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When I interact with colleagues and friends who are venturing into experimental economics, 

either as they prepare for their own experiment, or aim for a critical view of experiments run by 

others, I often hear the question: “What is a good experiment?” My first reaction is to answer my 

empirically minded colleagues “Well, let me ask you: What is a good regression?” Clearly a good 

experiment (or regression) is one that allows testing for the main effect while controlling for other 

plausible alternatives. This helps ensure that the original hypothesis is reached for the right 

reasons and the initial theory is not wrongly confirmed.  

However, there is an aspect of experimental design that is probably closer connected to 

theory than empirical work: As designers, we are responsible for the environment in which the 

data are generated. As such a good experimental design also needs to fulfill requirements one 

may impose on good theory papers: The environment should be such that it is easy to see what 

drives the result, and as simple as possible to make the point. The design has to provide a good 

environment for studying the questions at hand. Furthermore, ideally, the design (just like good 

theory) should be such that it seems plausible that the results could serve as prediction for 

behavior in other environments.   

The design of experiments has some interplay with empirical methods as a good 

experimental design foreshadows how the data to be generated can be analyzed. As such, good 

design can often reduce the need for fancy econometrics, or, at times, allow econometrics to be 

more powerful. It also often implies that the experimental design has to take a stand on what it 

means to accept or reject an initial theory or hypothesis. 

When deciding about a design, there are basically no fixed rules. The one exception 

probably being that economic experiments which use deception are really frowned upon, hard to 
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run in many experimental labs, and often have a hard time to be published in economics journals.1  

Apart from that, however, anything goes. This may make it harder to design and evaluate a good 

experiment. 

In this chapter of the book on methodology of experiments, I want to focus on the 

interplay between experimental design and the testing of hypotheses. This includes hypotheses 

that rely on theory, as well as some that are described less formally. Specifically, I want to show 

how in many cases intelligent design can provide direct tests, instead of having to rely on indirect 

evidence.  

Section I shows a line of work where the test of the theory becomes more and more 

stringent, casting new doubts on the validity of the theory. In section II, I present several ways in 

which theory can be tested. First, I show how it might be useful to test assumptions directly rather 

than relying on econometrics. Then I discuss two methods to test whether a theory is responsible 

for the phenomenon, one can be called the “Two Way” design and the other the “Elimination” 

design. Finally, I discuss issues that are relevant when running a horse race among theories. In 

section III I show how the methods used when testing theory apply even when there is no detailed 

model. I show how experiments can be used in trying to understand the important channels that 

drive a phenomenon. 

When talking about theory and the relation to experiments, an unavoidable question will 

be: When should a theory judged to be “good” in terms of relating to the experimental results? 

What should the criteria be in the first place? I will touch on these issues, as the chapter 

progresses. 

 

I. BELIEF-BASED MODELS – A DIRECT TEST 
 

The first example I want to delve in is how experiments have been used in the formulation and 

testing of new, less stringent theories on behavior in strategic games. I will present a series of 

approaches to test the theory, and show how new design made the test more and more direct, and 

may lead to some new questions as to how to think of those theories. 

                                                 
1 For example, Econometrica states that “We understand that there may be a need for exceptions to the 
policy for confidentiality or other reasons. When this is the case, it must be clearly stated at the time of 
submission that certain data or other appendix materials cannot or will not be made available, and an 
explanation provided. Such exceptions require prior approval by the editors.” 
http://www.econometricsociety.org/submissions.asp#Experimental, accessed 8/11/2010. For an overview 
on some of the arguments, see Hertwig and Ortmann (2008) and   
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It is well known that standard Bayesian Nash equilibrium makes very strong assumptions 

on rationality: First, players have to form beliefs about strategies of other players, and they have 

to best respond to these beliefs. Furthermore, in equilibrium these beliefs have to be correct. One 

simple modification is to relax the assumption that beliefs are correct, while maintaining that 

players form beliefs and best respond to them. A prominent version of such a modification is the 

k-level thinking model.  

 This model was created and became prominent by the results of the so called beauty 

contest or guessing game. In such a game, several players have to choose a number from some 

interval, e.g. 0 to 100. Furthermore, the player who is closest to, say, 2/3 of the mean of all 

players receives a prize. Obviously the Nash equilibrium is 0, but 0 is also never the winning 

guess. In a first experiment, Nagel (1995) showed that a large fraction of responses center around 

2/3 of 50, and 2/3 of 2/3 of 50, see Figure 1 below. 

Figure I: Relative Frequencies of Choices in the First Period According to the k-level 
classification with a level 0 expected play of 0 (source: Nagel, 1995) 

 

The behavior can be rationalized the following way. Those that play 2/3 of 50 may be 

participants that believe that other players simply pick numbers randomly, and hence the best 

response is to guess 2/3 of 50. Such players are called level 1 players (and correspond to step 1 in 

Figure 1), as they best respond to level 0 players, players that play non-strategically, and here are 

assumed to select numbers randomly. Participants that choose 2/3 of 2/3 of 50 best respond to a 

world that is fully comprised of level 1 players, and are hence called level 2 players. In general, 



 4

for any given strategy of level 0, a level k player plays a best response to the belief that all other 

players are of level k-1 (see also Stahl and Wilson, 1995).2 

 

I.A: ESTIMATING PARAMETER(S) 

Many experiments on belief based models, such as Nagel (1995), show that k-level models are 

pretty good at organizing behavior observed in the lab and in the field.3 The data are analyzed by 

estimating which fraction of players use strategies that are close to k-level strategies for various 

k’s and for an appropriately chosen level 0 play. Such participants are then classified as k-level 

players.4 In principle such estimations allow a lot of freedom in the choice of a level 0 strategy, 

which may make fitting data to k-level play easy. The literature has in general put a restriction on 

level 0 play as random play with all actions chosen with the same probability (see e.g. the 

discussion in Camerer et al, 2004).5 In the case of common value auctions with private 

information “naïve” play has also been proposed as a natural level zero play. Naïve play is often a 

strategy that depends in a naïve way on the agents’ private information; often they are simply 

assumed to bid their signal (see Crawford and Iriberri, 2007). 

The experiments in this category do not allow to more directly test whether the 

comparative static predictions of a level k model are correct, or, even more fundamentally, 

whether players actually form beliefs and best respond to them, which is the assumption at the 

heart of any belief based model, as well as, of course, the standard model. 

In general, experiments that estimate parameters only allow for very limited conclusions. 

This may not be a problem when the aim is to estimate a specific parameter, such as, say, 

coefficients of risk aversion, while maintaining the assumption that players have well formed 

preferences over risky outcomes. It may not be a limitation either when finding a parameter that 

                                                 
2 On a similar note, cognitive hierarchies (see Camerer et al, 2004) assumes that a level 0 player plays a 
random strategy, and a level k players best responds to a distribution of players of levels k-1 and lower, 
where the distribution is given by the restriction of a common Poisson distribution over all levels on the 
levels strictly below k. 
3 See Bosch-Domènech et al (2002) for a beauty contest game played in the field, and Ho, Camerer and 
Weigelt (1998), Costa-Gomes and Crawford (2006), Crawford and Iriberri (2007), Costa-Gomes, Crawford 
and Iriberri (2009), and also Stahl (1998). 
4 Some papers, such as Costa-Gomes and Crawford (2006) use a somewhat more stringent test by not only 
taking into account the actions of players, but also what information they used when making a decision. 
Specifically, parameters of the game were hidden and had to be actively uncovered by participants. The 
pattern of lookups can exclude misspecification of certain “random” strategies when the data needed to be a 
k-level player was not even uncovered. Camerer et al (2004) propose to fit data using a unique parameter 
that determines the distribution of types.  
5 However, there has not yet been too much of a debate about the predictive power of k-level models, and 
what behavior is easily excluded, even though such debates are active for other models of deviations of 
rational behavior, such as Quantal Response Equilibrium, see McKelvey and Palfrey (1995) and Haile 
Hortaçsu and Kosenok (2008). 
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suggests a theory is wrong. It is, however, more of an issue when trying to conclude that a 

specific theory is right. This may be especially the case when, at the same time, it is not 

accompanied by a discussion about what fraction of potential behavior is accommodated by the 

theory, and what fraction of potential behavior would reject the theory (where of course it may be 

hard to say what fraction of behavior can reasonably be expected to occur). 

 

I.B: COMPARATIVE STATIC PREDICTIONS 

Moving beyond experiments that (merely) serve to estimate a parameter, comparative static 

experiments on k-level thinking provide a somewhat more stringent test than fitting the data of an 

experiment.  

For example, Costa-Gomes and Crawford (2006) test whether participants play 

differently in generalized two-player guessing games, depending on the strategy used by the 

opponent. In such a game, each player receives a lower limit and an upper limit in which to 

choose a number and a personal multiplier. The player is paid dependent on how close they are to 

their multiplier times the average of their own and their opponents guess. They want to assess 

whether participants respond to strategies of opponents. There are two kinds of ways of doing 

that. One is to elicit a subjects’ beliefs about the strategy used by the opponent. This has the 

problem that gathering information about beliefs is hard, and may or may not influence actual 

play (see e.g. Costa-Gomes and Weizsaecker, 2008). A second approach is to manipulate the 

beliefs of a subject about the strategy of their opponent. This is the route chosen by Costa-Gomes 

and Crawford (2006). 

Specifically, they have each participant play against a fixed strategy played by a 

computer that is explained to them in detail. For example, if the computer is programmed to play 

level 1, where level 0 is random play, the description says (see the web appendix to Costa-Gomes 

and Crawford, 2006, on http://dss.ucsd.edu/~vcrawfor/ accessed Jan 14, 2010). 

“The computer's rule is based on the assumption that you are equally likely to choose any 
guess from your lower limit to your upper limit, so that, on average, you guess halfway 
between your lower and upper limits. The computer's rule is to choose the guess that 
would earn it as many points as possible if you guess halfway between your lower and 
upper limits.” 

 

For level 2 the description is: 

“The computer's rule is based on the assumption that you assume that the computer is 
equally likely to choose any guess from its lower limit to its upper limit, so that, on 
average, it guesses halfway between its lower and upper limits.  
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The computer's rule is to choose the guess that would earn it as many points as possible if 
you chose the guess that would earn you as many points as possible assuming that the 
computer guesses halfway between its lower and upper limits.” 

 
They say that participants are indeed able to best respond, to some extent.  

Georganas, Healy and Weber (2009) also offer a more direct test of the hypothesis that 

participants change their level of play dependent on their opponent, where they manipulate the 

beliefs about the ability of the opponent. They have participants take an IQ test amidst several 

other tests, to construct a combined score. Participants played 10 games (generalized two player 

guessing games and other games), once against a randomly drawn opponent, once against the 

opponent with the highest combined score, and once against the opponent with the lowest 

combined score. The idea is that participants should adjust the level of strategic reasoning they 

assign to their opponent, depending on the opponents’ general abilities. While they find that 

participants use somewhat higher level-k strategies against the opponent with the highest score 

compared to a random opponent, there is no significant downward shift in level when playing 

against the person with the lowest score. Furthermore, they find a lot of variation in a 

participant’s level of sophistication across games. This is true not only at the absolute level, but 

also when comparing the relative sophistication of a subject compared to the depths of reasoning 

of all other participants.  

Overall, comparative static tests of k-level thinking models seem to have limited success. 

Furthermore, across games, players cannot necessarily be described as being of a fixed level k. 

Similarly for the cognitive hierarchy models, estimations of the parameter of the Poisson 

distribution of level k’s yields differences across games, though Camerer et al (2004) summarize 

their paper as: “An average of 1.5 steps fits data from many games.” Two remaining open 

questions are for what classes of games can a large fraction of “reasonable” behavior lead to 

results that are not consistent with the model and what games do allow for the k-level model to be 

falsified? A second issue is how to think of the statement “many games”, one I will return to in 

the next section.  

 

I.C: ARE THE UNDERLYING ASSUMPTIONS REALLY FULFILLED? 

The most stringent interpretation of many papers on k-level models is that they indeed present a 

fair representation of the way in which many participants behave. That means participants form 

beliefs that other players are of some level k and best respond to them by playing a level k+1 

strategy. The tests so far involve estimating whether a sizeable fraction of plays, and/or of players 

correspond to strategies that fall into the level k description (for an appropriately chosen level 0). 
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The more stringent test of a comparative static prediction that players adapt their play given the 

strategies of others has more mixed success.  

 How can we test directly whether players actually form beliefs and best respond to them? 

The strategy of manipulating beliefs instead of trying to assess them seems right. However, when 

using the approach of Costa-Gomez and Crawford (2006), one might worry that by describing, 

say, the level 1 strategy of the computer, participants may be “trained” in thinking about best 

responding, and hence may be more likely to become a level 2 player. Providing players with a 

description that includes best response behavior may change their own thought process. On the 

other hand, the strategy of Georganas, Healy and Weber (2009) rests upon players forming beliefs 

what strategies players use, when they are either the winner or loser of a quiz. While intelligence 

may be correlated with the depth of reasoning a player may be capable of, it need not be 

correlated with their beliefs about the level of reasoning used by their opponent. As such, clear 

predictions may not be that straightforward. 

 Ideally, we would like to know the beliefs players have about their opponents’ strategy, 

without influencing their thought process, explaining strategies, or eliciting additional 

information. That is, we would like to provide a direct test whether players best respond to beliefs 

they have about strategies of their opponents. Hence, we need to design an environment where 

both the players and the experimental economist know the strategy of the players opponent, 

without providing the player with any additional information. 

 The environment we use to directly test k-level thinking models is overbidding in 

common value auctions, where participants in general fall prey to the winners curse. Overbidding, 

bidding above the Bayes Nash equilibrium, has been shown to be consistent with k-level thinking, 

and indeed is one of their success stories (see Crawford and Iriberri, 2007).6 

 In Ivanov, Levin, Niederle (2010), we propose a very simple two player common value 

auction. Players each receive a signal x between 0 and 10 (discrete values only), where the value 

of the item is the maximum of the two signals. Participants then bid in a second price sealed bid 

auction for the item. It is easy to see that bidding less than one’s signal is a weakly dominated 

strategy, as the item is always worth at least one’s own signal. Furthermore, a second round of 

iteration of weakly dominated strategies eliminates all bid functions that call for bids that are 

strictly greater than one’s signal. In fact, bidding the signal is the unique symmetric Bayesian 

Nash equilibrium bid function.  

                                                 
6 However, study applies to any belief-based explanation of the winners’ curse. This includes, for example, 
cursed equilibrium (see Eyster and Rabin, 2005), and analogy-based expectation equilibrium (Jehiel, 2005, 
Jehiel and Koessler, 2008). 
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The general finding in common value auctions is the winners’ curse, that is, participants 

bid above the Bayesian Nash Equilibrium which often results in the winner of the auction paying 

more than the value of the item. How can the k-level thinking model in this simple environment 

generate the winners’ curse? Start with a level 0 player who bids randomly. Then the best 

response entails overbidding. The intuition is that in this case a level 1 player bids against a 

random number in a second price auction. Hence, the best response to random bids is to bid the 

expected value of the item which is in general strictly higher than the received signal, apart from 

the case when the signal is 10. Therefore, a level 1 player would be overbidding, compared to the 

symmetric Bayes Nash equilibrium. This implies that when two level 1 players bid against each 

other, we would confirm the standard result of a winners curse.  

The nice feature of our setup is that a best response to a level 1 bidder (or any bidder who 

bids above their signal) is to bid the signal. In general, a best response to overbidding entails to 

certainly bid less than that. This allows for a very stark prediction of any model that includes best 

response behavior. Hence we have a very simple comparative static prediction if we manipulate 

the beliefs of at least some players, that their opponent is someone who bids above their signal. 

However, the goal is to achieve this without providing players with any information about 

possible strategies, so as not to affect their thought process.  

In the experiment participants first play for 11 rounds the two player common value 

second price sealed bid auction against varying opponents, where each participant receives each 

signal {0,1,2,..,10} exactly once. As such, we basically elicit the participants’ bid function. As is 

common in the literature, to not distort the information participants have about the game, they 

receive no feedback, no information whether they won the auction, or what the item was actually 

worth. 

Figure 2 shows for each signal the fraction of bids that fall into various categories, where 

we allow for small errors, and hence have bands of 0.25 around the signal. Note that bids b(x) < 

x-0.25 and b(x) > 10.25 can only be level 0 bids, bids x+0.25 < b(x) ≤ 10.25 can be classified as 

level 1 bids (for a random level 0) and bids b(x) ~ x as level 2 bids.  
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Figure II: For each signal, the fraction of bids that fall into various categories: “b<x-0.25” 
represents bids such that for a signal x the bid b(x) < x-0.25. Similarly for “b>10.25” and 
x+0.25<b≤10.25”. “b~x” includes for each signal x bids in x-0.25 ≤ b ≤ x+0.25.  

 

 

Note that for each signal x, all bids that are strictly below x are weakly dominated since 

the item is always worth at least x. Similarly, bids strictly above 10 are weakly dominated. Figure 

2 shows that for each signal, the majority of bids can be classified as level 1 bids for a random 

level 0 player, as those participants place bids above their signal, but not above 10. A sizeable 

fraction of bids correspond to the symmetric Bayes Nash equilibrium, and can be thought of as 

level 2 bids. 

 

  Phase I 
Under-bidders 5 
Signal-bidders 9 
Over-bidders 25 
10+: Above-10-bidders 10 
Ind.: Indeterminate 13 

Table 1: Subject classification in Phase I of the Baseline treatment.  

 

Table I classifies bidders depending on where they place the majority of their bids (6 out 

of 11).7 In Phase I, many bidders place the majority of their bids in a way consistent with k-level 

                                                 
7 For the table, we use the following, slightly different classification: Underbid/Signal-bid/Overbid/Above-
10-bid are bid of, respectively, (i) b < x−0.25, (ii) x−0.25 ≤ b ≤ x+0.25, (iii) x+0.25 < b ≤ 10, and (iv) b > 

0
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thinking. While the 10 bidders who bid above 10, and the 5 underbidders, are clearly not 

rationalizable with k-level thinking, a total of 25 (40%) of participants can be classified as level 1 

bidders, and 9 (15%) as level 2 (or higher) bidders. 

So far, the experimental results provide another “success” story of k-level thinking. The 

majority of bidders and bids can be classified as level 1 or level 2. However, we now turn to a 

more direct test of the k-level model. 

In the main treatment, Phase II of the experiment, participants play again 11 rounds of the 

two player common value second price sealed bid auction, where once more they receive each 

signal exactly once. This time, however, they play against a computer. The computer, upon 

receiving a signal y, will place the same bid that the participant placed in Phase I when receiving 

that signal y. That is, the computer uses the participants’ own prior Phase I bid function. Hence, 

in Phase II, participants bid against their old bid function. This method allows us to have perfect 

control of a subjects’ beliefs about the other players’ strategy, since it is simply the subject’s own 

past strategy. Furthermore, we achieved this without any interference, without providing any new 

information that may change the mental model of subjects. While the data of the treatment I 

present does not remind participants of their old bid function, we do so in another treatment, with 

virtually identical results. 

Any best response model, and as such also the k-level model, predicts that players best 

respond to their own past strategy. Hence, a player of level k is expected to turn into a level k+1 

player. This implies that overbidding should be reduced in Phase II compared to Phase I. 

Consider a participant who overbids in Phase I. Then, bidding the signal is a best response. 

Continuing to overbid but less so may or may not be a best response, depending on how much the 

participant overbid beforehand, and by how much the bid function is lowered. However, no 

change in behavior is clearly not a best response.  

Figure III shows for each signal the fraction of bids that fall into level 1 play, and those 

that are close to bidding the symmetric equilibrium, both for Phase I (filled) and Phase II 

(hollow). The fraction of bids, both above and around the Bayesian Nash equilibrium, are 

virtually unchanged.  

                                                                                                                                                 
10, with the exception for x = 10, where a bid b of 9.75 ≤ b ≤ 10.25 falls in category (ii), and only a bid b > 
10.25 falls in category (iv). 
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Figure III: For each signal, the fraction of bids that fall into various categories: “b<x-0.25” 
represents bids such that for a signal x the bid b(x) < x-0.25. Similarly for “b>10.25” and 
x+0.25<b≤10.25”. “b~x” includes for each signal x bids in x-0.25 ≤ b ≤ x+0.25. b indicates a bid 
in Phase I and b2 a bid in Phase II. 
 
 

Furthermore, we characterize bidders depending on where they placed the majority of 

their bids, and determine whether bidders of various types changed their classification.   

Table 2 shows that overbidders mostly remain overbidders (56%), only a minority (24%) 

turn into underbidders or signal bidders. For subjects who are overbidders in parts I and II, we 

find that only 23% of bids in Phase II are best-responses to Phase I behavior. By not behaving 

optimally in part II, these subjects are on average foregoing more than 20% of the earnings an 

average subject made in the course of the experiment. 

  Under Signal Over 10+ Ind. Phase I 
Under-bidders 2 0 2 1 0 5 
Signal-bidders 0 5 3 1 0 9 
Over-bidders 1 5 14 1 4 25 
10+: Above-10-bidders 2 1 1 6 0 10 
Ind.: Indeterminate 2 2 3 5 1 13 
Phase II 7 13 23 14 5   

Table 2: Subject classification in parts I and II of the Baseline treatment, 
depending on how they placed the majority (6 out of 11) of their bids. 

 
 

 We investigated whether the winners’ curse in common value auctions can be 

rationalized using belief-based models such as k-level thinking. We achieved a direct test of this 
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hypothesis by comparing behavior in environments in which overbidding can be rationalized by 

overbidding (such as in Phase I play) and in environments where it cannot (such as in Phase II 

play for participants who were overbidders in Phase I).  The results of the experiment are in 

general bad news for any theory that relies on best response behavior, especially in complicated 

environments such as second price sealed bid common value auctions. This is despite the fact that 

our environment seems much easier than some other environments used in common value auction 

experiments.  

 This poses questions as to what we think a theory should accomplish. I will restrict 

attention here to musing about the role of theory in understanding behavior in experiments. 

Certainly, theory has a big role to play, when, e.g. deciding to give advice, whisper into the ears 

of princes, and, for example, perform real design (see Roth, 2008). Should a theory be merely a 

tale, providing insights, but otherwise, like a fable, clearly wrong, clearly leading to absurd 

conclusions or predictions, but, once more like a fable, with a kernel of truth? This view is 

certainly not unheard of (see Rubinstein, 2006). 

Alternatively, one might want a theory to fit data very well, and so, a theory might be 

judged by how well it reconciles with a large set of data. This is largely the approach taken by 

proponents of new belief-based models. In general, they fit the data of the experiments that are 

considered better than standard theory, and as such have been deemed superior in providing a 

model of how agents behave in such environments.  

Finally, one might want a theory to provide good (i.e. accurate) predictions, either in 

general, or at least in terms of comparative statics, to guide us in predicting how behavior would 

change, if we were to make certain changes to a game. As such, a good theory may also provide 

insights as to what are the important parameters of a game that are likely to affect behavior in the 

first place. Note that in principle one theory might be a better able to fit data on any given 

experiment (though with different parameters), while another theory might be better at making 

predictions out of sample.  

In this section, the model of k-level thinking seems to be less promising as a model that is 

absolutely right, that makes good comparative static predictions when changing the game. 

Though maybe, in this game, participants are so much at a loss, that the model simply does not 

apply, that maybe, using it to explain behavior in common value auctions was simply too 

ambitious a goal? It still remains a question, whether the model might be able to predict behavior 

in other instances. As such, this goes back to the question whether we should be content when a 

model can fit the data of multiple experiments (though maybe with varying parameters, or 

varying proportions of level 1 and level 2 players). Or do we require the model to make 
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predictions out of sample? This can include a good fit on new games, which is the approach that 

has mostly been taken by level-k proponents so far. It can also include predicting comparative 

static behavior better than other models (which has received less attention so far).    

Finally, assume the model cannot predict out of sample behavior, by trying to fit behavior 

that is obtained when certain parameters of the game change (such as manipulating the beliefs 

about the strategy of the opponent). It might still be the case, that the description of the data in 

itself might be valuable. For instance, it could be that the fraction of level 2 players (or the 

specific k that fits the cognitive hierarchy model to the data of a specific game) may be a good 

predictor for, e.g., how “difficult” a game is. It could be a decent proxy for the complexity of a 

game that could be used to further our understanding on what it is that makes some games harder 

than others.  

Later in the next section, I will revisit the question of how to think of theories in the face 

of experimental evidence.  

 

II. EXPERIMENTAL DESIGN AND HYPOTHESIS TESTING  

The first example showed how design can allow for a direct test, instead of simply having to 

indirectly estimate whether behavior confirms to the model at hand. Note that the design reduced 

the need for econometrics. In this chapter, I want to provide a few more examples of that sort, 

where intelligent design changed the problem so that the hypothesis could be attacked directly. 

However, I also want to show how sometimes intelligent design is needed in order to be able to 

provide an environment in which a hypothesis can be tested in the first place. The following can 

be thought of as a toolbox for designing experiments. 

 

II.A. TESTING FOR SELECTION  

In this first section I want to elaborate on a design that allows for a comparison between the 

power of an intelligent design, and the result of using standard econometric techniques. Once 

more the environment is one of overbidding in common value auctions, this time first price 

auctions.   

While overbidding (bidding above the risk neutral Bayesian Nash equilibrium) is the 

standard behavior in common value auctions, later rounds of experiments show fewer instances of 

participants falling prey to the winners’ curse compared to earlier rounds. Furthermore, 

experienced participants, participants who return sometimes weeks later, suffer from the winners’ 

curse less than those who participate for the first time. There are two potential reasons for why 

participants seem to learn to use better strategies. One is that less able bidders may simply go 
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bankrupt in the course of the experiment (having suffered repeatedly from the winners’ curse) and 

are barred from further participation, as they have no more earnings they can lose. Furthermore, 

when experience is measured across sessions taking place on separate days, participants who 

overbid a lot, and made less money, may not return at the same rate for subsequent experimental 

sessions. Hence, one reason for better performances in later rounds could be a pure selection 

effect. Second, it could be that bidders indeed learn to avoid the winner’s curse, where learning 

can occur in the first session, between sessions and during the second session.  

One aim of Casari, Ham and Kagel (2007) is to design an experiment that can directly 

measure the effects of selection, compared to learning. To reduce the effect of selection, they 

have treatments in which some participants have higher initial cash balances than others, and 

throughout the experiment also receive windfall gains (via a lottery), thereby affecting the 

probability with which a subject will go bankrupt during the course of the experiment. To study 

the importance of selection in accounting for the fact that experienced participants perform better, 

Casari, Ham and Kagel (2007) vary the show up fees for the second week, and for some 

participants even hold half the earnings of the first week in escrow, to ensure a high return rate 

for a subset of participants.8 

The control treatment employs standard procedures: participants receive a show up fee of 

$5, and an initial cash balance of $10. All subjects were invited back to week 2, where they 

received the same show up fee and cash balance once more. In the bonus treatment starting cash 

balances were $10 for half the participants and $15 for the other half. Furthermore, after each 

auction, each active bidder participated in a lottery that paid $0.5 with 50%. In addition, a show 

up fee of $20 was paid only after completing week 2’s session, with 50% of the earnings of the 

first week held in escrow as well. A third random treatment, was similar to the bonus treatment 

only that participants all received a show up fee of $5 in week 1, and either $5 or $15 in week 2. 

Within the first session, the changes in design indeed affect bankruptcy rates they range 

from 46.3% to 20.3%. Similarly, the rates of participants returning for a second experimental 

session vary from 96% to 60%. A first clear indication of selection of participants is to consider 

among the subjects that went bankrupt in the first session, how many return to a second session. 

In the baseline treatment, this is only 47.7%, while it is 88% in the treatments that made 

bankruptcy harder in the first place! Nonetheless, in all treatments the authors find that 
                                                 
8 In their common value auctions, the value of the item x is a random uniform draw from [$50, $950], 
where each of the six bidders receives a private signal y, drawn independently from [x-$15, x+$15]. 
Because of boundaries, when attention is restricted to x in [65, 935], the bid factor (the amount to be 
deducted from the signal) of the RNNE is about 15, which is close to the loss-free strategy (where bidders 
can ensure never to lose money). The bid factor for the break-even strategy (the strategy that yields zero 
expected profits with occasional looses) is about 10.71. 
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participants learn in that their behavior is closer to the RNNE, albeit to various degrees.  It seems 

that both market selection and individual learning is responsible for improved outcomes of 

experienced bidders.  

The authors also show that standard econometric techniques fail to provide evidence of 

unobserved heterogeneity in the bidding behavior of participants, and fail to detect any selection 

effects.  

The paper shows how intelligent design can address selection (or potentially other 

econometric issues) directly, instead of having to rely on sophisticated econometric techniques, 

which may fail to find any evidence (which could be due to the fact that the samples of 

experimental economists are typically smaller than of labor economists).    

 

II.B. TWO WAY DESIGN 

Overbidding, bidding above the risk neutral Nash equilibrium (RNNE) by participants is not only 

a regular phenomenon for common value auctions, but also in private value first price auctions. 

Early work has attributed that to risk aversion (see e.g. Cox, Smith and Walker 1988), which calls 

for bids above the RNNE, closer to one’s valuation. That literature has spawned a serious 

critique, namely that behavior of participants in first price auctions may be hard to take seriously, 

as the change in expected payoff is quite flat around bid functions that correspond to the risk 

neutral Nash Equilibrium (see Harrison 1989). This spawned a very lively debate.9  

 In a very clever design, Kagel and Levin (1993) want to show that in general, 

overbidding in first price auction may not necessarily be attributable to either risk aversion, or the 

possibility that participants simply don’t care about the bids they place.  

 One way to address this question would be to try to estimate each participant’s level of 

risk aversion, and correlate it with the bids they place. Note that we would still need to heavily 

rely on the Nash equilibrium model, implying that subjects form correct beliefs about the degrees 

of risk aversion of other participants and so on. 

Kagel and Levin (1993) present a much more direct, simpler and elegant solution. 

Specifically, they have participants bid not only in first price but also in third price auctions, 

auctions in which the highest bidder receives the object for the third price. In this case, the RNNE 

calls for bidding above one’s valuation, and risk aversion calls for bids below the RNNE. Both of 

these are in contrast to behavior expected in the first price auction, where RNNE calls for bids 

below one’s valuation, and risk aversion for bids above the RNNE.  

                                                 
9 See Friedman (1992), Kagel and Roth (1992), Cox, Smith and Walker (1992), Merlo and Schotter (1992), 
and Harrison (1992).  
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They find that bidders bid above the RNNE in both auctions formats, which makes it 

more unlikely that the overbidding in the first price auction can be attributed to risk aversion (see 

also Kagel 1995 and Kagel and Levin, forthcoming.) 

 In this subsection we showed how an intelligent design can cast doubts on a prominent 

theory for a phenomenon. This was achieved by changing the environment such that the 

prominent theory (risk aversion) would now make opposite predictions to other theories that may 

account for the initial phenomenon, such as “wanting to win” for the “bidding above the risk 

neutral Nash equilibrium in first price auctions” phenomenon.  

 To elaborate on the use of such a two way design, I want to provide maybe one of the 

earliest examples of such a design from the book of Judges of the Old Testament, Chapter 6 (by 

courtesy of Al Roth’s experimental economics class). 

 The story begins with the Israelites, turned away from God after 40 years of peace 

brought by Deborah's victory over Canaan, being attacked by the neighboring Medeanites. God 

chose Gideon, a young man from an otherwise unremarkable clan from the tribe of Manasseh, to 

free the people of Israel and to condemn their worship of idols. Gideon, to convince himself, that 

the voice he hears is indeed the voice of God, asks for a test:  

And Gideon said to God: 'If You will save Israel by my hand, as You have said, 
look, I will put a fleece of wool on the threshing-floor; if there be dew on the 
fleece only, and it be dry upon all the ground, then shall I know that You will 
save Israel by my hand, as You have said.' 
And it was so; for he rose up early on the next day, and pressed the fleece 
together, and wrung dew out of the fleece, a bowlful of water. 

 
So far, this makes Gideon merely an empirically minded person, not a good designer of 

experiments. Gideon, however, realized that there could be an alternative explanation for the 

main result. It could be that this is simply the way it is, after all, he probably wasn’t used to 

leaving a fleece outside. His design so far only allows for a test to see whether the result is due to 

God almighty, or merely the way cold nights interact with a fleece left outside. In his next design, 

he removes the “natural” explanation, and tests whether it is God’s doing, in which case, he can 

reverse the result that may be due to nature only. 

 
And Gideon said to God: 'Do not be angry with me, and I will speak just this 
once: let me try just once more, I ask You, with the fleece; let it now be dry only 
upon the fleece, and upon all the ground let there be dew.' 
And God did so that night; for it was dry upon the fleece only, and there was dew 
on all the ground.  

 
The experiment also allows for predictions outside of the experimental design: Gideon raised the 

army which indeed defeated the Medeanites. 
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This is a prime example of an intelligent design: Change the environment such that the 

hypothesis of choice (God) would reverse the result, while the alternative (Nature) would leave 

the outcome unchanged. While many designs do not necessarily have comparative statics that 

work that beautifully, these are often useful in convincing the audience that the results are indeed 

driven by the specific hypothesis at hand. 

 

II.C. ELIMINATION DESIGN: TESTING A THEORY BY ELIMINATING ITS APPLICABILITY 

Apart from the two way design, there is another prominent method which I call the “Elimination” 

design, to cast doubt on the applicability of a theory to a particular phenomenon. Change the 

environment in a way the problem mostly stays the same, while, however, eliminating the 

conditions that allow the theory at hand to account for the phenomenon. That is, instead of testing 

the theory directly, examine to what extent similar behavior can be found in environments in 

which the model has no bite.  If behavior remains unchanged, at least it implies that other factors 

may be at work as well. I will present two examples in detail that make that point, both of which 

are in environments which I already presented.  

The first example concerns the guessing game which was introduced in Section I, which 

was a breeding ground for new theory, such as k-level thinking. The next experiment takes a 

phenomenon, such as players guessing a number not equal to zero in a guessing game, and 

changes the environment in a way to eliminate rationalizations of such behavior due to k-level 

models. 

 Grosskopf and Nagel (2008) change the guessing game to have only two, instead of three 

or more players. The rule is that the person who is closest to two thirds of the average wins. With 

two players this translates to the winner being the one who chooses the smaller number. That is 

with two players, guessing 0 is a dominant strategy. Hence any model that relies on players 

having non-equilibrium beliefs about the opponents to justify non-equilibrium behavior has no 

bite, as there exists a unique dominant strategy. 

 Grosskopf and Nagel (2008) find that among students, the guesses are virtually identical 

to the guesses made when the number of players was larger than 2, specifically, the instances of 0 

were the same about 10% in both cases. While professionals (game theorists) are more likely to 

choose 0 when there are two rather than three or more players, zero is still chosen only by about 

37%.  

The findings of Grosskopf and Nagel (2008) cast serious doubt on the need for k-level 

models to explain guesses above 0, since such guesses are common even when 0 is a dominant 

strategy. However, there remains the possibility, that, when there are dominant strategies, other 
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biases become important, or that participants were simply confused, and did not take into account 

that there were only two players. 

 A second example of an elimination design I want to provide is given in Ivanov, Levin 

and Niederle (2010). Remember that one way to justify overbidding, bidding above the signal in 

the simple two player second price sealed bid common value auction, is to assume that the 

opponent sometimes bids below the signal. In one treatment, we eliminate the possibility for 

participants to place a bid that is strictly below the signal (we call it the MinBid treatment).  

 We can compare the proportion of bids, and the proportion of bidders who can be 

classified as bidding above the signal in Phase I of the Baseline treatment (the treatment which 

was discussed at length in section I.C.), where participants play against a random person, and 

could place any bids they wanted below 1000000.  If the main reason for overbidding in the 

Baseline treatment is that players believe that others may be playing randomly and sometimes 

underbid, then we would expect a large reduction of overbids in the MinBid treatment. However 

we find the opposite, an increase in the fraction of overbids, from about 40% to 60%. 

Overbidding is probably more frequent in the MinBid treatment because underbidding is 

impossible so that all bids are distributed in three, rather than four, categories. Given this, the 

frequencies of overbidding seem quite comparable.  

 The findings of Ivanov, Levin and Niederle (2010) cast doubt on belief-based models 

being the driving factor behind overbidding in common value auctions. While that third 

treatment, the MinBid treatment, eliminates any explanatory power of the theory, it could still be, 

potentially, that other biases become important, that are of a similar magnitude.  

To summarize, one way to weaken the hypothesis that a theory can account for a 

phenomenon is to remove the applicability of the theory and show that the underlying 

phenomenon is virtually unchanged. However, it is still potentially possible that in this slightly 

changed environment there are other forces at work that yield similar results. It does not directly 

exclude that the theory has (at least also) some explanatory power for the phenomenon at hand. 

As such, providing a direct test may prove more fruitful to convince proponents of the theory than 

such indirect, albeit quite elegant, tests.  

 

II.D. RUNNING A HORSE RACE AMONG THEORIES 

Finally, I want to come to a quite popular method when comparing the predictive power of 

different theories. Before, I argued that theories may be valuable both in making point predictions 

or, alternatively, in predicting comparative statics due to changes in the environment. When it 

comes to papers that run a horse race among theories, the valuation is in general driven by how 
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well each theory is able to fit the data in a fixed set of games, almost no attention is given to 

comparative static predictions.  

 In many papers such horse races involve a preferred theory (mostly a new theory of the 

authors of the study), and some more “standard” or established theories. Often, authors would 

pick a few games, have subjects play those games, and then compare the results across these 

games. It is not uncommon to run regressions often showing how a certain favorite theory does 

better than other theories, when giving equal weight to each of the games selected. 

 Here are my two biggest concerns with papers of that sort: The first is a lack of a deep 

discussion of how the games have been chosen. Often, such discussion is short, and not precise. 

This makes it hard to interpret any econometrics based on those games: What does it mean that 

the author can pick, say, 10 games in which the authors’ model does better than the other models? 

What does it even mean to run such a regression? Clearly, few people would be impressed if the 

authors tried many many more games and then selected a few such that the authors’ preferred 

theory wins the horse race. While such blatant abuse is probably rare, often authors may simply 

more easily think of games that confirm their intuition.10 It may be hard to assume that the choice 

of games is not in some way biased. Of course, a potentially equally big problem is if the winning 

theory is designed after the fact, as I hope to make clear in the next paragraph. 

 This critique goes often hand in hand with my second problem with such work: One has 

to be careful that new theories are not, what could be called “toothbrush” theories: Theories one 

wants to use only on one’s own data (just like a toothbrush is for a single user only). What it 

means is that many papers take the form: “My theory works better on my data than your theory 

works on my data”.  As such, it is clear why that is often not that impressive…  

A paper that runs a horse race among theories has to first decide what success means. Is 

success really better predicting behavior in a few very specific games? Or is success rather 

predicting behavior in a given class of games?  

In this chapter I want to advocate for the latter which is nicely described in Erev, Roth, 

Slonim, and Barron (2007). They test the predictive power of various models in two player zero 

sum games, including among others standard Nash predictions and learning models. In order to 

do that, they have participants play in a set of zero sum games with a unique mixed strategy Nash 

equilibrium. However, since the models are supposed to make a good prediction on that whole 

class of games, the authors did not pick the games themselves, but rather chose them randomly. 

                                                 
10 See Roth (1994) about what constitutes an experiment, and his argument to keep up the integrity about 
how much “search” went on in terms of how many (unreported) trials or treatments were run in order  to 
find a specific result. 
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This is a good strategy, unless there is a very good reason to focus only on a specific set of 

games. 

That it may be easy to even fool oneself (taking the view that authors hopefully did not 

want to fool only others) when choosing games can be seen in the literature that precedes Erev, 

Roth, Slonim and Barron (2007) and Erev and Roth (1998). Previous papers can roughly be put in 

two groups: Papers that concluded that Nash is a good description of behavior, and papers that 

did not. As it seems, however, these two groups can also be characterized the following way: 

Proponents of Nash tended to pick two player zero sum games where the mixed strategy 

equilibrium resulted in relative equal payoffs for both players. The others tended to pick games 

where this was not the case. As no paper actually made that point precise, I imagine it was not 

due to earlier authors trying to fool others; their intuition may simply have led them to pick 

games that confirm their initial hypothesis.  

Most recently, there have been several contests, whose goal was to find a model that 

predicts well in a class of games, where the exact games to be played will be randomly drawn 

(see Erev, Ert and Roth, 2010 and Erev et al, 2010).  

 

III. WHAT CHANNELS DRIVE A RESULT?  

TREATMENT DRIVEN EXPERIMENTS 

So far I have focused on experiments that test theories with a very precise underlying model. The 

experiments in this section go mostly beyond simple parameter testing or testing the comparative 

static of a well developed theory that makes precise predictions. The aim here is to go deeper into 

understanding the mechanism behind an initial finding. What are the channels that drive the 

initial result? Note that devising treatments to better understand the channels behind a specific 

result can of course be done, whether the initial finding is well grounded in theory or not. 

Similarly, the possible channels may be given by economic theory, though they may also be 

derived by finding from other disciplines, such as psychology.  

  The focus of this chapter is to describe the power of experiments in terms of 

understanding the channels that drive a result. This allows us to turn on and off various channels, 

which allows us to measure their impact, and really understand what drives a phenomenon. It is 

this powerful ability to control the environment that makes experiments so useful, especially 

when trying to understand what mechanism is responsible for the initial result, what are the key 

channels. 

 In this section, I will focus on the topic of whether women shy away from competition, 

and possible explaining factors. While Niederle and Vesterlund (2007), do not test a specific 
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theory, we can ask, theoretically, what are potential economic reasons for (gender) differences in 

the decision to enter a tournament. Since we use a within subjects design, we need to have all 

controls ready before we start running the experiment (which is what makes such designs harder 

to implement). The advantage is that it will be easier to discern, how much various factors 

contribute to the decision to enter a tournament, as opposed to merely being able to say that they 

have some impact.  

We aim to test whether women and men enter tournaments at the same rate, where their 

outside option is to perform in a non-competitive environment. Clearly, one reason for gender 

differences is choices of compensation scheme can be gender differences in performance. 

Gneezy, Niederle and Rustichini (2003) show that average performances of women and men in 

tournaments may be very different from each other, even when performances under a piece rate 

incentive scheme were very similar. In fact, we show a significant change in gender differences in 

performance across incentive schemes. Hence, in NV we aim for a task in which performance 

does not vary too much with the incentive scheme. Furthermore, all performances, both in 

competitive and non-competitive environments are assessed when determining the choices of 

women and men. Beyond that, what are possible contributing factors to gender differences in 

choice of incentive scheme? 

 Explanation 1: Men enter the tournament more than women because they like to 

compete. 

This will be the main hypothesis, so, we have to design the experiment such that we can 

rule out other explanations. 

Explanation 2: Men enter the tournament more than women because they are more 

overconfident. Psychologists and economists often find that while both men and women are 

overconfident about their relative performance, men tend to be more overconfident than women 

(e.g., Lichtenstein, Fischhoff, and Phillips (1982), Beyer (1990), Beyer and Bowden (1997) and 

Mobius et al (2010)). 

Explanation 3: Men enter the tournament more than women because they are less risk 

averse. Since tournaments involve uncertain payoffs, potential gender differences in risk attitudes 

may affect the choice of compensation scheme.11  

                                                 
11 Eckel and Grossman (2002) and Croson and Gneezy, (2009), summarize the experimental literature in 
economics and conclude that women exhibit greater risk aversion in choices. A summary of the psychology 
literature is presented by Byrnes, Miller, and Shafer (1999). They provide a meta-analysis of 150 risk 
experiments and demonstrate that while women in some situations are significantly more averse to risk, 
many studies find no gender difference. 
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Explanation 4: Men enter the tournament more than women because they are less averse 

to feedback. One consequence of entering the tournament is that the individual will receive 

feedback on relative performance.12  

 The experiment has groups of 2 women and 2 men seated in rows, and we point out that 

participants were grouped with grouped with the other people in their row. While participants 

could see each other, we never discuss gender during the experiment.13 The task of our 

experiment is to add up sets of five two-digit numbers for five minutes, where the score is the 

number of correct answers. After each problem, participants learn the number of correct and 

wrong answers so far, and whether the last answer was correct. Participants do not receive any 

feedback about relative performance (e.g.. whether they won a tournament) until the end of the 

experiment. 

 The experiment has four tasks, where one of which will be randomly chosen for payment 

at the end.  

Task 1—Piece Rate: Participants are given the five-minute addition task. If Task 1 is 

randomly selected for payment, they receive 50 cents per correct answer.  

Task 2—Tournament: Participants are given the five-minute addition task. If Task 2 is 

randomly selected for payment, the participant who solves the largest number of correct problems 

in the group receives $2 per correct answer while the other participants receive no payment (in 

case of ties the winner is chosen randomly among the high scorers).14   

In the third task participants once again perform the five-minute addition task but this 

time select which of the two compensation schemes they want to apply to their future 

performance, a piece rate or a tournament. The choice between the piece rate and the tournament 

should allow predicting money maximizing choices. Hence the choice must be independent of the 

subjects’ beliefs about other players’ choices which would otherwise enter the maximization 

problem and hence make it theoretically difficult to make money-maximizing predictions. This 

implies that the choice of each participant cannot influence other participants’ payoffs.  

Task 3 – Choice: A participant who chooses piece rate receives 50 cents for each 

correctly solved problem. A participant who chooses tournament has the new task-3 performance 

                                                 
12 For example, Mobius et al (2010) explicitly ask participants about their willingness to pay (or get 
compensated for) receiving information about their performance in an IQ-like quiz. We find that men are 
significantly less averse to receiving feedback than women. 
13 We did not want to trigger any demand effects or psychological biases such as priming by pointing out 
that we study gender.   
14 On a technical note, by paying the tournament winner by performance rather than a fixed prize, we avoid 
providing information about winning performances, or distorting incentives for very high performing 
individuals. 
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compared to previous task-2 tournament performance of the other participants in his or her group. 

If the participant has the highest performance she or he receives $2 for each correct answer, 

otherwise she or he receive no payment. This way a choice of tournament implies that a 

participants’ performance will be compared to the performance of other participants in a 

tournament.  

Furthermore, since a participant’s choice does not affect the payment of any other 

participant we can rule out the possibility that women may shy away from competition because 

by winning the tournament they impose a negative externality on others.15 

Task 4—Choice of Compensation Scheme for Past Piece-Rate Performance: 

Participants decide between the piece rate and tournament incentive scheme for their task 1 piece 

rate performance, where a tournament choice results in a payment only if the participant had the 

highest task 1 piece rate performance in their group. This choice mimics the task 3 choice, while 

eliminating any tournament performance. Specifically, this choice, like the choice in task 3, 

requires that participants decide between a certain payment scheme (piece rate) and an uncertain 

payment scheme (tournament), receiving feedback whether their performance was the highest or 

not (tournament) or not receiving such information (piece rate). Like in task 3, participants have 

to base their decisions on their beliefs about their relative performance in their group.  

As such, this treatment will provide some insight to what extent choices between 

incentive schemes in task 3 are affected by factors that are also present in task 4 compared to the 

unique factor that is missing in the task 4 choice, namely the desire or willingness to perform 

under a competitive incentive scheme.  

Finally, participants provide information about their rank among the four players in each 

group both in the task 1 piece rate and the task 2 tournament performance (where a correct rank is 

rewarded by $1).  

We find that women and men perform very similarly in both the piece rate scheme and 

the tournament scheme. The average performance in the piece rate is 10.15 for women, and 10.68 

for men, and in the tournament is 11.8 and 12.1 respectively. There is no gender difference in 

performance. The increase in performance between the piece rate and the tournament seems to be 

due more to learning how to perform this task, rather than increased effort in the tournament.16 Of 

the 20 groups, 11 are won by women, 9 by men, and men and women with the same performance 
                                                 
15 There is a large literature on the debate whether women are more altruistic than men and hence may be 
more or less worried about imposing a negative externality on other participants (See Croson and Gneezy 
2009, and Andreoni and Vesterlund 2001). 
16 This is supported by the fact that changes in performance between task 2 and task 3 are independent of 
the chosen incentive scheme in task 3. Note that this does not imply that participants do never provide 
effort, rather it appears their baseline effort is already quite high. 
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have the same probability of winning the tournament. Given the past tournament performance, 

30% of women and 30% of men have higher earnings from a tournament scheme, which 

increases to 40% and 45% respectively when we add participants who are basically indifferent. 

However, in the experiment, 35% of women and 73% of men enter the tournament (a significant 

difference). 

Figure IVa shows for each task 2 tournament performance quartile the proportion of 

participants who enter the tournament. Men have a higher chance to enter the tournament for any 

performance level.17  

 

 

 

 

 

 

 

 

 

 
Figure IV: Proportion Selecting Tournament (Niederle and Vesterlund, 2007) 

 
 

One driving factor could be that women and men differ in their beliefs about their relative 

performance in the tournament (explanation 2). In the experiment 30 out of 40 men (75%!) 

believe that they were the best in their group of 4 (most of them were obviously wrong), men are 

highly overconfident. While women are also overconfident, 17 (40%) believe they had the 

highest performance, men are significantly more overconfident than women. Can this gender 

difference account for differences in tournament entry?  

Figure IVb shows the proportion of participants that enter the tournament as a function of 

their guessed rank in the task 2 tournament. Beliefs have a significant impact on the decision to 

enter the tournament, but gender differences remain even after controlling for beliefs, which 

                                                 
17 Similar results are obtained when we consider the performance after the entry decision, rather than the 
one before the entry decision. 
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account for about 30% of the initial gender gap in tournament entry (a result confirmed by 

regressions).   

To study the impact of risk and feedback aversion on the decision to enter a tournament, 

we first study the decision in task 4 where participants decide whether to submit the task 1 piece 

rate performance to a piece rate or a tournament payment scheme. In this case the participants’ 

actual performance, and their beliefs about relative performance can largely account for choices 

of women and men, the remaining gender gap in choices is economically small and not 

significant. That is gender differences do not follow the pattern found when choosing whether to 

enter a tournament and then perform. We studied a choice that mimics the decision of task 3, 

where participants decide whether to enter a tournament and then perform, only now, in task 4, 

participants did not have to perform anymore. Rather the payment was based on their past piece 

rate performance. In this case, we eliminate the need for an upcoming tournament performance, 

the decisions of women and men can be entirely accounted for by their actual performance and 

their beliefs about their relative performance. This already casts doubt that risk and feedback 

aversion (explanations 3 and 4) are major factors in determining gender differences in choosing to 

enter tournament. Furthermore, a regression on the task 3 decision of women and men to enter a 

tournament and then perform finds substantial gender differences, even when controlling for 

performance and beliefs and the choice in task 4.   

In terms of money maximizing choices, high performing women enter the tournament too 

little and low performing men too much (though by design their losses are smaller, as payments 

are dependent on performance). The result is that few women enter the competition and few 

women win the competition. 

Experiments were useful in showing this gender difference, as they allowed for controls 

that would be hard to come by with labor data: Apart from being able to control performances in 

both environments, we could also ensure participants that there are no aspects of discrimination 

whatsoever, their payments only depended on their decisions and performances of others, women 

were not treated differently than men. Furthermore, the experiments last less than 90 minutes; as 

such any concerns about raising children are clearly not an issue. Meanwhile, many other 

experiments have replicated the basic result.18 

Some final comments about the design choices in Niederle and Vesterlund (2007). For 

example, when trying to understand the impact of risk aversion, or aversion to receive 

information about whether one’s performance was the best or not, we could have chosen different 

ways. For example, we could have tried to explicitly measure risk aversion, by having 
                                                 
18 For an overview see e.g. Niederle and Vesterlund (2010).  
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participants play various gambles, and measure their willingness to accept or reject those 

gambles. There are two comments to that approach.  

The first concerns the actual risks or lotteries involved in the choices of participants. For 

example, for participants who have 14 or more correct answers the chance of winning the 

tournament is 47% or higher. If participants maintain the performance after their choice of 

compensation scheme, the decision to enter the tournament becomes a gamble of receiving, per 

correct answer, either $2 with a probability of 47% (or more), or receiving 50 cents for sure. 

Hence, a gamble of a 47% chance of $28 (i.e., an expected value of $13), versus a sure gain of $7. 

Of all participants who solve 14 problems or more, 8/12 of the women and 3/12 of the men do not 

take this gamble.19 Similarly, for participants who have 11 or fewer correct answers the chance of 

winning the tournament is 5.6% or less. Thus entering the tournament means receiving $2 per 

correct answer with a probability of 5.6% (or less) versus receiving 50 cents for sure. For all 

participants who solve 11 correct answers this is a choice between a 5.6% chance of winning $22 

(i.e., an expected value of $1.23) compared to receiving $5.5 for sure. Of the men who solve 11 

problems or less 11/18 take this gamble while only 5/17 women do.20 I am not aware of any 

studies that find such extreme gender differences in risk aversion. Furthermore if risk aversion is 

the most important explanation for the gender gap in tournament entry, men should not enter the 

tournament with a higher probability than women for all performance levels, but rather the entry 

decision of women should be shifted to the right of that of men. 

Second, even if we found that more risk averse participants enter the tournaments at a 

lower propensity, it is not clear that risk aversion may indeed be the explaining factor. Similarly, 

if we found that risk aversion on its own does not reduce the gender gap, it could be that we 

measured risk attitudes on the wrong lotteries, since perceived lotteries may be very different.  

Basically, the problem is that choices of participants depend in a very intricate way on 

risk aversion, which may be hard to capture, As such, indirect approaches like we took them in 

our paper, may be more reliable, as they circumvent the issue of measurement, or making the 

right assumptions about how risk aversion enters the decision precisely (in combination with 

beliefs about performance, actual performance, etc.). 

   

 
CONCLUSIONS 

                                                 
19 This difference is marginally significant with a two-sided Fisher’s exact test (p= 0.100). 
20 This difference is marginally significant with a two-sided Fisher’s exact test (p= 0.092). 
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In this chapter, I wanted to show how to use experiments to test theory. I showed how the theory 

can be tested at deeper levels, by attacking the assumptions of the theory directly. I also provided 

two examples of design to test the theory: the two way design, and the elimination design. In the 

two way design, the initial environment, which allowed for two competing theories to explain the 

initial results, is changed in a way to separate the two theories. In the elimination design, the 

explanatory power of a theory for a phenomenon is questioned by changing the environment in a 

way that one the theory has no explanatory power anymore, and second, the phenomenon is still 

present. This at least casts doubt that the initial theory was the main driving factor for the result.  

Finally, intelligent design can also be used when the initial hypothesis is not grounded in 

a careful model. In fact, most examples of intelligent design I presented in this chapter do not 

really deeply rely on the parameters of a model, but rather exploit broad results or assumptions. 

Often a more direct approach may help us to learn more.  
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