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Outline 
• Kidney exchange 

• What it is 

• How we initially modeled it 

• Initial kidney exchange institutions--pairwise 

• How the game changed as kidney exchange 

grew 

• An idealized model of large kidney exchange 

• Why it doesn‘t work that way 

• A model with highly sensitized patients—why 

chains work so well 
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Kidney exchange--background 
• There are more than 90,000 patients on the 

waiting list for cadaver kidneys in the U.S. 
today (94,005 this morning…) 

• In 2011 33,581 patients were added to the 
kidney waiting list, and 28,625 patients were 
removed from the list.  

•  In 2011 there were 11,043 transplants of 
cadaver kidneys performed in the U.S. 

• In the same year, 4,697 patients died while on 
the waiting list (and 2,466 others were removed 
from the list as ―Too Sick to Transplant‖. 

• In 2011 there were also 5,771 transplants of 
kidneys from living donors in the US.  

• Sometimes donors are incompatible with their 
intended recipient. 

• This opens the possibility of exchange . 
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Donor 1
Blood type A

Recipient 1
Blood type B

Donor 2
Blood type B

Recipient 2
Blood type A

Two Pair Kidney Exchange
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A classic economic problem:  

Coincidence of wants  
(Money and the Mechanism of Exchange, Jevons 1876) 

Chapter 1:  "The first difficulty in barter is to find two 
persons whose disposable possessions mutually suit 
each other's wants. …to allow of an act of barter, there 
must be a double coincidence, which will rarely 
happen. ... the owner of a house may find it 
unsuitable, and may have his eye upon another house 
exactly fitted to his needs. But even if the owner of this 
second house wishes to part with it at all, it is 
exceedingly unlikely that he will exactly reciprocate the 
feelings of the first owner, and wish to barter houses. 
Sellers and purchasers can only be made to fit by the 
use of some commodity... which all are willing to 
receive for a time, so that what is obtained by sale in 
one case, may be used in purchase in another. This 
common commodity is called a medium, of 
exchange..." 
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Section 301,National Organ Transplant 

Act (NOTA), 42 U.S.C. 274e 1984: 

   “it shall be unlawful for any person  

to knowingly acquire, receive or 

otherwise transfer any human organ for 

valuable consideration for use in human 

transplantation”. 



Charlie W. Norwood Living Organ  

Donation Act 

Public Law 110-144, 110th Congress, Dec. 21, 

2007 

•  Section 301 of the National Organ 

Transplant Act (42 U.S.C. 274e) is 

amended-- (1) in subsection (a), by adding 

at the end the following:  

•  ``The preceding sentence does not 

apply with respect to human organ 

paired donation.'' 
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Incentive Constraint: 2-way exchange 

involves 4 simultaneous surgeries.  



3-pair exchange (6 simultaneous 

surgeries) 
   

 Donor 1 Recipient 1 Pair 1 

Donor 2 Recipient 2 

Pair 2 

Donor 3 Recipient 3  

Pair 3 
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Non-directed donors: cycles plus 

chains  

 Pair 1 

Pair 2 

Pair 3 

Pair 4 

Pair 6 

Pair 7 

Pair 5 

Non-directed donor 

10 



11 

Kidney exchange clearinghouse design 

Roth, Alvin E., Tayfun Sönmez, and M. Utku Ünver, “Kidney 
Exchange,” Quarterly Journal of Economics, 119, 2, May, 
2004, 457-488. 

 ________started talking to docs________ 

____ “Pairwise Kidney Exchange,”  Journal of Economic 
Theory, 125, 2, 2005, 151-188. 

___ ―A Kidney Exchange Clearinghouse in New England,‖ 
American Economic Review, Papers and Proceedings, 95,2, 
May, 2005, 376-380. 

_____ “Efficient Kidney Exchange: Coincidence of Wants in 
Markets with Compatibility-Based Preferences,”  American 
Economic Review, June 2007, 97, 3, June 2007, 828-851 

___multi-hospital exchanges become common—hospitals 
become players in a new ―kidney game‖________ 

Ashlagi, Itai and Alvin E. Roth ”Individual rationality and 
participation in large scale, multi-hospital kidney 
exchange,”  revised June 2012.  

Ashlagi, Itai, David Gamarnik and Alvin E. Roth, The Need for 
(long) Chains in Kidney Exchange, May 2012 

 

 



And in the medical literature 
Saidman, Susan L., Alvin E. Roth, Tayfun Sönmez, M. Utku Ünver, and 

Francis L. Delmonico, “Increasing the Opportunity of Live Kidney 
Donation By Matching for Two and Three Way Exchanges,” 
Transplantation, 81, 5, March 15, 2006, 773-782. 

Roth, Alvin E., Tayfun Sönmez, M. Utku Ünver, Francis L. Delmonico, 
and Susan L. Saidman, “Utilizing List Exchange and Undirected 
Donation through “Chain” Paired Kidney Donations,” 
American Journal of Transplantation, 6, 11, November 2006, 2694-
2705. 

Rees, Michael A., Jonathan E. Kopke, Ronald P. Pelletier, Dorry L. 
Segev, Matthew E. Rutter, Alfredo J. Fabrega, Jeffrey Rogers, Oleh 
G. Pankewycz, Janet Hiller, Alvin E. Roth, Tuomas Sandholm, Utku 
Ünver, and Robert A. Montgomery, ―A Non-Simultaneous 
Extended Altruistic Donor Chain,‖ New England Journal of 
Medicine , 360;11, March 12, 2009, 1096-1101. 

Ashlagi, Itai, Duncan S. Gilchrist, Alvin E. Roth, and Michael A. Rees, 
―Nonsimultaneous Chains and Dominos in Kidney Paired Donation 
– Revisited,‖ American Journal of Transplantation, 11, 5, May 2011, 
984-994  

Ashlagi, Itai, Duncan S. Gilchrist, Alvin E. Roth, and Michael A. Rees, 
―NEAD Chains in Transplantation,‖ American Journal of 
Transplantation, December 2011; 11: 2780–2781. 

 12 

http://kuznets.fas.harvard.edu/~aroth/papers/Rees etal NEJM 2009.pdf
http://kuznets.fas.harvard.edu/~aroth/papers/Rees etal NEJM 2009.pdf
http://kuznets.fas.harvard.edu/~aroth/papers/Rees etal NEJM 2009.pdf
http://kuznets.fas.harvard.edu/~aroth/papers/Rees etal NEJM 2009.pdf


13 

First pass (2004 QJE paper) 

• Shapley & Scarf [1974] housing market model: n agents 
each endowed with an indivisible good, a ―house‖. 

• Each agent has preferences over all the houses and there is 
no money, trade is feasible only in houses. 

• Gale‘s top trading cycles (TTC) algorithm: Each agent points 
to her most preferred house (and each house points to its 
owner). There is at least one cycle in the resulting directed 
graph (a cycle may consist of an agent pointing to her own 
house.) In each such cycle, the corresponding trades are 
carried out and these agents are removed from the market 
together with their assignments.  

• The process continues (with each agent pointing to her most 
preferred house that remains on the market) until no agents 
and houses remain. 
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Theorem (Shapley and Scarf): the 

allocation x produced by the top 

trading cycle algorithm is in the core 

(no set of agents can all do better than 

to participate) 

• We‘ll see that contemporary kidney exchange 

algorithms don‘t have this property, and we‘re 

starting to suffer from it—but it wasn‘t so important 

when we were the only game in town… 

 

• When preferences are strict, Gale‘s TTC algorithm 

yields the unique allocation in the core (Roth and 

Postlewaite 1977). 
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Theorem (Roth ‘82): if the top trading cycle 

procedure is used, it is a dominant strategy 

for every agent to state his true 

preferences. 

• The idea of the proof is simple, but it takes 
some work to make precise. 

• When the preferences of the players are given 
by the vector P, let Nt(P) be the set of players 
still in the market at stage t of the top  trading 
cycle procedure. 

• A chain in a set Nt is a list of agents/houses a1, 
a2, …ak such that ai‘s first choice in the set Nt is 
ai+1.  (A cycle is a chain such that ak=a1.) 

• At any stage t, the graph of people pointing to 
their first choice consists of cycles and chains 
(with the ‗head‘ of every chain pointing to a 
cycle…). 
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Cycles and chains 

i 
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The cycles leave the system (regardless 

of where i points), but i‘s choice set (the 

chains pointing to i) remains, and can only 

grow 

i 
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Chains that integrate exchange 

with the waiting list 

• Paired exchange and list exchange 

(deceased donors are non-directed…) 

 

 

 

 

 

 

 

 

P2-D2 

P on 

waiting 

list 
P1-D1 Deceased 

 donor 

 

 

 

 
P on 

waiting 

list 
P1-D1 

Deceased 

 donor 



Top trading cycles and chains 

• Unlike cycles, chains can intersect, so a 

kidney or patient can be part of several 

chains, so an algorithm will have choices 

to make. 
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Suppose exchanges involving more than 

two pairs are impractical? 

• Our New England surgical colleagues had (as a 

first approximation) 0-1 (feasible/infeasible) 

preferences over kidneys. 
– (see also Bogomolnaia and Moulin (2004) for the case of two sided 

matching with 0-1 prefs) 

• Initially, exchanges were restricted to pairs.   

– This involves a substantial welfare loss compared to 

the unconstrained case 

– But it allows us to tap into some elegant graph theory 

for constrained efficient and incentive compatible 

mechanisms. 
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Pairwise matchings and matroids 

• Let (V,E) be the graph whose vertices are 
incompatible patient-donor pairs, with 
mutually compatible pairs connected by 
edges. 

• A matching M is a collection of edges such 
that no vertex is covered more than once. 

• Let S ={S} be the collection of subsets of V 
such that, for any S in S, there is a matching 
M that covers the vertices in S 

• Then (V, S) is a matroid: 
– If S is in S, so is any subset of S. 

– If S and S‘ are in S, and |S‘|>|S|, then there is a 
point in S‘ that can be added to S to get a set in S. 



22 

Pairwise matching with 0-1 preferences  
(December 2005 JET paper) 

• All maximal matchings match the same number 
of couples. 

• If patients (nodes) have priorities, then a ―greedy‖ 
priority algorithm produces the efficient (maximal) 
matching with highest priorities (or edge weights, 
etc.) 

• Any priority matching mechanism makes it a 
dominant strategy for all couples to  
– accept all feasible kidneys  

– reveal all available donors 

• So, there are efficient, incentive compatible 
mechanisms in the constrained case also. 
– Hatfield 2005: these results extend to a wide variety of 

possible constraints (not just pairwise) 
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Gallai-Edmonds Decomposition 



Factors determining transplant opportunity 

• Blood compatibility  
 

 

 

 

 

 

 
 
So type O patients are at a disadvantage in finding compatible kidneys—they 

can only receive O kidneys. 
And type O donors will be in short supply. 

 

• Tissue type compatibility. Percentage reactive antibodies 

(PRA) 

 

 Low sensitivity patients (PRA < 79) 

 High sensitivity patients (80 < PRA < 100) 
 

O 

A B 

AB 
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A. Patient ABO Blood Type Frequency 

O 48.14% 

A 33.73% 

B 14.28% 

AB 3.85% 

B. Patient Gender Frequency 

Female 40.90% 

Male 59.10% 

C. Unrelated Living Donors Frequency 

Spouse 48.97% 

Other 51.03% 

D. PRA Distribution Frequency 

Low PRA 70.19% 

Medium PRA 20.00% 

High PRA 9.81% 



Random Compatibility Graphs 

n hospitals, each of a size c>0  

D(n)  - random compatibility graph: 

1. n pairs/nodes are randomized –compatible pairs are 
disregarded 

2. Edges (crossmatches) are randomized 

 

 

Random graphs will allow us to ask two related questions: 

What would efficient matches look like in an “ideal” large 
world? 

What is the efficiency loss from requiring the outcome to be  
individually rational for hospitals? 
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(Large) Random Graphs 
G(n,p) – n nodes and each two nodes have a non directed edge 

with probability p  

 

Closely related model: G(n,M): n nodes and M edges—the M 
edges are distributed randomly between the nodes 

 
Erdos-Renyi: For any p(n)¸(1+)(ln n)/n almost every large graph 

G(n,p(n)) has a perfect matching, i.e. as n!1 the probability 
that a perfect matching exists converges to 1. 

 

A natural case  for kidneys is p(n) = p, a constant (maybe different 
for different kinds of patients), hence always above the 
threshold. 

 

―Giant connected component‖ 

Similar lemma for a random bipartite graph G(n,n,p). 

Can extend also for r-partite graphs, directed graphs… 
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―Ideally‖ Efficient Allocations: if we were 

seeing all the patients in sufficiently large 

markets 

 

28 Over-demanded (shaded) pairs are all  matched. 



How about when hospitals become 

players? 

• We are seeing some hospitals withhold 

internal matches, and contribute only hard-to-

match pairs to a centralized clearinghouse. 

• Mike Rees (APD director) writes us: ―As you 

predicted, competing matches at home 

centers is becoming a real problem.  Unless it 

is mandated, I'm not sure we will be able to 

create a national system.  I think we need to 

model this concept to convince people of the 

value of playing together‖.   

 
29 



Individual rationality and efficiency: an 

impossibility theorem with a (discouraging) 

worst-case bound 

• For every k> 3, there exists a compatibility 

graph such that no k-maximum allocation 

which is also individually rational matches 

more than 1/(k-1) of the number of nodes 

matched by a k-efficient allocation.   

30 



Proof (for k=3) 

31 

a3 

a2 

c 

d 

a1 

e 
b 
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There are incentives for Transplant Centers not to fully 

participate even when there are only 2-way exchanges 

 
The exchange A1-A2 results in two transplantations, but the exchanges A1-B 

and A2-C results in four. 

(And you can see why, if Pairs A1 and A2 are at the same transplant center, it 

might be good for them to nevertheless be submitted to a regional match…) 



As kidney exchange has grown, we also 

have to worry about inefficient withholding of 

more complex exchanges 

Why 4 way exchanges don‘t help: 

 

 

 

 

 

 

 

 

 

 

B-AB 

AB-O 

A-AB O-A 

A-B 

O-A B-O 

AB-O 

A-B O-A 
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Individually Rational Allocations 

Theorem: If every hospital size is regular and 
bounded than in almost every large graph the 
efficiency loss from a maximum individually 
rational allocation is at most (1+)AB-Om + o(m) for 
any >0 (less than 1.5%). 

 

So the worst-case impossibility results don’t look at all 
like what we could expect to achieve in large kidney 
exchange pools (if individually rational mechanisms 
are adopted). 

 
 

 
 

 

 

34 



―Cost‖ of IR is very small for clinically 

relevant sizes too  - Simulations 

No. of 
Hospitals 2 4 6 8 10 12 14 16 18 20 22 

IR,k=3 6.8 18.37 35.42 49.3 63.68 81.43 97.82 109.01 121.81 144.09 160.74 

Efficient, k=3 6.89 18.67 35.97 49.75 64.34 81.83 98.07 109.41 122.1 144.35 161.07 
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 But the cost of not having IR could be very high if 

it causes centralized matching to break down 

36 



But current mechanisms aren‘t IR for 

hospitals 
• Current mechanisms: Choose (~randomly) an 

efficient allocation. 

Proposition: Withholding internal exchanges can 

(often) be strictly better off (non negligible) for a 

hospital regardless of the number of hospitals that 

participate.  

O-A 

A-O 
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And hospitals can 

withhold individual 

overdemanded pairs 



Possible solution: 

• ―Frequent flier‖ program for transplant 

centers that enroll easy to match pairs. 

• Their O patients can be included in 

exchanges with scarce O donors… 

• Theorem: almost efficient mechanisms 

with truth-telling equilibria exist… 
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Other sources of efficiency gains 

• Non-directed donors 

 

 

 

 

 P2-D2 

P1 

P1-D1 

ND-D 

ND-D P3 



40 

The graph theory representation doesn‘t 

capture the whole story 
Rare 6-Way Transplant 

Performed  

Donors Meet Recipients 

March 22, 2007 

BOSTON -- A rare six-way 
surgical transplant was a 
success in Boston. 

 

NewsCenter 5's Heather Unruh 
reported Wednesday that three 
people donated their kidneys 
to three people they did not 
know. The transplants 
happened one month ago at 
Massachusetts General 
Hospital and Beth Israel 
Deaconess. 

 

The donors and the recipients met 
Wednesday for the first time. 

  

 

  

 

  

 

Why are there only 6 people in this 

picture? 

Simultaneity congestion: 3 transplants 

+ 3 nephrectomies = 6 operating 

rooms, 6 surgical teams… 
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Can simultaneity be relaxed in Non-

directed donor chains? 

• Cost-benefit analysis: 

• ―If something goes wrong in subsequent 
transplants and the whole ND-chain 
cannot be completed, the worst outcome 
will be no donated kidney being sent to the 
waitlist and the ND donation would entirely 
benefit the KPD [kidney exchange] pool.‖ 
(Roth, Sonmez, Unver, Delmonico, and 
Saidman) AJT 2006, p 2704). 
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Non-simultaneous extended 

altruistic donor chains (reduced risk 

from a broken link) 

A. Conventional 2-way Matching

R1 R2

D1 D2

B. NEAD Chain Matching

R1 R2

D1 D2LND

A. Conventional 2-way Matching

R1 R2

D1 D2

R1 R2

D1 D2

B. NEAD Chain Matching

R1 R2

D1 D2LND

B. NEAD Chain Matching

R1 R2

D1 D2LND

Since NEAD chains don‘t require simultaneity, they 

can be longer… 
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 The First NEAD Chain (Rees, 

APD) 

            Recipient PRA 

* This recipient required desensitization to Blood Group (AHG Titer of 1/8). 
# This recipient required desensitization to HLA DSA by T and B cell flow cytometry. 

MI 

O 

AZ 

July 

2007 

O 

O 

62 

1 

Cauc 

OH 

July 

2007 

A 

O 

0 

2 

Cauc 

OH 

Sept 

2007 

A 

A 

23 

3 

Cauc 

OH 

Sept 

2007 

B 

A 

0 

4 

Cauc 

MD 

Feb 

2008 

A 

B 

100 

5 

Cauc 

MD 

Feb 

2008 

A 

A 

64 

7 

Cauc 

NC 

Feb 

2008 

AB 

A 

3 

8 

Cauc 

OH 

March 

2008 

AB 

A 

46 

10 

AA             Recipient Ethnicity 

MD 

Feb 

2008 

A 

A 

78 

6 

Hisp 

# * 

MD 

March 

2008 

A 

A 

100 

9 

Cauc 

Husband 

Wife 

Mother 

Daughter 

Daughter 

Mother 

Sister 

Brother 

Wife 

Husband 

Father 

Daughter 

Husband 

Wife 

Friend 

Friend 

Brother 

Brother 

Daughter 

Mother 

            Relationship 
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Why are NEAD chains so effective? 

• In a really large market they wouldn’t be… 
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B-A 

B-AB       A-AB   

VA-B 

 

     A-O            B-O AB-O 

O-B              O-A 

 

A-B 

AB-B AB-A 

O-AB 

O-O 
A-A B-B 

AB-
AB 

Chains in an efficient large dense pool 

Non-directed 

donor—blood type O 

It looks like a non-directed 

donor can increase the 

match size by at most 3    47 



A disconnect between model and data: 

• The large graph model with constant p (for 
each kind of patient-donor pair) predicts that 
only short chains are useful. 

• But we now see long chains in practice. 

• They could be inefficient—i.e. competing with 
short cycles for the same transplants. 

• But this isn’t the the case when we examine 
the data. 
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Why? Very many very highly sensitized patients   
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Previous simulations: sample a patient and donor from the 

general population, discard if compatible (simple live 

transplant), keep if incompatible. This yields 13% High 

PRA. 

 

The much higher observed percentage of high PRA 

patients means compatibility graphs will be sparse 
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Short cycles leave many highly 
sensitized patients unmatched 

 



Long chains in the clinical data: even a 
single non-directed donor can start a 

long chain 
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One donor added 

Long chains in the clinical data: even a single 
non-directed donor can start a long chain 



Graph induced by pairs with A patients and A donors. 38 pairs (30 high 

PRA). 

Dashed edges are parts of cycles. 

No cycle contains only high PRA patients. 

Only one cycle includes a high PRA patient  
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Jellyfish structure of the compatibility graph: highly 
connected low sensitized pairs, sparse hi-sensitized pairs
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So we need to model sparse graphs… 
• We’ll consider random graphs with two kinds of nodes 

(patient-donor pairs): Low sensitized and high sensitized 

• L nodes will have a constant probability of an incoming edge 
(compatible kidney) 

• H nodes will have a probability that decreases with the size of 
the graph (e.g. in a simple case we’ll keep the number of 
compatible kidneys constant, pH = c/n) more generally, 
                                    

•  In the H subgraph, we’ll observe trees but almost no short 
cycles 

• A non-directed donor can be modeled as a donor with a 
patient to whom anyone can donate—this allows non-
directed donor chains to be analyzed as cycles 

• (We also consider the effect of different assumptions about 
how the number of non-directed donors grows…) 56 



Cycles and paths in random dense-sparse graphs  
 

• n nodes. Each node is L w.p. ·1/2 and H w.p. 1-  

 

• incoming edges to L are drawn w.p.  
 

• incoming edges to L are drawn w.p.  

L 

H 

58 



Cycles and paths in random sparse (sub)graphs 

(v=0, only highly sensitized patients)  

H 

Theorem.   

(a) The number of cycles of length O(1) is O(1).   

(b) But when pH is a large constant there is cycle with length O(n) 

“Proof” (a): 

59 To be logistically feasible, a long cycle must be a chain, i.e. contain a NDD 



Cycles and paths in random sparse graphs (v=0)  

H 

Theorem.   

(a) The number of cycles of length O(1) is O(1).   

(b) But when pH is a large constant there is path with length O(n) 

Since cycles need to be short (as they need to be conducted 

simultaneously) but chains can be long (as they can be initiated by an 

altruistic donor,) the value of a non-directed donor is very large! 
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Case v>0 (some low sensitized, easy to match patients. Why 

increasing cycle size helps  
 

L 

H 

Theorem. Let  Ck be the largest number of transplants achievable with  
cycles · k.  Let Dk be the largest number of transplants achievable with  

cycles · k plus one non-directed donor. Then for every constant k there exists >0 

 

 

 

 

Furthermore, Ck and Dk cover almost all L nodes.  
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Case v>0. Why increasing cycle size helps  
 

  

Increasing cycle lengths significantly increases transplants.  

Highly sensitized patients are the principal beneficiaries.  
 

Low sensitized pairs of all blood types are overdemanded: it’s 

easy to start a cycle from L to H since there are many H, 

and easy to end it back in L since most blood type 

compatible donors will do… 
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Case v>0. Why increasing cycle size helps  
 

  

Increasing cycle lengths significantly increases transplants.  

Highly sensitized patients are the principal beneficiaries.  
 

Low sensitized pairs of all blood types are overdemanded: it’s 

easy to start a cycle from L to H since there are many H, 

and easy to end it back in L since most blood type 

compatible donors will do… 
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Simulations (re-sampling) with clinical 
data 
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Long chains benefit highly sensitized patients (without 
harming low-sensitized patients) 
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NKR non-directed donor chain:2012. 60 lives, 30 
kidneys: the practical implications are clear  
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What would it take to make long 
chains unnecessary? 

• Many low-sensitized patients in the pool 

• Many non-directed donors. 

 

• With enough of those, small cycles (but not 
necessarily as small as k=3) and short chains 
would be sufficient. 



But progress is still slow 

68 

  
 

• When we started, there were only 40,000 

people on the US deceased-donor waiting 

list, and now there are over 90,000 


