluated under

expected CRRA utility with a curvature parameter of 0.88, as found in our estimates.

The utility of the lottery is given as UL = 0.5 × 500.88 + 0.5 × 1000.88 = 44.41. The

utility of the certain $50 is given as UC = 500.99 = 48.08, demonstrating the uncertainty

effect.
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Third, risk preferences are frequently measured using certainty equivalence tech-

niques. Such methodology frequently generates extreme measures of risk aversion at

odds with standard EU theory via a calibration theorem (Rabin, 2000). A standard

CRRA curvature parameter finding in such low stakes experiments is between 0.5 and

0.6. Our results suggest that at least part of the issue in these findings is the differen-

tial assessment of certain and uncertain consumption. Consider asking an individual

to provide the certainty equivalent of a 50-50 lottery paying out $50 or $0. Let certain

and uncertain consumption be evaluated as before. Normalizing v(0) = 0, we have:

CE0.99 = 0.5 × 500.88, yielding a certainty equivalent of CE = 16.07. If we assumed

a single curvature parameter, a, and found the a that rationalizes 16.07a = 0.5× 50a,

we would solve for a = 0.61. As such, differential curvature for certain and uncertain

consumption may help to explain the extremely high levels of risk aversion obtained in

certainty equivalent experiments.

Fourth, experiments demonstrating prospect theory probability weighting also use

certainty equivalence techniques (see Tversky and Fox, 1995). Following a similar logic

to above, one can assume a curvature value, for example a = 0.88 (as in Tversky and

Fox, 1995), and examine the probability weight π(p) that rationalizes CE0.88 = π(p)×

500.88 at various probabilities. For example, at p = 0.95 under our parameter values, we

would obtain CE = 30.73 and a corresponding probability weight of π(0.95) = 0.652,

demonstrating down-weighting of high probability events. And at p = 0.01, we would

obtain CE = 0.31 and a probability weight of π(0.01) = 0.013, demonstrating a slight

up-weighting of low probability events. Though this is far from the results obtained in

probability weighting experiments, it suggests that probability weighting of objective

probabilistic events may be conflated with differential utility for certain and uncertain

consumption.

These brief applications of our central findings are provocative, but, of course, are
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not definitive. Future research should attempt to work through these issues in both

intertemporal and static decision contexts as well as examine welfare effects and policy

implications of differential utility over certain and uncertain consumption.
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Table 1: Basic Convex Time Budget Decisions

t (start date) k (delay) Token Budget ρt ρt+k (1 + r) Daily Rate (%) Annual Rate (%)

7 28 100 0.2 0.2 1.00 0 0
7 28 100 0.19 0.2 1.05 0.0018 85.7
7 28 100 0.18 0.2 1.11 0.0038 226.3
7 28 100 0.17 0.2 1.18 0.0058 449.7
7 28 100 0.16 0.2 1.25 0.0080 796.0
7 28 100 0.15 0.2 1.33 0.0103 1323.4
7 28 100 0.14 0.2 1.43 0.0128 2116.6

7 56 100 0.2 0.2 1.00 0 0
7 56 100 0.19 0.2 1.05 0.0009 37.9
7 56 100 0.18 0.2 1.11 0.0019 88.6
7 56 100 0.17 0.2 1.18 0.0029 156.2
7 56 100 0.16 0.2 1.25 0.0040 246.5
7 56 100 0.15 0.2 1.33 0.0052 366.9
7 56 100 0.14 0.2 1.43 0.0064 528.0
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Table 2: Discounting and Curvature Parameter
Estimates

(1) (2) (3)

α̂ 0.982
(0.002)

α̂(1,1) 0.988 0.988
(0.002) (0.002)

α̂(0.5,0.5) 0.885 0.883
(0.017) (0.017)

Annual Rate 0.274 0.284
(0.035) (0.037)

Annual Rate(1,1) 0.282
(0.036)

Annual Rate(0.5,0.5) 0.315
(0.088)

ω̂ 3.608 2.417 2.414
(0.339) (0.418) (0.418)

R2 0.642 0.673 0.673
N 2240 2240 2240
Clusters 80 80 80

Notes: NLS solution function estimators. Subscripts
refer to (p1, p2) condition. Column (1) imposes the IA,
u(·) = v(·). Column (2) allows different curvature and
different discounting in each (p1, p2) condition. Col-
umn (3) allows only different curvature in each each
(p1, p2) condition. Annual discount rate calculates as
(1/δ̂)365 − 1, standard errors calculated via the delta
method.

29



F
ig

u
re

1:
S
am

p
le

D
ec

is
io

n
S
h
ee

t













































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































30



Figure 2: Aggregate Behavior Under Certainty and Uncertainty
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Note: The figure presents aggregate behavior for N = 80 subjects under two conditions:
1) (p1, p2) = (1, 1), i.e. no risk, in blue; and 2) (p1, p2) = (0.5, 0.5), i.e. 50% chance
sooner payment would be sent and 50% chance later payment would be sent, in red.
t = 7 days in all cases, k ∈ {28, 56} days. Error bars represent 95% confidence
intervals, taken as +/− 1.96 standard errors of the mean. Test of H0 : Equality across
conditions 1 and 2: F14,2212 = 15.66, p < .001.
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Figure 3: Estimated Utility Function Curvature Under Certainty and Uncertainty
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Note: The figure presents estimated utility functions (corresponding to the estimates of Table 2,
column (5): cα̂. Dotted lines represent 95% confidence intervals. c = 20 corresponds to the value of
later payments in the experiment.
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Figure 4: Aggregate Behavior Under Uncertainty
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Note: The figure presents aggregate behavior for N = 80 subjects under three con-
ditions: 1) (p1, p2) = (0.5, 0.5), i.e. equal risk, in red; 2) (p1, p2) = (0.5, 0.4), i.e.
more risk later, in green; and 3) (p1, p2) = (0.4, 0.5), i.e. more risk sooner, in orange.
Error bars represent 95% confidence intervals, taken as +/ − 1.96 standard errors of
the mean. Solid lines correspond to predicted behavior using utility estimates from
(p1, p2) = (0.5, 0.5) as estimated in Table 2, column (3).
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Figure 5: A Disproportionate Preference for Certainty
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Note: The figure presents aggregate behavior for N = 80 subjects under four con-
ditions: 3) (p1, p2) = (0.5, 0.4) 4) (p1, p2) = (0.4, 0.5), 5) (p1, p2) = (1, 0.8) and
6)(p1, p2) = (0.8, 1), Error bars represent 95% confidence intervals, taken as +/− 1.96
standard errors of the mean. Conditions 3 and 5 share a common ratio as do conditions
4 and 6. Test of H0 : Equality across conditions 3 and 5: F14,2212 = 14.60, p < .001.
Test of H0 : Equality across conditions 4 and 6: F14,2212 = 23.82, p < .001.
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Figure 6: Aggregate Behavior Under In Certain / Uncertain Situations

0

0

02

2

24

4

46

6

68

8

810

10

1012

12

1214

14

1416

16

1618

18

1820

20

20.8

.8

.81

1

11.2

1.2

1.21.4

1.4

1.41.6

1.6

1.61.8

1.8

1.8.8

.8

.81

1

11.2

1.2

1.21.4

1.4

1.41.6

1.6

1.61.8

1.8

1.8k = 28 days

k = 28 days

k = 28 daysk = 56 days

k = 56 days

k = 56 days(p1,p2) = (1,1)

(p1,p2) = (1,1)

(p1,p2) = (1,1)(p1,p2) = (1,0.8)

(p1,p2) = (1,0.8)

(p1,p2) = (1,0.8)(p1,p2) = (0.8,1)

(p1,p2) = (0.8,1)

(p1,p2) = (0.8,1)(1,1) Fit

(1,1) Fit

(1,1) FitR-Squared = 0.594

R-Squared = 0.594

R-Squared = 0.594Hybrid Prediction

Hybrid Prediction

Hybrid PredictionR-Squared = 0.854

R-Squared = 0.854

R-Squared = 0.854Hybrid Prediction

Hybrid Prediction

Hybrid PredictionR-Squared = 0.133

R-Squared = 0.133

R-Squared = 0.133+/- 1.96 S.E.

+/- 1.96 S.E.

+/- 1.96 S.E.Mean Earlier Choice ($)

M
ea

n 
Ea

rli
er

 C
ho

ic
e 

($
)

Mean Earlier Choice ($)Theta (1+r)(p2/p1)

Theta (1+r)(p2/p1)

Theta (1+r)(p2/p1)Graphs by k

Graphs by k

Graphs by k

Note: The figure presents aggregate behavior for N = 80 subjects under three condi-
tions: 1) (p1, p2) = (1, 1), i.e. equal risk, in blue; 2) (p1, p2) = (1, 0.8), i.e. more risk
later, in green; and 3) (p1, p2) = (0.8, 1), i.e. more risk sooner, in orange. Error bars
represent 95% confidence intervals, taken as +/ − 1.96 standard errors of the mean.
‘Hybrid Prediction’ lines correspond to predicted behavior using utility estimates from
(p1, p2) = (0.5, 0.5) for uncertain payments and (p1, p2) = (1, 1) for certain payments
as estimated in Table 2, column (3).
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Figure A1: Aggregate Behavior Under Uncertainty with Predictions Based on Cer-
tainty
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Note: The figure presents aggregate behavior for N = 80 subjects under three condi-
tions: 1) (p1, p2) = (0.5, 0.5), i.e. equal risk, in red; 2) (p1, p2) = (0.5, 0.4), i.e. more
risk later, in green; and 3) (p1, p2) = (0.4, 0.5), i.e. more risk sooner, in orange. Er-
ror bars represent 95% confidence intervals, taken as +/− 1.96 standard errors of the
mean. Blue solid lines correspond to predicted behavior using utility estimates from
(p1, p2) = (1, 1) as estimated in Table 2, column (3).
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A.2 Welcome Text

Welcome and thank you for participating.

Eligibility for this study: To be in this study, you need to meet these criteria. You

must have a campus mailing address of the form:

YOUR NAME

9450 GILMAN DR 92(MAILBOX NUMBER)

LA JOLLA CA 92092-(MAILBOX NUMBER)

Your mailbox must be a valid way for you to receive mail from now through the

end of the Spring Quarter.

You must be willing to provide your name, campus mail box, email address, and

student PID. This information will only be seen by Professor Andreoni and his assis-

tants. After payment has been sent, this information will be destroyed. Your identity

will not be a part of any subsequent data analysis.

You must be willing to receive your payment for this study by check, written to

you by Professor James Andreoni, Director of the UCSD Economics Laboratory. The

checks will be drawn on the USE Credit Union on campus. You may deposit or cash

your check wherever you like. If you wish, you can cash your checks for free at the USE

Credit Union any weekday from 9:00 am to 5:00 pm with valid identification (drivers

license, passport, etc.).

The checks will be delivered to you at your campus mailbox at a date to be de-

termined by your decisions in this study, and by chance. The latest you could receive

payment is the last week of classes in the Spring Quarter.

If you do not meet all of these criteria, please inform us of this now.
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A.3 Instruction and Examples Script

Earning Money:

To begin, you will be given a $10 minimum payment. You will receive this payment

in two payments of $5 each. The two $5 minimum payments will come to you at two

different times. These times will be determined in the way described below. Whatever

you earn from the study today will be added to these minimum payments.

In this study, you will make 84 choices over how to allocate money between two

points in time, one time is ‘earlier’ and one is ‘later’. Both the earlier and later times

will vary across decisions. This means you could be receiving payments as early as

one week from today, and as late as the last week of classes in the Spring Quarter, or

possibly other dates in between.

It is important to note that the payments in this study involve chance. There is a

chance that your earlier payment, your later payment or both will not be sent at all.

For each decision, you will be fully informed of the chance involved for the sooner and

later payments. Whether or not your payments will be sent will be determined at the

END of the experiment today. If, by chance, one of your payments is not sent, you will

receive only the $5 minimum payment.

Once all 84 decisions have been made, we will randomly select one of the 84

decisions as the decision-that-counts. This will be done in three stages. First, we will

pick a number from 1 to 84 at random to determine which is the decision-that-counts

and the corresponding sooner and later payment dates. Then we will pick a second

number at random from 1 to 10 to determine if the sooner payment will be sent. Then

we will pick a third number at random from 1 to 10 to determine if the later payment

will be sent. We will use the decision-that-counts to determine your actual earnings.

Note, since all decisions are equally likely to be chosen, you should make each decision

as if it will be the decision-that-counts. When calculating your earnings from the
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decision-that-counts, we will add to your earnings the two $5 minimum payments.

Thus, you will always get paid at least $5 at the chosen earlier time, and at least $5

at the chosen later time.

IMPORTANT: All payments you receive will arrive to your campus mailbox. On

the scheduled day of payment, a check will be placed for delivery in campus mail

services by Professor Andreoni and his assistants. Campus mail services guarantees

delivery of 100% of your payments by the following day.

As a reminder to you, the day before you are scheduled to receive one of your

payments, we will send you an e-mail notifying you that the payment is coming. On

your table is a business card for Professor Andreoni with his contact information.

Please keep this in a safe place. If one of your payments is not received you should

immediately contact Professor Andreoni, and we will hand-deliver payment to you.

Your Identity:

In order to receive payment, we will need to collect the following pieces of in-

formation from you: name, campus mail box, email address, and student PID. This

information will only be seen by Professor Andreoni and his assistants. After all pay-

ments have been sent, this information will be destroyed. Your identity will not be a

part of subsequent data analysis.

On your desk are two envelopes: one for the sooner payment and one for the later

payment. Please take the time now to address them to yourself at your campus mail

box.

How it Works:

In each decision you are asked to divide 100 tokens between two payments at two
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different dates: Payment A (which is sooner) and Payment B (which is later). Tokens

will be exchanged for money. The tokens you allocate to Payment B (later) will always

be worth at least as much as the tokens you allocate to Payment A (sooner). The

process is best described by an example. Please examine the sample sheet in you

packet marked SAMPLE.

The sample sheet provided is similar to the type of decision sheet you will fill out in

the study. The sample sheet shows the choice to allocate 100 tokens between Payment

A on April 17th and Payment B on May 1st. Note that today’s date is highlighted in

yellow on the calendar on the left hand side. The earlier date (April 17th) is marked

in green and the later date (May 1st) is marked in blue. The earlier and later dates

will always be marked green and blue in each decision you make. The dates are also

indicated in the table on the right.

In this decision, each token you allocate to April 17th is worth $0.10, while each

token you allocate to May 1st is worth $0.15. So, if you allocate all 100 tokens to

April 17th, you would earn 100x$0.10 = $10 (+ $5 minimum payment) on this date

and nothing on May 1st (+ $5 minimum payment). If you allocate all 100 tokens to

May 1st, you would earn 100x$0.15 = $15 (+ $5 minimum payment) on this date and

nothing on April 17th (+ $5 minimum payment). You may also choose to allocate

some tokens to the earlier date and some to the later date. For instance, if you allocate

62 tokens to April 17th and 38 tokens to May 1st, then on April 17th you would earn

62x$0.10 = $6.20 (+ $5 minimum payment) and on May 1st you would earn 38x$0.15

= $5.70 (+ $5 minimum payment). In your packet is a Payoff Table showing some of

the token-dollar exchange at all relevant token exchange rates.

REMINDER: Please make sure that the total tokens you allocate between Payment

A and Payment B sum to exactly 100 tokens. Feel free to use the calculator provided

in making your allocations and making sure your total tokens add to exactly 100 in
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each row.

Chance of Receiving Payments:

Each decision sheet also lists the chances that each payment is sent. In this example

there is a 70% chance that Payment A will actually be sent and a 30% chance that

Payment B will actually be sent. In each decision we will inform you of the chance that

the payments will be sent. If this decision were chosen as the decision-that-counts we

would determine the actual payments by throwing two ten sided die, one for Payment

A and one for Payment B.

EXAMPLE: Let’s consider the person who chose to allocate 62 tokens to April

17th and 38 tokens to May 1st. If this were the decision-that-counts we would then

throw a ten-sided die for Payment A. If the die landed on 1,2,3,4,5,6,or 7, the person’s

Payment A would be sent and she would receive $6.20 (+ $5 minimum payment) on

April 17th. If the die landed 8,9, or 10, the payment would not be sent and she would

receive only the $5 minimum payment on April 17th. Then we would throw a second

ten-sided die for Payment B. If the die landed 1,2, or 3, the person’s Payment B would

be sent and she would receive $5.70 (+ $5 minimum payment) on May 1st. If the die

landed 4,5,6,7,8,9, or 10, the payment would not be sent and she would receive only

the $5 minimum payment on May 1st.

Things to Remember:

• You will always be allocating exactly 100 tokens.

• Tokens you allocate to Payment A (sooner) and Payment B (later) will be ex-

changed for money at different rates. The tokens you allocate to Payment B will

always be worth at least as much as those you allocate to Payment A.
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• Payment A and Payment B will have varying degrees of chance. You will be fully

informed of the chances.

• On each decision sheet you will be asked 7 questions. For each decision you will

allocate 100 tokens. Allocate exactly 100 tokens for each decision row, no more,

no less.

• At the end of the study a random number will be drawn to determine which

is the decision-that-counts. Because each question is equally likely, you should

treat each decision as if it were the one that determines your payments. Two

more random numbers will be drawn by throwing two ten sided die to determine

whether or not the payments you chose will actually be sent.

• You will get an e-mail reminder the day before your payment is scheduled to

arrive.

• Your payment, by check, will be sent by campus mail to the mailbox number you

provide.

• Campus mail guarantees 100% on-time delivery.

• You have received the business card for Professor James Andreoni. Keep this card

in a safe place and contact Prof. Andreoni immediately if one of your payments

is not received.
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A.4 Solving Numerically for Out of Sample ct Predictions

We consider the case where certain and uncertain consumption are evaluated with

different preference parameters. That is u(·) 6= v(·). We assume CRRA utility in each

case u(ct) = (ct − ω)α and v(ct) = (ct − ω)β with α 6= β. ω can be thought of as a

Stone-Geary minimum parameter.

Let p1 = 1 and p2 < 1 such that sooner consumption is certain and later consump-

tion is uncertain. The individual’s optimization problem is:

maxct,ct+kp1(ct − ω)α + p2δ
k(ct+k − ω)β s.t. (1 + r)ct + ct+k = m

Yielding the marginal condition:

p1α(ct − ω)α−1

p2δk · β(ct+k − ω)β−1
= (1 + r)

(ct − ω)α−1

(ct+k − ω)β−1
= (1 + r)(

p2

p1

)(
β

α
)δk

Raise everything to the 1
β−1

power

(ct − ω)
α−1
β−1

ct+k − ω
= [(1 + r)(

p2

p1

)(
β

α
)δk]

1
β−1

Substitute in the budget constraint:

(ct − ω)
α−1
β−1

m− (1 + r)ct − ω
= [(1 + r)(

p2

p1

)(
β

α
)δk]

1
β−1

(ct − ω)
α−1
β−1 = [(1 + r)(

p2

p1

)(
β

α
)δk]

1
β−1 [m− (1 + r)ct − ω]

Define A ≡ [(1 + r)(p2
p1

)(β
α

)δk]
1

β−1 and B ≡ α−1
β−1
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(ct − ω)B = A[m− (1 + r)ct − ω]

(ct − ω)B = Am− A(1 + r)ct − Aω]

(ct − ω)B + A(1 + r)ct + Aω − Am = 0

Provided estimates for α, β, δ, ω as obtained in Table 2, A and B are known con-

stants. The numerical root to the above Bth order polynomial for a given p1, p2, 1 + r

and k will be the predicted value of ct in the situation. Many algorithms exist for

obtaining such function roots. This is the methodology for obtaining out of sample

predicted values in Figure 6 and is easily applied to situations where both payments

are uncertain or both payments are certain.
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