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Abstract

Behavioral game theory models are important in organizing experimental data of strate-

gic decision making. However, are subjects classified as behavioral types more predictable

than unclassified subjects? Alternatively, how many predictable subjects await new behav-

ioral models to describe them? In our experiments, subjects play simple guessing games

against random opponents and are subsequently asked to replicate or best-respond to their

past choices. We find that existing behavioral game theory types capture 2/3 of strate-

gic subjects, i.e., individuals who can best respond. However, there is additional room

for non-strategic rule-of-thumb models to describe subjects who can merely replicate their

actions.

1 Introduction

A robust finding of strategic choice experiments is that deviations from Nash equilibrium are

common. This has lead to alternative behavioral models with varying specifications of beliefs

and derived choices; of these, hierarchy models, particularly the level-k model, are probably

the most prominent.1 In a typical empirical paper, participants in the laboratory play a
⇤We are especially grateful to Asen Ivanov for his impact on the design of the experiment. We thank Vince

Crawford, Guillaume Fréchette and Matt Jackson for helpful comments and the NSF for generous support.
1A level-k player best-responds to beliefs that opponents are level-(k � 1), with a level-0 player assumed

to randomly choose any action or to choose a fixed action considered to be focal. The model originated in
empirical papers that found it rationalized large fractions of behavior in beauty contest games (Nagel, 1995)
and small normal-form games (Stahl and Wilson, 1994, 1995). The level-k model has since been used to model
strategic behavior in a multitude of experiments, and has spawned a literature on extensions and theoretical
underpinnings. A notable variant is the cognitive hierarchy model (Camerer, Ho, and Chong, 2004), in which
frequencies of types k in the population are assumed to be distributed according to some distribution, and a
player of type k has beliefs about opponent types corresponding to this distribution truncated at k � 1.
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set of games and are then classified as specific behavioral types given their observed choices;

see Crawford, Costa-Gomes, and Iriberri (2013) for an overview.2 Such studies generally

allow some discrepancy between subjects’ choices and the models, with subjects assumed to

be implementing their behavioral types’ prescriptions with error. Beyond some threshold,

subjects are left unclassified and unexplained.

This literature leads naturally to two questions that we address in this paper. The first

concerns the extent to which existing behavioral game theory types coincide with the set of

participants who play deliberately according to deterministic rules. We construct an envi-

ronment and a test allowing us to assess whether subjects use a deterministic rule, even for

subjects whose rules are unknown to us. If existing behavioral game theory models capture

most subjects who deliberately use a deterministic rule, then we expect subjects matching

behavioral game theory types to score better on our test than other subjects. Other well per-

forming subjects not matching existing models indicate there is deliberate behavior that may

be captured by future models. The second question concerns the boundaries of classification

methods given an existing set of behavioral types. We provide a quantification of the downside

of classifying a greater number of subjects.

In our experiments, subjects first play a sequence of 20 two-player guessing games (of the

form in Costa-Gomes and Crawford, 2006, henceforth CGC) with anonymous opponents and

without feedback. We then present each subject a series of strategic decisions dependent on

her original choices. These second-phase choices are unanticipated and we will show that exact

purely numeric memory of Phase I choices is very limited. Our two main treatments di↵er

only in their Phase II design.

In Phase II of the Replicate treatment, a subject plays the same 20 games in the same order

and player role as in Phase I. However, subjects are now paid as a function of how close their

Phase II guesses are to their corresponding Phase I guesses. Any subject who deliberately uses

a well-defined deterministic rule and is aware of doing so should be able to replicate her actions.

Given reasonable assumptions of self-awareness and cognitive ability, a failure to replicate one’s

actions suggests substantial idiosyncratic randomness in decisions.

In Phase II of the BestRespond treatment, participants play the same 20 games once more

in the same order; however, they now take the role previously occupied by their opponents.

The subject is informed she plays against a computer whose guess in each game is the guess she

herself made in that game in Phase I; however, she is not reminded of her exact Phase I choices.

In e↵ect, subjects are playing against their own first-phase behavior.3 The payo↵-maximizing

2In addition to the works mentioned above, some leading examples of papers that seek to classify partic-
ipants are Costa-Gomes, Crawford, and Broseta (2001) for normal form games, and Crawford, Gneezy, and
Rottenstreich (2008) for coordination games.

3This treatment is inspired by the design in Ivanov, Levin, and Niederle (2010) but has important di↵erences
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choice is the best-response in that game to the subject’s original Phase I action. We reason

that any subject who is playing purely according to a deliberate rule in Phase I, is aware of

doing so, and who best-responds to beliefs about her opponents’ play, should be able to first

replicate her former guess and then find the best-response to it.

Our results show most subjects are unsuccessful at replicating or best-responding to their

past behavior; in both treatments, fewer than half of the participants exceed a permissive 40%

threshold for the number of optimal Phase II choices. This aggregate failure suggests that much

of the observed behavior is idiosyncratic, even to the decision-makers themselves. However,

such a pessimistic outlook for the overall scope of behavioral game theory is counterbalanced

by the success of its existing models in explaining the deliberate subjects.

Using a conventional approach and the Phase I observations, we classify subjects as match-

ing given behavioral types (from a set of models that includes equilibrium, level-k, and others).

Subjects whose behavior does not match better than a specific threshold are left unclassified.

We find that a vast majority of subjects classified as matching a behavioral type are able

to replicate and best-respond to their past behavior. Furthermore, classified subjects are

substantially more successful in replicating or best-responding to their former guesses than are

subjects not classified as a behavioral type. These results unequivocally confirm the success of

existing behavioral models like level-k in accurately describing the decision-making of deliberate

subjects. The remaining subjects as a group are di↵erent and cannot be described as equally

deliberate decision makers who use well-defined rules in a similar manner.

In addition, our environment allows us to distinguish between strategic behavior and sys-

tematic but non-strategic behavior. For instance, while the level-k model is often described as

best-response to non-equilibrium beliefs, some researchers have argued that the lowest levels,

such as L1, may instead arise as players using “rules of thumb”, that is behaving in systematic

but not very strategic ways. Our BestRespond treatment is more strategically demanding than

the Replicate treatment, requiring a change in behavior in response to the change in opponent.

As the additional strategic reasoning required is minimal, the distinction might appear triv-

ial; however, our empirical results show it to be significant. We show that classified subjects

can best-respond to their former guesses just as well as they can replicate them. In contrast,

subjects unclassified fail to best-respond to their past behavior much more so than they fail

to replicate it. Subjects who can replicate their guesses but fail to best-respond to them are

probably better described as using rules of thumb than as best-responding to beliefs.

Overall, only about 40% of subjects who have high rates of replicating their former guesses

are classified as behavioral types, suggesting appreciable room for additional behavioral game

we discuss below. A design in which subjects play against themselves is also a central component of Blume and
Gneezy (2010).

3



theory models. However, existing behavioral models have been very successful in identifying

a large majority of strategic subjects. Of subjects who have high rates of best-responding to

their former guesses, roughly two-thirds are behavioral types. Note that Nash equilibrium only

accounts for about twenty-six percent of strategic subjects, while the level-k model accounts for

an additional 35%.4 There is still room for behavioral game models to describe the remaining

32% of strategic subjects.

In the second part of the paper we confine attention to an existing set of behavioral game

theory types. In addition to our previous approach we now use a maximum likelihood esti-

mation to classify subjects. As we relax classification criteria more subjects are classified as

behavioral types. Our design allows us to show the trade-o↵ between classifying more subjects

and capturing subjects whose Phase II type matches that implied by their Phase I classification.

The paper proceeds as follows: Section 2 describes the experiment and Section 3 the

non-parametric classification of subjects. In Section 4 we present results pertaining to the

predictability of classified and non-classified subjects using a model-free approach. Section 5

confines attention to behavioral game theory types and discusses the trade-o↵ between classi-

fying more subjects and capturing subjects whose behavior conforms to the behavior predicted

by their Phase I play. Section 6 discusses the literature and we conclude in Section 7.

2 The Experiment

2.1 Two-Person Guessing Games

Participants interact in simple complete information “two-person guessing games”.5 In a two-

person guessing game, player i facing opponent j wishes to guess as close as possible to her goal,

which equals her target multiple ti times her opponent’s guess xj . Likewise, player j’s goal

equals his target multiple tj times xi. Each player has a range of allowable guesses [li, ui], and

the two players simultaneously submit guesses xi and xj . The payo↵ of i is a function of the

realized distance from the player’s guess xi to her goal tixj , ei = |xi�tixj |; the function strictly

decreases until the payo↵ reaches zero. We present the 20 games used in the experiment, as

well as the predictions of various behavioral game theory models in Table 1. Further details

are given later in this section.

4The dominance-k model adds another 6%.
5Another “two-person guessing game” is that of Grosskopf and Nagel (2008). They consider the familiar

“p-beauty contest” guessing game where n players guess a number between 0 and 100, and the winner is the
player closest to p times the mean of all submitted guesses, with p < 1. When n = 2, as in their experiments,
guessing 0 becomes a dominant strategy. We opt for CGC games as they allow us to have subjects play many
di↵erent games in which models that have agents best-respond to beliefs result in di↵erent actions.
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Lower Limit Upper Limit Target

DM1 (YOU) l1 u1 t1

DM2 (OTHER PARTICIPANT) l2 u2 t2

Figure 1.—Presentation of game parameters in Phase I

2.2 Experimental Treatments

All treatments but one shared a common two-phase structure. In Phase I, subjects played a

series of 20 two-person guessing games against anonymous opponents without feedback. Game

parameters were public information in all games and were presented as in Figure 1. In Phase II,

subjects were tasked with either replicating or best-responding to their own first-phase choices

in the same series of games.

The experiment consisted of the Replicate, BestRespond, ShowGuesses, and Memory treat-

ments. The Phase I tasks of the Replicate, BestRespond, and ShowGuesses treatments were

the same and are described in a single subsection below. We then explain Phase II of each of

these treatments separately. Finally, we discuss the Memory treatment.

2.2.1 Phase I of the Replicate, BestRespond, and ShowGuesses Treatments

Subjects played all 20 games in individually-specific random orders without feedback on re-

alized payo↵s or opponents’ guesses. Subjects were randomly and anonymously rematched

with opponents before each game.6 Subjects always saw themselves in the role of player 1

(called “Decision Maker 1” or “DM1”) in instructions and the experimental task, as shown in

Figure 1. If i was matched to opponent j in a given trial, she wished to make a guess xi as

close as possible to her goal tixj and earned a payo↵ decreasing in ei = |xi � tixj |.

2.2.2 Phase II of the Replicate Treatment

In Phase II of the Replicate treatment, a subject faced the same sequence of 20 games from

Phase I in the same order.7 Participants were told they would be paid as a function of how

close their Phase II guess was to the guess they made in Phase I in the same game. The payo↵

6Unknown to subjects, in each session we split them into two equal-sized groups, G1 and G2. The group
specified the game role in each of the 20 games; that is, the matching was such that each pair of opposing players
consisted of one member of G1 and one member of G2.

7The motivation behind the preservation of order across phases was twofold. First, subjects may switch rules
during Phase I and only remember the number of games played before the switch; they may not remember the
specific games for which they used each of their rules. Second, for every game in Phase I, the subject made the
same number of guesses, 19, before seeing that same game again in Phase II. On average, for both this treatment
as well as the BestRespond treatment, 45 minutes have passed between playing a given game in Phase I and
playing that same game in Phase II.
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Table 1.—The 20 two-person guessing games and behavioral game theory type guesses

ts player l u t L1 L2 L3 EQ D1 D2 Game

C
ra

w
fo
rd

a
n
d

C
o
st
a
-G

o
m
e
s
G
a
m
e
s

st
ro

n
g

G1 100 900 0.5 150 250 112.5 100 162.5 131.25 1
G2 100 500 1.5 500 225 375 150 262.5 262.5
G1 300 900 0.7 350 546 318.5 300 451.5 423.15 2
G2 100 900 1.3 780 455 709.8 390 604.5 604.5

G1, G2 100 500 0.7 210 315 220.5 350 227.5 227.5 3
G1, G2 100 500 1.5 450 315 472.5 500 337.5 341.25 4
G1, G2 300 500 0.7 350 420 367.5 500 420 420 5
G1, G2 100 900 1.5 600 525 630 750 600 611.25 6

w
e
a
k

G1 300 900 1.3 780 900 900 900 838.5 900 7
G2 300 900 1.3 780 900 900 900 838.5 900
G1 300 500 1.5 500 500 500 500 500 500 8
G2 300 900 1.3 520 650 650 650 617.5 650
G1 100 500 0.7 350 105 122.5 100 122.5 122.5 9
G2 100 900 0.5 150 175 100 100 150 100
G1 100 900 0.5 200 175 150 150 200 150 10
G2 300 500 0.7 350 300 300 300 300 300

ts player l u t L1 L2 L3 EQ D1 D2 Game

G
e
n
e
ra

te
d

G
a
m
e
s

st
ro

n
g

G1 250 500 1.1 500 330 440 250 330 330 11
G2 150 950 0.8 300 400 264 200 300 276
G1 100 750 0.8 400 510 480 750 440 440 12
G2 50 950 1.5 637.5 600 765 950 637.5 652.5
G1 150 750 1.5 712.5 337.5 534.38 150 337.5 337.5 13
G2 50 900 0.5 225 356.25 168.75 75 225 178.12
G1 200 800 1.3 617.5 455 561.92 200 455 455 14
G2 50 900 0.7 350 432.25 318.5 140 350 324.8

G1, G2 250 1000 1.5 937.5 562.5 843.75 375 637.5 637.5 15
G1, G2 250 1000 0.6 375 562.5 337.5 250 412.5 382.5 16
G1, G2 100 950 0.5 225 375 168.75 100 225 178.12 17
G1, G2 150 750 1.5 750 337.5 562.5 150 356.25 356.25 18

w
e
a
k

G1 350 500 0.5 350 350 350 350 350 350 19
G2 450 700 1.3 552.5 455 455 455 455 455
G1 450 850 1.1 467.5 660 660 660 676.5 676.5 20
G2 250 600 1.4 600 600 600 600 600 600

The game parameters {[l1, u1], t1; [l2, u2], t2} and model predictions for all 20 games are reported
above. The player, G1 or G2, specifies the role taken by the group’s players in that game in
Phase I. For each game we also give the source of the game (from CGC or generated by us)
and the quality of type separation (ts), strong or weak, where strong type separation requires
that L1, L2, L3, L4, and EQ are separated by at least 10 units. Each subject played each
game once, where games 3, 4, 5, 6, 15, 16, 17 and 18 are played from both sides.
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as a function of the distance from the goal was identical to Phase I. More precisely, for a given

game, let x

I
i be the guess subject i made in Phase I and x

II
i be her guess in Phase II. Then

subject i’s payo↵ from the Phase II decision was a decreasing function of ei = |xIIi � x

I
i |.

2.2.3 Phase II of the BestRespond Treatment

In Phase II of the BestRespond treatment, a subject faced the same sequence of 20 games

from Phase I in exactly the same order. Now, however, subjects were informed they would

play in the role of player 2, while the role of player 1 they had occupied in Phase I would be

taken by the computer. Subjects were told the computer would make the exact same guess

that the subject previously made when playing the game in Phase I. Therefore, if subject i

made a guess of xIi in Phase I in game {[l1, u1], t1; [l2, u2], t2}, then she wished to make a guess

x

II
i in Phase II as close as possible to t2x

I
i . The payo↵ as a function of the distance from

the goal, ei = |xIIi � t2x
I
i |, was identical to Phase I. Subjects were not shown their previous

Phase I guesses when making their Phase II guess. The games were presented to subjects as

in Figure 2.

To maximize earnings in the BestRespond treatment, subjects have to understand that the

information that player 1 is replaced by the computer that uses the subjects’ Phase I choices

is valuable in fixing their beliefs on the opponents’ behavior. Using this insight, they need to

first replicate their own former guess, and then compute the best-response.

The need for the BestRespond treatment arises from the fact that it is not obvious that

subjects who succeed in replicating their Phase I guesses do so because those guesses resulted

from deliberate strategic choice. For example, it has been argued that the level-k model may

merely coincide with non-strategic rules of thumb, especially for low level-k types like L1 (see

e.g. Coricelli and Nagel, 2009 and Crawford, Costa-Gomes, and Iriberri, 2013). A subject i

who uses a rule of thumb may not recognize the value of the information that the action of

the opponent in Phase II is i’s Phase I action. We therefore expect a subject whose behavior

derives from a non-strategic rule of thumb to be able to replicate her past behavior, but not

necessarily best-respond to it.8

2.2.4 Control: Phase II of the ShowGuesses Treatment

Failure to best-respond in Phase II of the BestRespond treatment could also simply derive from

di�culty in understanding or willingness in executing the computations necessary to determine

8Cooper and Kagel (2005) provide compelling evidence that subjects often fail to play strategically because
they fail to think about the behavior of their opponent. However, it could be that some subjects whose initial
behavior was produced by a rule of thumb were able to best-respond to that behavior, as success in Phase II of
the BestRespond treatment requires only a minimal form of strategic thinking.
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Lower Limit Upper Limit Target

DM2 (YOU) l2 u2 t2

DM1 (COMPUTER) l1 u1 t1

Figure 2.—Presentation of game parameters in Phase II of the BestRespond treatment

the best response to a guess. The ShowGuesses treatment provides a control for this hypothesis.

Phase II of the ShowGuesses treatment is identical to Phase II of the BestRespond treatment

with one exception: a subject is shown her Phase I guess when prompted for her Phase II

guess. Being able to best-respond to a shown guess seems a minimal requirement for subjects

who make deliberate strategic choices, that is, subjects who form potentially non-equilibrium

beliefs about the behavior of their opponents and best-respond to these beliefs.

2.2.5 Control: Memory Treatment

We presume that a subject who successfully replicates or best-responds to her past guesses in

our main treatments does so by repeating or recapitulating the deliberate process of choice

that produced these guesses in Phase I. There is, however, the possibility that some subjects

simply have good memories; they may remember the numeric values of a large fraction of

their guesses even if those guesses were not deliberate or systematic choices. In the Memory

treatment, we provide a benchmark for how readily subjects can remember 20 guesses that do

not follow any consistent system.

In Phase I of the Memory treatment, participants play 20 games against a computer that

makes uniform random guesses. In each game, a subject was shown the computer’s guess

while making her own guess. The task was otherwise the same as in Phase I of the main

treatments.9 Phase II of the Memory treatment was identical to Phase II of the Replicate

treatment; subjects were tasked with replicating their Phase I guesses but were not presented

with the values of their Phase I guesses when prompted for their Phase II guesses. The number

of remembered guesses in Phase II provides a benchmark for numeric memory.

2.3 Experimental Procedures

The experiment was run at Stanford with six, eight, or ten participants, all Stanford under-

graduates, in each session. A session lasted about two hours, and subjects earned an average

of $55.17 including a $5.00 show-up fee.

While subjects were initially informed of the two-phase structure, they received no details

9Phase I of theMemory treatment serves as an additional control, like Phase II of the ShowGuesses treatment,
for determining whether participants are able and willing to calculate the best response to a known guess.
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about Phase II until after Phase I was completed. After hearing instructions for Phase I,

subjects completed an understanding test on paper followed by a second understanding test on

the computer. Participants were given simple pocket calculators for use during the experiment.

For the first several decisions in each phase, subjects were not permitted to submit their

guesses until after a certain time had elapsed; these restrictions were imposed in the hope

that subjects would take the time to make thoughtful decisions.10 After Phase II, subjects

completed a short questionnaire and learned their monetary earnings from the experiment.

For each guess in a game, a subject could earn anywhere from 0 to 300 points. The point

payo↵ function used was identical to that of CGC; it is a piecewise-linear decreasing function.

Let ei = |xi � yi| denote the distance between participant i’s guess xi and her goal yi in a

certain game.11 Then the points participant i earned from that trial were s(ei), where

s(ei) =

8
>>><

>>>:

300� 11
10ei if ei  200

100� 1
10ei if 200  ei  1000

0 if ei � 1000

In the hope of mitigating concerns about unobserved varying risk preferences, the point

payo↵s in each trial were converted to realized money earnings using separate and independent

binary lotteries run at the end of the experiment (Roth and Malouf, 1979). If a subject earned

s points in a trial, the corresponding lottery paid $2 with probability s/300 and $0 with

probability 1� s/300.12

10In Phase I, subjects had to wait 2 minutes for the first three trials and one minute for the next two trials
before submitting a guess. In Phase II we employed similar timing restrictions: subjects had to wait one minute
in each of the first five trials. For practical reasons (the experiment could not proceed to Phase II until all
participants had completed Phase I), we also placed soft limits on the maximum amount of time subjects had
to make decisions. In Phase I, this limit was five minutes for each of the first three trials, three minutes for each
of the next two trials, and two minutes for each trial thereafter. In Phase II, subjects had up to three minutes
for each of the first five trials and two minutes for each of the remaining fifteen trials. When the experimenter’s
screen showed a subject taking more than the maximum time, the experimenter made a verbal announcement
reminding subjects to try to stay within the time limits. Otherwise, subjects could proceed at their own pace.

11In Phase I of the BestRespond, Replicate, and ShowGuesses treatments, yi = tixj , where xj is the guess of
the opponent and ti is player i’s target. For Phase I of the Memory treatment, xj is the computer-generated
guess shown to the subject while she chooses her own guess xi. For Phase II, suppose x

I
i is i’s guess from a given

game in Phase I. In Phase II of the Replicate and Memory treatments, yi = x

I
i . In Phase II of the BestRespond

and ShowGuesses treatment, yi = t

II
i x

I
i , where t

II
i is i’s target in Phase II of that game. Note that yi may fall

outside of the guessing range [li, ui].
12In Phase I of the Memory treatment and Phase II of the ShowGuesses treatment, the winning lottery

amount was $1 instead of $2, since these tasks were quite simple.
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2.4 Predicted Behavior in Two-Person Guessing Games

To describe the equilibrium and behavioral game theory model predictions, we introduce the

function R(l, u, x) ⌘ min{max{l, x}, u} (read, “restrict x to [l, u]”). That is, R(l, u, x) is equal

to l when x < l, u when x > u, and x otherwise. We select game parameters such that

equilibrium play has a unique prediction.

Observation 1. (CGC) Let {[li, ui], ti; [lj , uj ], tj} be a two-player guessing game. When

titj 6= 1 and payo↵s are strictly positive, the game has a unique equilibrium (xi, xj) in pure

strategies:

If titj < 1, xi = R(li, ui, tilj) and xj = R(lj , uj , tjli).

If titj > 1, xi = R(li, ui, tiuj) and xj = R(lj , uj , tjui).

Since we consider behavior in complete information games and focus on deterministic rules,

the leading behavioral game theory models to describe subjects next to equilibrium are level-

k and dominance-k. We adopt the common definition that a level 0 (L0) player i picks xi

randomly and uniformly from her action set. A player of level k+1 believes the opponent uses

the level-k rule and best-responds to this belief.

Here, an L1 player who best-responds to a hypothesized opponent who uniform-randomly

chooses over her allowed guesses plays the same as if she believes her opponent will play the

midpoint of her guessing range with certainty (see CGC); given strictly positive payo↵s, the

unique best-response is R(li, ui, ti(lj + uj)/2). This pins down the behavior of higher levels in

the level-k hierarchy: A level-k player chooses the best-response to the level-(k � 1) guess of

her opponent.

We also consider the dominance-k model examined by CGC, where hypothesized opponents

randomly select among strategies that survive a certain number of rounds of iterated deletion

of dominated strategies. We denote by D1 an agent who assumes that her opponent uniform-

randomly selects among undominated guesses.

In general, let Dk be an agent who performs k rounds of iterated deletion and assumes her

opponent uniform-randomly chooses a guess among the remaining actions.

In Table 2 we summarize the predicted guesses of the behavioral types we focus on in this

paper. The table simplifies notation by shortening R(li, ui, x) to Ri(x). The numeric values

for the guesses of behavioral game theory types of the 20 games are given in Table 1.

2.5 Game Design

Each participant played a common set of twenty games, each with a unique Nash equilibrium.

The games were chosen to identify various behavioral types. For each game, guessing range

10



Table 2.—Formulas for Behavioral Game Theory Types’ Guesses

Strategy Formula for Player i

Level 1 Ri(ti[lj + uj ]/2)
Level 2 Ri(tiRj(tj [li + ui]/2))
Level 3 Ri(tiRj(tjRi(ti[lj + uj ]/2)))
Equilibrium Ri(tilj) if titj < 1 and Ri(tiuj) if titj > 1
Dominance 1 Ri(ti[Rj(tjli) +Rj(tjui)]/2)
Dominance 2 Ri(ti[max{Rj(tjli), Rj(tjRi(tilj))}+min{Rj(tjui), Rj(tjRi(tiuj))}]/2)

endpoints l and u were multiples of 50 between 0 and 1000, inclusive. Targets t were positive

multiples of 0.1 in (0, 1) [ (1, 2).

While we use all eight games from CGC, of which one is a symmetric game, our subjects

only play two instead of all eight from both sides, these constitute game 3, 4 and game 5, 6,

see Table 1. In addition, we use two games where each has a dominant strategy for one player,

these are game 19 and 20. For the remaining eight games, we wanted each game to provide

type separation between the most common behavioral types, namely L1, L2, L3, L4, and EQ,

to clearly identify the play of a subject. Otherwise, we had no specific hypotheses about what

games were more or less conducive to behavior that concords with a given model. To ensure

that we did not inadvertently choose parameters that favor certain behavior, we generated

the remaining eight games randomly, subject to the above restrictions on the parameters and

the requirement that there was a distance of at least 30 units between the L1, L2, L3, L4,

and EQ predictions. These 8 games are games 11-18 in Table 1. As a result, in 14 games (8

randomly-generated and 6 from CGC) we have reasonable type separation between L1, L2,

L3, L4, and EQ, with the distance between those types’ predicted guesses never less than 10.5

units.13 Type separation is helpful when aiming to classify subjects as the given types on the

basis of observed choices.

3 Behavioral Types in Two-Person Guessing Games

Before we analyze the behavior of all 150 participants in the BestRespond, Replicate and

ShowGuesses treatments, we provide evidence that our participants understand the games

and seem su�ciently motivated by the incentives in the experiment.

We have 20 participants in the Memory treatment who in Phase I responded to the dis-

played guess of the computer, and 10 participants in the ShowGuesses treatment who in

13While 70% of games in our experiment have type separation between L1, L2, L3, L4, and EQ, in CGC this
is the case for 50% of the 16 games. Partly as a result, we have fewer classified subjects than CGC. For details
on the comparison between our results and those of CGC, see the online appendix.
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Phase II responded to their Phase I guess while it was shown to them. Of those 600 guesses,

all but 5 are within 0.5 units of the best response. This demonstrates that our participants un-

derstood the games and were willing and able to calculate the best responses to given guesses.14

Being able to best-respond to a shown guess seems a minimal requirement for subjects who

are supposed to form beliefs about the opponent and best-respond to them, which corresponds

to the literal interpretation of the behavioral types we consider.

We also examine whether subjects made dominated guesses, which cannot be rationalized as

best-responses to beliefs.15 If subjects chose actions uniform-randomly in all Phase I decisions,

we would expect 7.40 dominated guesses on average. In fact, the mean number of dominated

guesses is 2.35 (s.d. 2.68).16 About one-third of the 150 subjects (44) have no dominated

guesses, and about two-thirds (97) have two dominated guesses or fewer. Only 17 subjects

have 6 or more dominated guesses, and 9 of whom have 8 or more.

3.1 Behavioral Types Identified by the Apparent Classification

In this first part of the paper we use a simple and straightforward method to identify partici-

pants who can be described by L1, L2, L3, EQ, D1, or D2 on the basis of their Phase I play.

We classify a participant i as having apparent type m when at least 8 of their 20 guesses (40

percent) were within 0.5 units of mi, the action i would take under rule m. A 0.5 unit window

ensures that a behavioral type guess mi that is rounded to the closest integer is still counted

as being a guess of behavioral type m.17 While it is possible that a subject is classified as more

than one type, this does not happen in our data.

With those parameters we classify 30% of participants; the results are shown in Table 3. A

large fraction of classified subjects are EQ (10%) and L1 (9.3%) types, with L2 (6.7%) making

up much of the remainder. We have not a single subject identified as L4 or D2, but have

some matching L3 (2) and D1 (4). Starting from Nash equilibrium only, adding a small set

of behavioral types increases the set of classified subjects by 200 percent. Compared to CGC,

we have relatively more equilibrium types and somewhat fewer L1 and L2 types, for a more

detailed comparison see the online appendix.18

14Furthermore, these results were obtained under experimental incentives half those used in the main treat-
ments: in these trials, the lottery payo↵ was only one dollar instead of two.

15In a guessing game {[l1, u1], t1; [l2, u2], t2} a guess xi of player i is dominated if xi < min{ui, tilj} or
xi > max{li, tiuj}. Players are able to make dominated guesses in 13 and 17 of the 20 games, for G1 and G2
subjects respectively.

16Subjects do not appear to “learn” substantially over the course of the games by this measure: the number
of dominated guesses in the first 10 games is 1.13 (s.d. 1.42) compared to 1.22 (s.d. 1.56) in the last 10 games,
a small and statistically not significant di↵erence (p > 0.3).

17In addition, a unit window of 0.5 and a match rate of 40% makes our analysis comparable with that of
CGC; see Appendix.

18In CGC, of all classified participants, 46.4% are L1, 27.8% are L2, 4.7% L3 and 20.9% are EQ. They have
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Table 3.—Summary of Estimated Type Distributions in Phase I

L1 L2 L3 EQ D1 D2 Uncl
Apparent 14 10 2 15 4 0 105
% of Classified 31.1% 22.2% 4.4% 33.3% 8.8% 0%

Classifications of the 150 subjects using the apparent type classification method.

Because we allow subjects to make only small mistakes when matching against the model

predictions, it is quite unlikely that a subject having eight guesses or more coinciding with a

given model has this happen out of chance. There is, however, one behavior that may make

a subject spuriously appear to match one of our behavioral types, the Nash equilibrium type.

Specifically, for G1 and G2 subjects, 15 and 10 out of 20 equilibrium guesses are on the guessing

range boundary, respectively. For the other behavioral types, at most 5 of the 20 predicted

guesses are on the boundary. Hence, a player who always plays one of the boundaries might

wrongly be classified as matching the equilibrium type. In our sample we may have misclassified

two boundary-type players as equilibrium-type.19

The relative distribution of behavioral types among classified subjects is quite stable, even

when using classification thresholds other than 40%. Specifically, for each subject and each

behavioral type, we count the number of games where that subject’s decision matches the

behavioral type’s prediction. We then identify the (perhaps non-unique) behavioral type with

the largest count and call this the subject’s modal type.20 For any q 2 {1, ..., 20} and any

behavioral type, we can compute the number of subjects whose modal type corresponds to the

given model and who match that type in q or more games. For detailed results see the online

Appendix.

While many subjects have fewer than 8 modal-type guesses, the non-modal-type guesses

generally do not correspond to any of our other behavioral models. That is, subjects rarely

“switch” from one behavioral type to another. Only 9% of subjects have more than 3 guesses

matching behavioral types that are not their modal type.21

no D1 or D2 types when using the apparent type method.
19Of the 15 subjects identified with the equilibrium type, two have all their equilibrium guesses on the

boundary, and furthermore, have 15 and 20 of their guesses on the boundary, respectively. The subject with
15 boundary guesses is from the BestRespond treatment and the subject with 20 boundary guesses is from the
Replicate treatment. The other 13 equilibrium-type subjects have at most 10 guesses on the boundary and never
more than 5 guesses on the boundary that are not equilibrium guesses. In addition, the di↵erence in frequencies
of hitting the equilibrium guess on the boundary versus the interior is never more than 65%.

20Since the modal type is in general not unique, we count a subject that has n behavioral types {m1, ...,mn}
for her modal type as 1/n of an m1 player, for mi 2 {L1, L2, L3, EQ,D1, D2} for 1  i  n.

21Subjects with 10–12 modal-type guesses seem to have the most behavioral type guesses that di↵er from
their modal behavioral type. However, such subjects would be classified as their modal type given the apparent
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4 Identifying Predictable Players

Behavioral game theory allows us to describe players using simple and portable models such

as level-k and dominance-k. While the equilibrium type alone allows us to classify 10% of

subjects, adding the level-k and dominance-k behavioral models brings this to 30%. This

leaves almost 70% of subjects not classified as behavioral game theory types.

In this section we propose a test whether subjects deliberately play according to a determin-

istic rule. Basically, the test is whether subjects are predictable, that is, whether they behave

in Phase II as expected given their Phase I choices. If a subject classified as a behavioral type

is indeed truly paying according to that type, we would expect her to score highly on our test,

that is, make Phase II guesses that conform to those expected given her Phase I guesses. If

the 70% of subjects not classified as behavioral types are to a large extent not using deliberate

deterministic rules, we would expect them, as a group, to not score highly on our test. We

therefore expect subjects identified as behavioral game theory types to make Phase II choices

that are more in concordance with their Phase I choices than unclassified subjects do. The

flip side of this reasoning is that we aim to determine the success of existing behavioral types

in identifying subjects who are using deliberate rules. As such, our approach will allow us to

assess the scope for additional behavioral game theory models.

To evaluate whether a subject deliberately uses a deterministic rule, we exploit the expected

relationships between Phase I and Phase II choices in our two main treatments. In the Replicate

treatment, we expect any subject who uses a well-defined deterministic rule to be able to

replicate her past behavior. In the BestRespond treatment, we expect a subject who in addition

exceeds a minimal level of strategic reasoning to be able to best-respond to her past behavior.

In contrast, a subject whose behavior is best described by a rule of thumb and hence does not

include considerations about the opponents’ behavior may fail to best-respond to her former

actions. This may be the case even if she may be able to replicate her former actions.

In the last part of this section, we show that predictive success in Phase II cannot be

explained merely by numeric memory of Phase I guesses. This shows that subjects who are

classified as behavioral types are not conforming more to actions in line with their former

behavior simply because they have “superior” memories. Furthermore, it suggests that subjects

who were particularly successful in Phase II but whose Phase I actions were poorly matched

by our behavioral models represent omitted types, rather than subjects with particularly good

memories and no deliberate Phase I play.

type method anyway, as the threshold for classification is to have at least 8 guesses of the same type. Only 20%
(21/105) of subjects with fewer than 8 modal types have a total number of 8 or more behavioral type guesses.
The Figure in the online appendix shows for each number of modal type guesses n and each subject with n

modal type guesses, the number of behavioral type guesses of the subject.
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In this section we assess whether a subject behaves in Phase II in concordance with her

Phase I guess by using a “model-free” “guess-level” approach. Specifically, we assume that

the expected relationship between Phase I and Phase II behavior will manifest itself in each

game. This model-free approach allows us to analyze whether the Phase II guess conforms to

the profit-maximizing choice given the Phase I guess in that game, while remaining ignorant

of the rules underlying Phase I choices. It allows us to compare the behavior of subjects we do

classify as behavioral game theory types to those we cannot classify to any existing behavioral

game theory type.

An obvious limitation of this guess-level approach is that we will fail to declare subjects as

predictable when they implement rules in slightly noisy ways, or if they change rules in Phase I

and cannot recall in Phase II when such changes were made. In Section 5 we will focus instead

on a “rule-level” or “type-level” analysis, replacing the assumptions of the guess-level analysis

with an assumed structural model of choice. The drawback of the approach in Section 5 is

that it can be built only upon a known and limited set of behavioral types.

4.1 Can Players Replicate their Past Actions?

4.1.1 Classified versus Unclassified Participants

In the Replicate treatment, we have Phase I and Phase II observations for 63 participants.22 In

Phase II, participants are paid as a function of how close their guesses are to the guesses they

made in Phase I. We say that a Phase II guess “replicates” the Phase I guess if the Phase II

guess is within 0.5 units of the subject’s Phase I guess in the same game.23 We call a subject a

“replicator” if in at least forty percent of games (8 out of 20), their Phase II guesses replicate

their Phase I guesses. Only 31 of the 63 subjects (49%) meet this criterion.24 This criterion

suggests that only half the subjects may be thought of as consciously and deliberately using a

deterministic system of choice that could potentially be uncovered.

Of the 63 subjects in the Replicate treatment 18 (roughly thirty percent) were classified

as matching one of our given behavioral types in Phase I; 5 as L1, 4 as L2, 1 as L3, 6 as

EQ, and 2 as D1.25 We find that 72% of these classified participants are replicators. The

proportion of participants classified as level-k or dominance-k types who are replicators (8 of

12) is not significantly di↵erent from that of participants classified as the equilibrium type (5

22Subject 31 had a computer malfunction and could not finish Phase II; her data is dropped from this analysis.
23That is, x

II
i replicates x

I
i if |xII

i � x

I
i|  0.5, where x

I
i and x

II
i are the Phase I and Phase II guesses of

participant i in the same game.
24Note that if all a subject recollects is that she played an action that was not dominated, we expect her to

replicate only one guess, which corresponds to the game that has a dominant strategy.
25Of the 6 EQ players, one may be a misclassified boundary player.
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of 6; p = 1). All proportion tests in this paper are Fischer’s exact tests.26 All comparisons

of proportions of participants in this paper show p-values of two-sided Fischer exact tests. Of

the 45 unclassified subjects, 18 (40%) are replicators. While this is not zero, it is significantly

lower than the fraction of classified subjects who are replicators (p = 0.01). This suggests, first,

that being able to replicate one’s actions is not a trivial task for subjects. Second, subjects

classified as behavioral types are strictly superior at this task, suggesting that behavioral game

theory models have some success in uncovering subjects who use deliberate rules.27

To assess the extent to which behavioral models identify a large fraction of participants who

deliberately use a deterministic rule, note that of the 31 replicators, only 42% are classified in

Phase I. Specifically, we have 18 players who matched one of our behavioral models fewer than

eight times in Phase I but who replicate 8 or more of their guesses. The fact that they can

precisely replicate many of their non-behavioral type guesses suggests that these subjects are

not merely subjects who play known behavioral rules with noise. They simply seem to follow

di↵erent rules, suggesting room for additional behavioral game theory models.

In the following we show that the result that subjects classified as behavioral types are

better at replicating their behavior than other subjects is robust when we use several di↵erent

continuous measures to evaluate their success in replicating guesses.

Classified subjects have 11.88 replicated guesses, significantly more than unclassified sub-

jects, 7.22 (p < 0.01). All tests of equality of means in this paper are t-tests. Furthermore,

classified participants replicate overall 58% of their guesses, while unclassified subjects only

replicate 36% of their guesses. The di↵erence in the replication rate mostly stems from Phase I

guesses that are behavioral type guesses. For such Phase I guesses the replication rate is 73%

for classified subjects and 59% for unclassified subjects.28

We next assess the di↵erence between classified and unclassified subjects by considering

how far subjects are from replicating their guesses. For each subject i, we average—over the 20

games—the miss distance |xIIi �x

I
i |, where xIi and x

II
i are the Phase I and Phase II guesses in a

given game. Classified participants have a mean miss distance of 49.13, which is significantly

lower than 74.28, the mean miss distance of unclassified subjects (p = 0.036).

The di↵erence between classified and unclassified subjects manifests itself also in Figure 3.

We order subjects by their average miss distances. We then plot the cdf of both classified

and unclassified participants. Figure 3 shows that the 21 subjects with the lowest miss dis-

tances (the lower third) comprise 44 percent of all classified and 29 percent of all unclassified

26Likewise, the 5 L1 subjects are as likely to be replicators (3 out of 5) than the 5 that are L2 or L3 subjects
(4 out of 5), p = 0.99.

27Note that even the 12 classified subjects who are not of the equilibrium type have a higher fraction of
replicators (8 of 12) than the 45 unclassified subjects (18 of 45), though the di↵erence is not significant, p = 0.12.

28For non-behavioral-type guesses in Phase I, classified participants replicate 23% of guesses, compared to
29% for unclassified subjects.
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Figure 3.—The cdf of the 18 classified and
the 45 unclassified participants in the Repli-
cate treatment ordered by their miss dis-
tances. Subject 1 has the lowest miss dis-
tance, and subject 63 the highest.

Figure 4.—For each subject, we plot the
number of Phase II guesses that are replica-
tions of the corresponding Phase I guesses as
a function of the subjects’ number of modal
type guesses in Phase I.

participants. The fact that the cdf of classified participants is above the cdf of unclassified

participants reflects that classified participants have lower miss distances. The fact that the cdf

of unclassified participants is not too far o↵ the 45 degree line suggests that some unclassified

participants are not much worse at replicating their choices than are classified participants.29

To compare the miss distances of subjects both within a treatment, but especially across

treatments, we introduce a baseline miss distance. A subject who follows the “sophisticated

rule” is a subject who in Phase II has no recollection of the guesses she made in Phase I, apart

from the fact that the Phase I guess was not a strictly dominated guess. The sophisticated

rule subject then randomizes in Phase II over any guess that is a best response to a surviving

Phase I guess. In the Replicate treatment, the sophisticated rule therefore corresponds to

randomizing in Phase II over guesses that are not strictly dominated. If subjects were to use

the sophisticated rule, the mean miss distance of classified subjects would be 137.58, which is

not significantly di↵erent from the mean miss distance unclassified subjects would have, 135.81

(p = 0.846). This suggests that the observed di↵erences in miss distances between classified

and unclassified subjects are not mechanically driven by the structure of the games or their

di↵erent Phase I actions.

To assess the miss distance of a subject, we ask what fraction of reduction in miss distance

a subject achieved compared to the sophisticated baseline. A subject who has the same miss

distance as the sophisticated baseline has a reduction of 0, while 1 corresponds to a subject

29To provide some idea as to the miss distances, note that the lowest miss distance is 0, that of the 25th

percentile is 36, the 50th is 61, the 75th is 91 and the highest miss distance is 211.

17



whose Phase II choices are payo↵ maximizing. Specifically, for each game i, let MissDisti be

the distance between the subject’s Phase II guess and the Phase I guess, and let Sophi be the

(expected) distance between the Phase II guess and the Phase I guess under the sophisticated

baseline rule. Then, we define (Sophi � MissDisti)+ ⌘ max{Sophi � MissDisti, 0} as the

reduction in miss distance of the actual guess relative to the sophisticated baseline in game

i. In a game in which Sophi > 0, (Sophi � MissDisti)+/Sophi is a value between 0 and 1

representing the normalized gains a subject made towards optimal play (a miss distance of

zero) relative to the sophisticated baseline.30 Losses are counted as zero gains.31 For the set

of games in which Sophi > 0, we compute the mean of (Sophi �MissDisti)+/Sophi, yielding

a measure of the gains towards optimal play in Phase II relative to the sophisticated baseline.

On average, classified participants realize a significantly greater fraction of the gains towards

optimal behavior than do unclassified participants, 71.6% versus 56.9% (p = 0.009).32

The fact that classified participants exhibit lower miss distances than unclassified partici-

pants is reflected in the earnings of subjects. Classified participants have 12% higher expected

earnings than unclassified participants in Phase II, $34.47 compared to $30.71 (p = 0.005).33

4.1.2 Performance by number of modal type guesses

We show that the conclusions hold when, instead of partitioning subjects in Phase I into

classified and unclassified sets, we consider how often subjects play their modal types, that is,

their most-often played behavioral types. Figure 4 shows that the more modal type guesses

a participant made in Phase I, the more guesses the participant replicates in Phase II. A

regression of the number of replicated guesses in Phase II on the number of Phase I modal type

guesses shows a coe�cient of 0.670 (s.e. 0.101, p < 0.001) and a constant of 4.347 (s.e. 0.784,

p < 0.01). The figure also shows that there are clearly many omitted types: subjects who

30
Sophi is zero in the game with a dominant strategy.

31Note that when Sophi � MissDisti is negative, dividing by Sophi does not normalize the losses to be
between 0 and 1, and indeed they can take very high negative valuations, especially when Sophi happens to be
small. Since that may distort the measure that considers average gains from the sophisticated baseline towards
optimal play, we decided to count losses as zero.

32Furthermore, for each subject we can assess whether their miss distances are significantly di↵erent than the
sophisticated baseline. Using a significance level of 10%, all classified subjects have significantly lower mean
miss distances than the sophisticated baseline; this is the case for only 82% of unclassified subjects, a significant
di↵erence (p = 0.092). As we might expect, of the 31 subjects who are replicators (successfully replicated in
8 or more games), all have significantly lower miss distances, while this is the case for only 75% of the 32
non-replicators (p = 0.004).

33The maximum possible expected earnings in Phase II are $40.00 for both groups of participants, which can
be achieved for all possible Phase I actions. Note however that classified participants have significantly lower
expected earnings from random uniform play than unclassified participants: $14.90 and $16.17, respectively
(p = 0.005). Both higher average earnings and lower earnings from random play imply that classified participants
realize a significantly larger fraction of the gains from optimal play relative to random play than unclassified
participants, 78% compared to 60% (p = 0.002).
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replicate their past guesses often while having few modal type guesses. That is, a sizable

number of subjects seem to play according to rules they can replicate, while these rules do not

match any of the behavioral models we consider. Precise replication of many guesses suggests

that these are not subjects who implement a known behavioral type with noise.34

The conclusions are mirrored when we consider earnings. A regression of expected earnings

in Phase II on the number of modal type guesses in Phase I shows a coe�cient of 0.551

(s.e. 0.109, p < 0.01) and a constant of 28.33 (s.e. 0.846, p < 0.01). That is, each additional

modal type guess in Phase I is associated with an increase in earnings of about 50 cents.

To summarize, we found that participants classified in Phase I by the method of Section 3

are to a large extent able to replicate their past guesses, confirming their behavioral type

classification. Furthermore, participants who are not classified in Phase I successfully replicate

in Phase II at a much lower rate, showing that existing behavioral models identify subjects who

are more deliberate in their strategic choices. Finally, among participants who are replicators,

42% are classified, which suggests that quite a few participants who cannot be described by

one of our behavioral types are nonetheless playing according to deterministic rules they can

replicate. This suggests considerable room for new behavioral types. In this paper we call such

rules, or types of players, omitted types.

4.2 Can Players Best-Respond to their Past Actions?

4.2.1 Classified versus Unclassified Participants

While being able to replicate a guess is consistent with the use of a deliberate rule, it does

not necessarily indicate that a participant forms beliefs about the behavior of the opponent

and then best-responds to those beliefs. Indeed, if the interpretation of the level-k type as

an “as if” representation of a rule of thumb is accurate, we would expect level-k players to

successfully replicate their past actions, but not necessarily best-respond to them. This would

be also expected if the obtained level k is an indication of cognitive limitations. Furthermore,

it remains an open question whether the omitted types we found in the previous section are

best described by rules of thumb or by strategic rules that require subjects to be aware that

they should first form beliefs about the behavior of the opponent and then best-respond to

them. The goal of the BestRespond treatment is to shed light on these questions.

We have 76 participants in the BestRespond treatment, all of whom play the twenty games

of Phase I in the same order once more but now in the role of the opponent. A subjects plays

against a computer whose guess is her own past guess in that game. We call a Phase II guess a

34Recall that subjects with a low modal type have also few total behavioral type guesses. That is, these are
also not subjects who simply switch among several known rules.

19



best response guess if it is within 0.5 units of the (unique) best response to the corresponding

Phase I guess. That is, xIIi is a best response guess if |xIIi � BR(xIi)|  0.5, where x

I
i and x

II
i

are the Phase I and Phase II guesses of participant i in the same game {[l1, u1], t1; [l2, u2], t2},
and BR(xIi) = t2x

I
i if l2  t2x

I
i  u2, BR(xIi) = l2 if t2xIi  l2 and BR(xIi) = u2 if u2  t2x

I
i .

A participant is a “best-responder” if in at least forty percent of games her Phase II guess is a

best-response guess. Only 31 of the 76 subjects meet this criterion. This suggests that only a

small fraction of participants can be thought of as playing deliberate deterministic rules that

are best responses to beliefs about the guess of the opponent.

In Phase I, roughly one-third (26 out of 76) of participants are classified through the method

of Section 3; 9 are L1, 5 are L2, 1 is L3, 9 are EQ and 2 are D1.35 We find that 81% of the 26

classified participants are best-responders. Level-k and dominance-k participants are as likely

to be best-responders (13 of 17) as equilibrium participants (8 of 9) (p = 0.614). This suggests

that the level-k model may be closer to an actual strategic description of behavior rather than

merely an “as if” representation of a rule of thumb or cognitive limitation.36

Only 20% of unclassified subjects (10 of 50) are best-responders. While this is not zero, it

is significantly smaller than the fraction of classified participants who are best-responders (p <

0.001). This shows that behavioral types are not only doing well in this strategic environment,

but doing so is di�cult.

To assess the extent to which behavioral models captured subjects who successfully best-

responded, note that of the 31 best-responders in Phase II, 68% are participants classified as

a behavioral type in Phase I. This suggests that existing behavioral models are particularly

suited in identifying subjects who use deliberate rules that have some degree of strategic

sophistication. We have, in addition, 10 participants who exactly best-respond to at least 40%

of their guesses, but who were not classified as any behavioral type in Phase I. These subjects

are prime candidates for omitted types, representing new behavioral models with a strategic

element of agents best-responding to beliefs.

In the following discussion we show that the result that subjects classified as a behavioral

type are significantly better at best-responding to their past behavior than others is robust

when we use several more continuous measures of evaluating the success in best-responding.

When we compute the number of times participants best-respond to their past actions,

classified participants on average have 11.42 best-responses, significantly more than the 5.46

of the unclassified participants (p < 0.01). Classified participants best-respond to 57% of

all guesses compared to 27% of guesses for unclassified participants. This di↵erence is mostly

driven by the best-response rate to behavioral type guesses. For such Phase I guesses, the best-

35Of the 9 EQ players, one may be a misclassified boundary player.
36The 9 L1 subjects are somewhat less likely to be best-responders (5 out of 9) than the 6 that are L2 or L3

subjects (6 out of 6), though the di↵erence fails to be significant, p = 0.103.
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Figure 5.—The cdf of the 26 classified and
the 50 unclassified participants in the Be-
stRespond treatment ordered by their miss
distances. Subject 1 has the lowest miss dis-
tance, and subject 76 the highest.

Figure 6.—For each subject, we plot the
number of Phase II guesses that are best
responses to the corresponding Phase I
guesses as a function of the subjects’ num-
ber of modal type guesses in Phase I.

response rate is 68% for classified participants compared to 35% for unclassified subjects.37

Alternatively, we can assess how well subjects best-respond to their past behavior by mea-

suring how far away their guess in Phase II, xIIi , is from the best-response to their Phase I guess,

BR(xIi). For each subject i we average over the twenty games the miss distance |xIIi �BR(xii)|.
Classified subjects have a mean miss distance of 53.54, which is significantly smaller than the

97.90 miss distance of unclassified subjects (p = 0.001).

In Figure 5, we order subjects by their average miss distances. We then plot the cdf of

both classified and unclassified participants. Figure 5 shows that the 25 subjects with the

lowest miss distances (the lower third) comprise 65 percent of all classified and 16 percent

of all unclassified participants. The fact that the cdf of classified participants is well above

the 45 degree line, while that of unclassified participants is well below confirms that classified

participants on average have lower miss distances, that is deviate much less from the best

response than unclassified participants.38

In order to evaluate the miss distance and confirm that di↵erences between classified and

unclassified participants are not mechanically driven by their di↵erent Phase I play, we com-

pute, as in the previous section, a baseline miss distance. A subject that follows the “so-

37For non-behavioral type guesses, the best-response rate is 33% for classified and 25% for unclassified partici-
pants. Subject fixed-e↵ects conditional logit regressions confirm that guesses that are classified as best-response
guesses are more likely to be best-responded to than are other guesses, and that this e↵ect is significantly
stronger for participants classified as a behavioral type.

38To provide some idea as to the miss distances, note that the lowest miss distance is 3, that of the 25th

percentile is 35, the 50th is 74, the 75th is 117 and the highest average miss distance is 325.
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phisticated” rule uniform randomly chooses among guesses that are best responses to Phase I

guesses, for Phase I guesses that are not strictly dominated. The sophisticated baseline for

classified subjects yields a mean miss distance of 105.03, which is not much lower than the

mean miss distance for unclassified subjects using the sophisticated baseline 114.01 (p = 0.111).

That is, the di↵erence in the actual mean miss distances for these groups does not seem to be

mechanically driven by di↵erences in the structures of games or their Phase I play.

Finally, we assess what fraction of the reduction in miss distance from the sophisticated

baseline to the optimum (zero miss distance) players achieved. As before, we normalize losses

to 0, so that for each game the realized gains are normalized between 0 and 1. We take the

average over all games in which the sophisticated baseline yields a strictly positive miss distance

and average these measures separately over classified and unclassified subjects. Classified

participants realize 68.7% of the gains towards optimal performance in Phase II relative to the

sophisticated baseline, while this value is only 44.9% for unclassified participants (p < 0.001).39

The fact that classified participants tend to be closer to the Phase II best-responses than

unclassified participants is also reflected in their Phase II expected earnings. Classified par-

ticipants have 19% greater expected earnings than participants who are not classified ($30.13

compared to $25.36, p < 0.001).40

4.2.2 Performance by number of modal type guesses

We show that the conclusions hold when instead of partitioning participants on whether they

had eight or more guesses of a behavioral type in Phase I, we use the number of guesses of their

Phase I modal type. Figure 6 shows that the more modal type guesses a participant made,

the more best responses the subject had in Phase II. A regression of the number of guesses

best-responded to in Phase II on the number of modal type guesses of a subject in Phase I

yields a slope coe�cient of 0.634 (s.e. 0.092, p < 0.01) and a constant of 3.201 (s.e. 0.756,

p < 0.01). Figure 6 also shows quite impressively the existence of subjects who are very good

at best-responding to their Phase I guesses but who have few modal type guesses. These

39 Furthermore, for each subject we can assess whether her miss distance is significantly di↵erent (smaller)
at the 10% level than the sophisticated baseline. Of the 26 participants whose Phase I behavior classified them
as behavioral types, 77% have significantly less noise in Phase II than had they used the sophisticated rule in
Phase II. This is a significantly higher percentage than the 46% of the 50 unclassified participants (p = 0.014).
As expected, of the 31 subjects who were classified as best-responders, 87% have significantly smaller mean miss
distances than the sophisticated baseline, compared to only 36% of the 45 non-best-responders (p < 0.001).

40While the maximum possible expected earnings in Phase II are $40.00 for both groups of participants,
this cannot be achieved for all possible Phase I actions, and di↵erences in Phase I behavior across groups
could mechanically produce di↵erences in Phase II earnings. This does not seem to account for the di↵erence we
observe. The highest possible expected earnings are $36.14 and $35.94 for classified and unclassified participants,
respectively (p = 0.747), while those for random play are $18.44 and $18.36 (p = 0.828). Classified participants
realize 66% of the di↵erence between random play and highest possible earnings, compared to only 38% for
unclassified participants (p < 0.001).
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subjects appear to represent omitted types. The fact that they so precisely best-respond to

their guesses suggests that they play indeed omitted rules rather than being subjects who

implement existing behavioral types with noise.

The conclusions are mirrored when we look at earnings instead of the number of best-

response guesses. A regression of expected earnings on the number of modal type guesses a

participant made yields a slope coe�cient of 0.501 (s.e. 0.123, p < 0.01) and a constant of

23.60 (s.e. 1.015, p < 0.01). That is, each additional Phase I modal type guess is associated

with a 50 cent increase in Phase II expected earnings.

We found that participants classified as behavioral game theory types in Phase I are to a

large extent able to best-respond to their own past behavior, confirming their behavioral type

classification. This also suggests that the interpretation of behavioral strategies as strategic

choices might be more accurate than the interpretation that such models are largely “as if”

models or rules of thumb. Furthermore, participants not classified in Phase I generally fail to

best-respond to their past actions. That is, subjects who match behavioral types are clearly

distinguished from those who do not. Finally, among participants who are best-responders,

68% are captured as behavioral types by the classification of Section 3. That is, behavioral

strategies capture the majority of subjects who we judge as deliberate and strategic in this

setting. There are, however, some omitted types, which suggests there is some room for

additional strategic behavioral models.

4.3 Are More Participants Systematic Than Strategic?

The goal of this section is to assess to what extent subjects are more successful in replicating

than best-responding to their past guesses. There are two reasons why replicating a guess may

be easier than best-responding to it. While replicating a guess is clearly a necessary first step

for best-responding to it, the latter entails, in addition, that the subject be aware that her

action in a game should depend on her beliefs about the action of the opponent. A participant

who uses a rule of thumb may never actually think about the opponent. She may not value the

following information: the other player in Phase II of the BestRespond treatment is a computer

who makes the subjects’ Phase I guesses. Therefore, subjects who use rules of thumb may be

able to replicate their guesses but fail to make the strategic leap necessary to best-respond to

them. A more mundane reason why best-responding is harder than replicating is that subjects

now have an additional opportunity to make computational errors; once they compute the

replication, they additionally must calculate the best response. Note, however, that we found

that subjects make virtually no mistakes when computing the best responses to guesses. As

noted in Section 3, out of 600 times subjects responded to shown guesses, all but 6 guesses

were within 0.5 units of the best response.
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4.3.1 Classified Participants

We first focus on classified participants, that is, participants who have guesses of the same

behavioral type in 40% or more of the games. We saw that 72% of classified subjects were

replicators and 81% were best-responders. This di↵erence is not significant (p = 1). The

number of Phase II guesses that correspond to the predicted guesses given the Phase I behavior

is similar across treatments, it is 11.42 for subjects in the BestRespond treatment and 11.56

for subjects in the Replicate treatment (p = 0.928).41

For a continuous measure we report the mean miss distances of classified participants in the

Replicate and the BestRespond treatments in Table 4 below. Classified participants have about

the same mean miss distances in both treatments. Furthermore, they realize about the same

gains towards optimal play relative to the sophisticated baseline (see (Soph-Miss Dist.)/Soph).

Therefore, for classified participants, best-responding to Phase I guesses seems no more

di�cult than replicating them. This suggests that not only the equilibrium type, but also the

much more prevalent level k types are probably best thought of as strategic types rather than

rules of thumb.42

Replicate BestRespond t-test
Classified Subjects (N) 18 26
Miss Distance 49.13 53.54 0.750
Sophisticated Rule 137.58 105.03 0.000
(Soph-Miss Dist.)/Soph 0.716 0.687 0.656
Unclassified Subjects (N) 45 50
Miss Distance 74.28 97.90 0.021
Sophisticated Rule 135.81 114.01 0.000
(Soph-Miss Dist.)/Soph 0.569 0.449 0.003

Table 4.—Classified subjects: mean miss distances across treatments. The last column shows
the p-values of two-sided t-tests of equal means across treatments.

4.3.2 Unclassified Participants

For subjects who are not classified in Phase I, we found that 39% are replicators, while only 20%

are best-responders, a significant di↵erence (p = 0.046). On average, unclassified subjects best-

41Across the two treatments, classified participants have about the same number of Phase I guesses that are
classified, 13.88 for subjects in the BestRespond treatment and 13.83 for subjects in the Replicate treatment,
p = 0.964.

42Even when we just concentrate on L1, or on all Lk types, such types are as likely to be best-responders as
they are to be replicators across treatments: 5 of 9 and 3 of 5 (p = 1) for L1 and 11 of 15 and 7 of 10 (p = 1)
for all Lk types.
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respond to significantly fewer guesses than they replicate, 5.46 compared to 7.24 (p = 0.028).

This di↵erence is not driven by a di↵erence in the number of behavioral type or modal-type

guesses in Phase I across the BestRespond and Replicate treatments.43

Finally, we can compare the miss distances of subjects not classified in Phase I across

treatments. In concordance with the results so far, unclassified participants in the Replicate

treatment average significantly smaller miss distances than unclassified participants in the

BestRespond treatment; the di↵erence is almost 25%. Note that this is the reverse of the

relationship between the sophisticated baseline measures, which suggests that this di↵erence

in actual miss distances is not mechanically driven by the structures of the games or tasks

across treatments. Similarly, unclassified subjects in the Replicate treatment realize more of

the gains towards optimal play relative to the sophisticated baseline compared to unclassified

participants in the BestRespond treatment.

That for unclassified subjects replicating past behavior is so much easier than best-responding

to it, and that there are fewer best-responders than replicators, suggest some of the omitted

types may be better described by rules of thumb than by strategies that entail best responses

to beliefs.

4.4 Playing according to a rule, or simply remembering guesses?

One interpretation of participants replicating and best-responding to guesses is that partic-

ipants play according to some rule and are aware of it. However, it could be that some

participants merely have good memories. In the Memory treatment, we provide a benchmark

for how easy it is to remember 20 guesses that are not the result of any deliberate rules. To

this end, in Phase I of the Memory treatment, participants play the guessing games against

computers that make random guesses. A subject sees the opposing computer’s guess while

making her own guess. Like in Phase I of the other treatments, subjects are paid as a function

of how far their guesses are from their goals. In Phase II of the Memory treatment, participants

are tasked with replicating their Phase I guesses.

As in our other treatments, we use a 0.5 unit window to determine whether or not an

individual guess is successfully “remembered” and say a subject is a “rememberer” if they have

8 or more successfully remembered guesses. In Phase II of the Memory treatment, subjects

remembered between 1 and 7 guesses, so no subject can be said to be a “rememberer”. On

average, subjects remember 3.9 guesses out of 20. To assess that number, we compute the

expected number of “remembered” guesses from a participant who has no memory, but plays

43In the BestRespond treatment, in Phase I, unclassified subjects have on average 5.26 behavioral type guesses
and an average of 3.98 modal-type guesses, which is not significantly lower than the 4.89 (p = 0.464) and 3.71
(p = 0.480) in the Replicate treatment, respectively.
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the action that would yield the highest expected earnings. The only available information

for the participant is that in Phase I, the opponent—the computer—chose a guess uniform-

randomly over the action set and the subject best-responded to that guess. This implies for

each game a unique action in Phase II that maximizes expected earnings. If all 20 subjects

would have used this scheme, they would have “remembered” on average 2.8 guesses. Note

that while not much smaller, this is significantly di↵erent than the mean of 3.9 remembered

guesses (p = 0.03).44

Finally, we can compare how well subjects perform in the Memory compared to the Repli-

cate treatment. While 31 out of 63 subjects replicated 8 or more guesses and hence were

replicators, no subject in the Memory treatment remembered 8 or more guesses, a significant

di↵erence (p < 0.01). The mean number of remembered guesses in the Memory treatment,

3.9, is also significantly lower than the average number of replicated guesses in the Replicate

treatment, 8.5, (p < 0.01). Subjects in the Memory treatment even remembered fewer guesses

than unclassified subjects were able to replicate in the Replicate treatment, 7.24, p = 0.001. A

comparison to the BestRespond treatment yields similar results.45

That is, participants who perform well in the Replicate, or even in the BestRespond treat-

ment, are unlikely to be subjects who merely have good memories. Rather, successful Phase II

play likely involves reimplementation of deliberate Phase I rules.

5 Exploring the Boundaries of Classification

In the analysis so far, the criterion for whether a subject played according to a deliberate rule

involved assessing whether a game’s Phase II choice was correctly predicted by the guess from

the corresponding Phase I game. This “model-free” “guess-level” approach had the advantage

of providing expectations for Phase II actions even for subjects whose Phase I behavior did

not match any of the given behavioral game theory models.

In this section we use a “type-level” approach. Specifically, we use all 20 guesses to assign

a type to a subject not only in Phase I, but also in Phase II. We can then, for each treatment,

assess concordance of the Phase II behavior with that implied by the assigned Phase I type.

44When considering the distribution of # remembered guesses - # guesses remembered using the optimal no-

memory scheme, the mean is 1.1, standard deviation is 2.23, and minimum and maximum values are �4 and
5.

45In the BestRespond treatment, 31 out of 76 subjects were best-responders, a significantly greater proportion
than the 0 rememberers out of 20 subjects (p < 0.01). The mean number of best-response guesses, 7.5, is also
significantly greater than the mean of 3.9 remembered guesses from the Memory treatment (p < 0.01). Subjects
in the Memory treatment were even worse at remembering guesses than unclassified subjects were at best-
responding to them in the BestRespond treatment, as they averaged 5.46 best-response guesses compared to 3.9
remembered guesses out of 20 (p = 0.07).
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This may increase the fraction of participants classified as behavioral types in Phase I whose

guesses in Phase II are in accordance with the expected relationship between the phases.46

We use two classification methods to categorize participants in their Phase I and Phase II

play. The first is the apparent type classification method from Section 3.1. One of its drawbacks

is its equal treatment of all non-behavioral type guesses. In other words, a guess just outside

the 0.5 window of the behavioral type prediction is not treated di↵erently from a guess much

further from the window. We could loosen classification criteria by either considering a lower

threshold in the number of guesses needed to be classified, or by allowing for more error than

0.5 when assessing whether a guess is a behavioral type guess. However, this quickly leads to

subjects being classified as several types.

The second classification method leads to a unique classification for each subject as it has

a more sophisticated error structure than the apparent type method. This allows us to loosen

classification criteria. Specifically, we use a maximum likelihood estimation to classify subjects.

If a subject’s behavior is not estimated to be significantly di↵erent from random play at the

5% level, we call the subject unclassified.

Note that our MLE(5%) classifies many more subjects compared to the apparent type

classification. This allows us to assess the tradeo↵ between classifying additional subjects

on the one hand, and on the other, successfully capturing subjects whose classifications in

Phase I and Phase II are congruent with that of strategic subjects. Specifically, we can assess

whether the additional subjects captured by a weaker criterion, MLE(5%), conform less well to

their expected behavior than subjects classified by the apparent type method (or less lenient

maximum likelihood estimations). Finally, we examine the likelihood that a subject behaves as

predicted in Phase II as a function of the likelihood of the subjects’ Phase I MLE classification.

To evaluate the behavior of subjects on the type level, we focus on the BestRespond treat-

ment. The most mundane reason for this is that we have more subjects in that treatment.

More importantly, we have seen in the previous section that participants classified as behav-

ioral types using the apparent type method are able to best respond to their actions. On the

other hand, subjects not classified by the apparent type method have been shown to have a

much harder time best-responding to their guesses versus merely replicating them. If we view

not only the equilibrium model, but also level-k and dominance-k, as models where a subject

forms beliefs about the behavior of her opponent and then best-responds to those beliefs, then

we may want to insist that subjects we classify as behavioral players conform to the expected

46For example, consider a hypothetical subject who made L1 guesses in even-numbered games in Phase I but
deviated in odd-numbered games. Suppose this subject then made L2 guesses in the first 10 games of Phase II,
but deviated in the last 10 games of the BestRespond treatment. In our previous “guess-level” analysis, the
best-response rate would be 25%. In terms of a “type-level” analysis, the subject would be classified as L1 in
Phase I and L2 in Phase II, and using the “type-level” approach could legitimately be viewed as being at least
somewhat able to best-respond to her former behavior.
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relationship in the more demanding strategic environment of the BestRespond treatment. In

the online appendix, we show that the results are somewhat similar, if attenuated, in the

Replicate treatment, and we explain why we expect this to be the case.

5.1 Type Transition in the BestRespond Treatment

To assess whether participants classified as a behavioral type in Phase I turn into the corre-

sponding type in Phase II, we need to expand the set of types for Phase II. Specifically, we

predict that a Lk player turns into Lk+1, for k = 1, 2, and 3, EQ remains EQ, and Dk turns

into the best response to Dk (denoted by BRDk for k = 1, 2). We therefore consider a set of

Phase II types including L4, BRD1, and BRD2 in addition to the Phase I types.47 We classify

subjects independently by their behavior in Phase I, and then by their behavior in Phase II.

5.1.1 Type Transition Given the Apparent Type Classification

Table 5 shows the type transitions of the 76 participants in the BestRespond treatment using

the apparent type classification.48 Rows give the classification of the Phase I behavior and

columns the classification of the Phase II behavior; the cell entries represent the number of

subjects with that pair of Phase I and Phase II classifications. The entries in bold correspond

to subjects who follow the prediction implied by best-response.

BR Uncl. L1 L2 L3 L4 EQ BRD1 BRD2 D1 D2 Ph I
Uncl. 44 1 3 – – 1 – – 1 – 50
L1 1 1 6 – – 1 – – – – 9
L2 – – – 5 – – – – – – 5
L3 – – – – 1 – – – – – 1
EQ 3 – – – – 6 – – – – 9
D1 – – – – – – 2 – – – 2
D2 – – – – – – – – – – –

Ph II 48 2 9 5 1 8 2 – 1 – 76

Table 5.—BestRespond type transition using the apparent type classification

For example, of the 9 subjects classified as L1 in Phase I, 6 are classified as L2, 1 is classified

as EQ, 1 as L1 and 1 is not classified in Phase II. In total, if we assume that an unclassified

participant is expected to remain unclassified, then 64/76 or 84% of subjects change types as

47We also keep the original types in Phase II, as a subject who has no recollection of her rule may turn into
L1 or D1 depending on her beliefs about her use of dominated strategies.

48Recall that a subject is classified as a certain behavioral type if at least 40% of her guesses are within 0.5
of the exact guesses made by that type.
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expected.49 When we restrict attention to participants who are classified in Phase I, 20/26,

that is 77% of subjects have the expected type transition.

One open question from the previous section concerns the 19% of classified participants

who are not classified as best-responders using the guess-level prediction. It could be that a

large fraction conforms to the expected behavior once we use the type-level classification. This

is not the case. Of the 26 classified participants 21 are best-responders in Phase II, 20 conform

with the expected type in Phase II and 18 fulfill both criteria.

Finally, we can turn the prediction exercise around; of the 28 subjects classified in Phase II,

22, that is 79%, are subjects who were classified in Phase I, and all but two of those changed

classification according to the best-response model.

Overall, the type-level analysis confirms the conclusion that around eighty percent of sub-

jects identified as behavioral types conform with their expected behavior in the BestRespond

treatment when using the apparent type classification. That is, to a large extent, behav-

ioral types capture subjects whose behavior is consistent with pure strategies that entail best-

responding to beliefs.

5.2 Type Transition given by the Maximum Likelihood Estimation

The apparent type classification method quickly leads to multiple classifications when relaxed

and arguably fails to capture subjects who implement behavioral rules with noise. We therefore

consider, following CGC, a maximum likelihood method where we estimate each subject’s type.

We assume that each subject’s behavior is determined, with error, by one of the behavioral

types, or is completely random.50

Since the procedure forces all 150 subjects to be identified with some behavioral type in

{L1, L2, L3, D1, D2, EQ}, we follow CGC and test whether the subject’s maximum likelihood

type gives a significantly better fit than the null model of uniform random play over the

guessing range. For 14 of our subjects, we cannot reject the null of uniform random play at

the 5% level; we term them unclassified.51

Table 6 shows the classification of subjects using the maximum likelihood method excluding

subjects who fail the specification test using a 5% significance level (MLE(5%)). The relative

frequencies of the behavioral types are not changed dramatically compared to the apparent

type method with the exception of EQ which is less represented in MLE(5%). However, there

49Note that an alternative option for an unclassified subject would be to “turn into” D1 since most subjects
do not use dominated strategies, or into L1 if the subject believes she played randomly in Phase I. However,
only two subjects have such a classification combination for Phases I and II.

50Although there are slight di↵erences in notation, our maximum likelihood estimation procedure is identical
to the one in CGC; for details, see the Appendix.

51If we instead use a significance level of 10%, 9 subjects are unclassified.
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Table 6.—Summary of Estimated Type Distributions in Phase I

L1 L2 L3 EQ D1 D2 Uncl
Apparent 14 10 2 15 4 0 105
% of Classified 31.1% 22.2% 4.4% 33.3% 8.8% 0%
MLE (5%) 50 30 2 31 19 4 14
% of Classified 36.8% 22% 1.5% 22.8% 14% 2.9%

BR UNC L1 L2 L3 L4 EQ BRD1 BRD2 D1 D2 Ph I
UNC 3 2 1 1 – – – – – – 7
L1 1 4 12 – – 2 1 1 2 1 24
L2 1 2 2 7 – 1 1 – 3 1 18
L3 – – – – 1 – – – – – 1
EQ 1 1 1 – – 14 – – – – 17
D1 – 2 – – 2 – 2 – 1 1 8
D2 – – – – – – – – – 1 1

Ph II 6 11 16 8 3 17 4 1 6 4 76

Table 7.—BestRespond type transition using the MLE(5%) classification

are many more subjects classified using MLE(5%). This highlights the need to understand the

potential trade-o↵ between classifying more subjects and in turn having a potentially lower

rate at capturing subjects with the expected type transitions.

5.2.1 Type Transition using MLE(5%)

In the BestRespond treatment, we classified 69 of the 76 participants using MLE(5%). Ta-

ble 7 shows the transition of each subject where we classify behavior in Phase I and Phase II

separately.

For example, of the 24 subjects classified as L1 in Phase I, half, 12, are classified as L2 in

Phase II. One subject is unclassified in Phase II, two are classified as EQ, one each as BRD1,

BRD2 and D2, 4 as L1 and 2 as D1. When we assume that an unclassified participant is

expected to remain unclassified, then 39/76, 51% of subjects have the expected type transition.

When we restrict attention to players that are classified in Phase I, then 36/69, that is 52%

have the expected type transition.

Finally we can turn the exercise around and assess whether Phase I play is as expected

given Phase II play. Of the 70 subjects classified in Phase II as behavioral types, 66 were

classified in Phase I. However, only 51% had a type transition in concordance with the best

response model.

30



5.3 The boundaries between classification and type consistent transitions

MLE(5%) classifies 69 participants in Phase I, which is more than the 26 classified by the

apparent type classification. Using the apparent type method, 20 participants behave as ex-

pected, for a rate of 77%. For the maximum likelihood method, 36 behave as expected, for a

rate of 52%, which is significantly lower (p = 0.036, Fisher’s exact test). All the 26 partici-

pants classified by the apparent type method in Phase I retain the same classification using

MLE(5%), which in addition classifies another 43 participants. Of those additional 43 par-

ticipants only an additional 16 (37%) conform with prediction (significantly less than 77%,

p < 0.01).

There are three groups from which these additional classified participants may be drawn.

The first can be viewed as subjects who implement behavioral rules with error, let’s call them

BehError. These are subjects we hope to find using a classification method that allows for

more error in the implementation of the behavioral rule.52 The second group are subjects who

behave very noisily, almost randomly, but we fail to identify as being random. The final group

are subjects with omitted types. These are subjects who deliberately employ deterministic

rules di↵erent from the behavioral models we considered. They may therefore be misclassified

if they are classified as behavioral types by MLE(5%). Recall that in the previous section we

found 10 participants who are prime candidates for being omitted types.53

We use two approaches to assess whether the rate of 37% of expected transitions of the

43 additional participants captured by MLE(5%) is high or low. First, we compare the rate

of transitions that conform to expectations of all 43 additional classified subjects–who may

be BehError subjects, random subjects and/or (misclassified) omitted types–to the subset of

10 subjects we have clearly identified as omitted types. Of the 10 subjects who are classified

as best-responders but not as behavioral types using the apparent type classification, all are

classified in Phase I using MLE(5%), 4 as L1, 3 as L2 and 3 as EQ. This suggests that

MLE(5%) may have substantially over-fitted subjects as behavioral game theory types. Of

those 10 subjects, 4 (40%) change classification as expected in Phase II using MLE(5%).

Therefore, a 40% accurate type transition rate is far from proof that a large fraction of these

additional classified subjects are those we want to capture, namely BehError types, that is

52BehError subjects will be missed using the apparent type classification whenever errors are likely to be
larger than 0.5. Likewise, even if such subjects best-respond on a rule level, but implement both Phase I and
Phase II rules with independent noise, such subjects may not be classified as best-responders; in each game, they
are very likely to be more than 0.5 points away from exactly best-responding to their Phase I guess including
the realized noise in that game.

53These subjects best responded to 40% or more of their guesses, while having strictly less than 40% of their
Phase I guesses captured the same behavioral type. For example, two subjects have 4 or 5 guesses of the same
behavioral type, respectively, while best-responding to 15 or more of their guesses. We argue that these 10
participants are of omitted types.
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behavioral game theory types who implement their type with noise.54

Second, we highlight the tradeo↵ between classifying subjects as behavioral types and iden-

tifying subjects whose behavior in Phase II conforms to the behavior expected by the classifi-

cation of the subjects’ Phase I play. We therefore first force every subject to be classified as one

of the types {L1, L2, L3, EQ,D1, D2}. Denote by ⌧

I
i the type in Phase I that MLE attributes

to i, i.e., that has the highest likelihood for subject i. For each subject i, we then determine the

type ⌧

II
i that corresponds to the best-response to their Phase I type ⌧

I
i . Instead of simply de-

termining whether or not ⌧ IIi has the highest likelihood in Phase II, we compute the likelihood

l(⌧ IIi ) that subject i behaves in Phase II according to ⌧ IIi . To do this, we force the Phase II type

of every subject to be among {L1, L2, L3, L4, EQ,D1, D2, BRD1, BRD2}. We therefore have,

for every subject i, the likelihood l(⌧ Ii ) that she plays according to the type she is classified

as in Phase I, and l(⌧ IIi ), the likelihood that her Phase II type corresponds to best-response

to her Phase I type. For an easier comparison, Figure 7 shows (�ln(l(⌧ Ii )),�ln(l(⌧ IIi ))) for

every subject. A high likelihood therefore corresponds to a low positive number, where the

likelihood to play a type ⌧ with certainty corresponds to a �ln(l(⌧)) = 0. To visualize the

tradeo↵ between classifying participants above and beyond subjects classified by the apparent

type method from Section 3, we distinguish, in Figure 7, between subjects who were classified

by the apparent type method (C) and those that were unclassified (UC).55

The main result from Figure 7 is that the likelihood with which a subject is identified

as playing the best response to her Phase I type is quite lower – and therefore the �ln of

that likelihood higher – when we move beyond the subjects who were already classified by the

apparent type method. The average of �ln(l(⌧ IIi )), 59.6, for the 26 subjects classified by the

apparent type method, is significantly lower than 106.5, the average for the 50 subjects not

classified by the apparent type method, a significant di↵erence using the non-parametric Mann

Whitney test, p < 0.01.56

54Of the 4 omitted types classified as L1 in Phase I, one turns into an L2 player, one into L3, one into D1
and one into D2 in Phase II. Of the 3 omitted types classified as L2 in Phase I, one remains an L2, one turns
into L3 and the third one is classified as D1 in Phase II given the maximum likelihood estimation. Of the 3
omitted types classified as EQ in Phase I, 2 remain EQ and one turns into L1.

5525 of the 26 subjects classified by the apparent type method correspond to the 25 subjects who have
the highest likelihood to be associated with a behavioral type in Phase I. The 26th subject identified by the
apparent type method is the 30th individual when ordered by the likelihood to be associated with a behavioral
type in Phase I per MLE. All subjects classified as behavioral types by the apparent type method retain their
classifications under MLE.

56Note that the 7 subjects deemed unclassified under MLE(5%) have an average of 116.56, economically
somewhat, and statistically significantly higher than the 104.86 of the subjects classified only under MLE(5%)
but not the apparent type method (p = 0.02 using a Mann Whitney test). Note that this does not change
the significant di↵erence between subjects classified only under the apparent type method and those classified
in addition under MLE(5%), (p < 0.01 using a Mann Whitney test). The 7 subjects deemed unclassified by
MLE(5%) correspond to the last 3 subjects and the 65th, 62nd, 61st and 53rd of the 76 subjects, when considering
the ordering induced by likelihood �ln(l(⌧ I

i )) of playing the type subjects are associated with in Phase I.
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Figure 7.—For each subject i we plot the likelihoods (�ln(l(⌧ Ii )),�ln(l(⌧ IIi ))) where ⌧

I
i is

the type that corresponds to i’s Phase I classification and ⌧

II
i is the best-response to ⌧

I
i . We

distinguish between subjects who were classified by the apparent type method (C) and those
that were not (UC).

We provide a second test to assess the extent to which subjects classified as behavioral

types can be thought of as playing best-responses to the behavioral types associated with

their Phase I play. Specifically, for each subject i, consider ⌧ IIi , the type that corresponds to

the best-response to the classification of her Phase I behavior. We can compute the average

distance over the 20 games between her guess in Phase II, xIIi , and her expected guess given

⌧

II
i : |xIIi � ⌧

II
i |. We denote this as her type miss distance. Once more, while we use for

every subject the Phase I type as estimated by MLE, we distinguish between subjects already

classified by the apparent type method and others. This helps assess the tradeo↵ of classifying

more subjects and capturing those whose behavior corresponds to best-responding to their

Phase I types. The type miss distance of the 26 subjects classified by the apparent type

method is 70.18, compared to 115.77 for the 50 other subjects, (p < 0.01).

Overall, the results point to the conclusion from before that as we move far beyond subjects

already classified by the apparent type classification, subjects are less likely to exhibit behavior

in concordance with their expected type in Phase II. this suggests that potentially only a small

fraction of participants should be classified as behavioral game theory types. Those subjects

implement their types with relatively little noise and are well described by their types even in

additional strategic environments. While it is possible to fit additional subjects as behavioral

game theory types given their Phase I behavior, such subjects are much less likely to behave

as expected.
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6 Related Literature, Methodological Remarks, and Discus-

sion

The core approach of empirical game theory consists of observing strategic choices in specific

settings. This has proven su�ciently powerful to topple several important null hypotheses, in-

cluding the canonical model of unanimous Nash equilibrium play. However, these conventional

strategic choice experiments o↵er limited power for delineating the set of subjects who play

according to strategic models or determining the stability of behavior across strategic settings.

In this section, we review previous methods and e↵orts to assess the stability of behavior and

capture additional information on the processes generating strategic choices.

While the papers cited below have other valuable aspects we lack the space to discuss, we

focus on the parts of papers that help determine the set of subjects who use deliberate rules

and assist in understanding what sorts of rules these are; furthermore, we isolate aspects that

concern the stability of behavior across settings, or, in other words, the degree of predictability

of the behavior of subjects. We contrast these approaches with our design.

The most straightforward approach to assessing whether a subject identified as a certain

behavioral type is “correctly” classified is to determine the stability of behavior out-of-sample.

One possibility is to perform this exercise on the population level using di↵erent samples. This,

however, may prove deceptively optimistic. For example, in our experiment, when we compare

the distribution of types across Phases I and II, we would conclude—using the MLE(5%)

classification in the BestRespond treatment—that 47 out of 69 in Phase I classified participants

have associated partners in Phase II. Note that the number drops to 36 when requiring that

the type transition be as predicted within participants, that is, the prediction rate drops from

68% to 52%.57

Most research on stability of rules within individuals has focused on comparing behavior

across strategic settings.58 Crawford and Iriberri (2007) look at various hide-and-seek games

57 There are a couple of reasons why predicting play on the individual level is desirable. First, this may
provide a more convincing test that the classification of a subject to a specific behavioral type is not erroneous.
Second, we may aim to use individual characteristics such as demographics and intelligence measures to predict
play. For approaches in this direction, see Burnham et al. (2009) for a positive correlation between depth of
reasoning and IQ style measures, as well as Georganas et al. (2013) for a correlation of play with a CRT measure
and Agranov, Caplin and Tergiman (2012) for a correlation between sophistication in the guessing game and
a Monty Hall game. Another example is Coricelli and Nagel (2009), who correlate brain imaging results with
depth of reasoning in a guessing game.

58An alternative method to assess type stability is to perform a hold-out prediction. This has been surprisingly
unusual in the present literature with the exception of Stahl and Wilson (1995). They select a subset of games,
estimate the subjects’ type, and using the remaining games in addition, provide an estimate of the posterior
probability that a subject has that particular type. When classifying a subject as stable if the posterior
probability of having the same type is at least a (perhaps too modest) 15 percent, they find that 35 of 48
subjects are stable.
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and find some consistency across games. On the other hand, Buchardi and Penczynski (2011)

and Georganas, Healy, and Weber (2010) do not find strong consistency of play across guessing

and hide-and-seek or “undercutting” games, respectively.

Failure to find type stability within a subject across strategic settings could be attributed

to the subject being “erroneously” classified as a certain type. However, a lack of stability of a

behavioral type can also be attributed to subjects having di↵erent beliefs about the behavior

of others across di↵erent types of games. This poses inherent problems to out-of-sample pre-

dictions for models such as level-k of which one interpretation is that subjects best-respond to

erroneous beliefs.59 Indeed, our results from the BestRespond treatment suggest that level-k

subjects are in general not rule of thumb players. There are several recent results that suggest

that level-k subjects may not merely be rule of thumb players, Arad and Rubinstein (2012)

and Agranov, Caplin and Tergiman (2012) (see also Georganas et al. (2013) below).60

To more precisely pin down rules underlying choice, researchers have worked to observe

what parameters of a game are considered by subjects by hiding them and having sub-

jects uncover each one individually (see Camerer et al. (1993), Costa-Gomes, Crawford, and

Broseta (2001), Costa-Gomes and Crawford (2006), Brocas et al. (2010), andWang et al. (2010).

While this data can be very valuable and can rule out certain models of behavior, these ap-

proaches may not be inert with respect to the subjects’ deliberations and could alter the

strategic choice behavior we hope to observe.

Alternatively, researchers have tried to assess the thought processes with which decisions are

reached through various communication devices. Most prominent is Burchardi and Penczynski

(2012), where each of the two players in a team is randomly chosen to decide for the team.

Before submitting choices, a subject can send a suggestion with explanations to her team-

mate. They find that roughly one third of subjects are non-strategic L0 players (see also Ball

et al., 1991 and Sbriglia, 2008). Unfortunately, there is again a concern that the experimental

paradigm may alter behavior.

Another approach has exploited the interpretation that behavioral models often rely on

subjects holding erroneous beliefs about others, but that subjects otherwise behave in a profit

59Predictions would be more straightforward if those models were “as if” representations of rules of thumb.
60Arad and Rubinstein (2012) consider two versions of a game that only di↵er in the salience of L0 play.

They find that while this manipulation does not increase the overall use of actions consistent with level k (for
k > 0), it increased the frequency of actions associated with low levels of k. This is expected if the manipulation
shifted not only the actual, but also the believed amount of L0 play. Agranov, Caplin and Tergiman (2012)
observe choices in a version of the classic {[0, 100], 2/3} guessing game. Subjects aim to guess 2/3 of the mean
of 8 subjects who have already played the game. The innovation in that paper is to observe choices over the
course of 3 minutes, where the decision at any second is potentially payo↵ relevant. They claim that about
57% of subjects are “strategic”. Their choices average around 34 over the whole 3 minutes, but fall over time.
Remarkably, they classify roughly 43% as naive - a fraction close to our findings. These subjects not only make
average choices of 50 throughout the three minutes, their choices also do not fall over time.
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maximizing way. This allows experimenters to assess those beliefs directly and check for payo↵-

maximizing behavior. Costa-Gomes and Weizsäcker (2008) show that elicited beliefs system-

atically conflict with their subjects’ strategy choices; the beliefs suggest a greater strategic

sophistication than the observed choices. In that vein, Bhatt and Camerer (2005) show dif-

ferences in patterns of brain activation for corresponding belief elicitation and strategy choice

tasks. One potential problem with this approach is that beliefs are in general elicited coin-

cidentally with strategic choices, and as such may alter strategic thinking.61 Alternatively,

researchers have manipulated beliefs to determine whether the behavior of subjects changes

accordingly. Georganas et al. (2013) manipulate subjects’ beliefs about the strategic capacity

of their opponent by providing information on their score on a battery of cognitive tests. They

found that only some subjects adjust behavior in the expected direction. One possible expla-

nation for the lack of change in behavior in the expected direction is that subjects—just like

the authors—believe that the depth of reasoning of their opponent does not necessarily only

depend on the cognitive abilities of the opponent, but rather on her beliefs about the degree

of sophistication of others.

There is another paper, Ivanov, Levin, and Niederle (2010), that is initially similar to the

present paper but reaches very di↵erent conclusions. Pairs of subjects bid in a common-value

second-price auction. The experimenters first elicit the bid function in Phase I and observe,

as expected, many subjects overbidding and facing the winner’s curse, consistent with cursed

equilibrium or a level-k model. Subjects then, in Phase II, face an additional set of auctions

where the other player is replaced by an automaton that uses the subjects’ Phase I bid function.

They find that the Phase II bid function is not generally a best-response to the Phase I bid

function. This is the case even though the subject gets to see her Phase I bid function while

making her Phase II bids; that is, their experiment corresponds to our ShowGuesses treatment.

It appears that in their common-value second-price auctions, subjects simply cannot (or are

not willing to) compute best-responses to given bid functions. As such, their environment

may be less amenable to models in which subjects hold erroneous beliefs about others, while

behaving in payo↵-maximizing ways given their beliefs. In our paper, we found that subjects

are perfectly able to compute best-responses to given guesses; maintaining this assumption, our

Replicate and BestRespond treatments then help elucidate the subjects’ processes of strategic

choice.

The part of our paper that assesses the stability of behavior is probably closest to out-of-

sample prediction exercises. The main advantage of our approach is that if subjects are playing

61Several papers find that eliciting beliefs significantly alters play, see e.g. Rütstrom and Wilcox (2009), Erev,
Bornstein, and Wallsten (1993), Croson (1999) and (2000), and Gächter and Renner (2010). Others fail to
reject the null hypothesis that play is not a↵ected by eliciting beliefs, e.g. Nyarko and Schotter (2002), and
Costa-Gomes and Weizsäcker (2008).
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according to a behavioral game theory type, we have precise expectations of their future play.

A failure to comply with expected behavior in the Replicate treatment cannot be rationalized

by, for example, subjects believing that as the number of games increases the opponent plays

in a di↵erent way. Our two treatments are also uniquely suited to elucidate whether behavior

that conforms with the level-k model (and dominance-k) is more likely an as if representation

arising from a rule of thumb than an accurate description of participants strategically best-

responding to non-equilibrium beliefs. Despite the precise test of whether subjects truly use a

deterministic rule, we find very strong evidence and support not only for the equilibrium but

also the level-k model.

7 Conclusion

To date there has not been a practical way to assess which players play according to a deliberate

rule, especially one we have so far failed to identify, and which players do not. In this paper

we say that a subject deliberately employs a well-defined rule if the behavior of the subject

conforms to an expected relationship across strategic situations. We provide an environment

and a test that allows us to identify such behavior. This allows us to relate existing behavioral

game theory types with the set of subjects that use deterministic rules.

We augment choice data from a conventional strategic choice environment with information

from treatments pitting subjects against their past behavior. We observe subjects’ choices in

two-player “guessing games”; we then surprise subjects by placing them in strategic situations

where the optimal action depends on their previous choices. Subjects’ play in the second phase

of the experiment reveals the extent of their knowledge regarding how they arrived at their

previously-made strategic choices. The design of our experiment allows us to provide a lower

bound of how many subjects deliberately use deterministic rules.

The first environment where we assess this is the Replicate treatment, where we determine

whether subjects can recreate their own actions in games. In a way, we assess whether sub-

jects are predictable to themselves. Using specific thresholds to classify an action in a game

as a replication and to identify subjects who are able to replicate their behavior, we found

that roughly half the participants are replicators. The level-k model, jointly with equilibrium

and the dominance-k model, account for one-third of subjects (of whom three-quarters are

replicators). This suggests that there is noticeable room for additional behavioral models in

accounting for subjects who are able to replicate their behavior.

In the BestRespond treatment, we require subjects to show strategic sophistication. We

do this by paying subjects depending on how close they are to best-responding to their former

actions. We find that there are much fewer subjects who are strategic than simply able to

37



replicate their behavior. While only about 40% of subjects are best-responders, behavioral

types comprise two-thirds of such subjects. Furthermore, behavioral types seem equally able

to replicate and best-respond to their actions, while this is not the case for subjects not classified

as behavioral types.

Overall, our results show that while equilibrium is able to account for two-ninths of strate-

gic subjects, adding the level-k model brings this to almost two-thirds. We also have a small

number of dominance-k subjects. Therefore, behavioral game theory has been quite successful

in identifying strategic subjects. When considering only subjects who use well-defined deter-

ministic rules they are able to replicate (rule-of-thumb players), there seems to be much more

room for new behavioral models.

Lastly, this paper is also part of a small literature that tries to understand the “when” and

“how” subjects think about opponents and contingencies (see Esponda and Vespa, forthcom-

ing). We believe that our paper opens many avenues for future research. While we found type

stability in our experiments, the stability of behavior across di↵erent types of games remains

still unresolved. The results from our paper suggest that behavioral types are better inter-

preted as forming erroneous beliefs and best-responding to those beliefs than playing rules of

thumb. As such, stability may only be found when assessing whether subjects are strategic

per se.
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