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So far we considered only decision problems where the decision maker took the en-

vironment in which the decision is being taken as exogenously given: a consumer who

decides on his optimal consumption bundle takes the prices as exogenously given. In

perfectly competitive markets the assumption that my own actions do not influence the

behavior of other agents or do not affect the market price is very reasonable. However,

often this is not a good assumption. Firms which decide how to set prices, certainly take

into account that their competitors might set lower prices for similar products. Further-

more in the free rider problem which can occur when there are public goods we saw that

one agent’s decision certainly takes into account that it might change the other agents’

behavior and therefore the total supply of public goods. The tools we have studied so far

are not adequate to deal with this problem.

The purpose of Game Theory is to analyze optimal decision making in the presence

of strategic interaction among the players.

1 Definition of a Game

We start with abstractly defining what we mean by a game.

A game consists of

• a set of players:
In these notes we limit ourselves to the case of 2 players — everything generalizes to

N players.

• a set of possible strategies for each player:
We denote a possible strategy for player i = 1, 2 by si and the set of all possible

strategies by Si.

• a payoff function that tells us the payoff that each player gets as a function of the
strategies chosen by all players:

We write payoff functions directly as functions of the strategies, vi(s1, s2).
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If each player chooses a strategy, then the result is typically some physical outcome.

However, the only thing that is relevant about each physical outcome are the payoffs

that it generates for all players. Therefore, we ignore the physical outcomes and

only look at payoffs. Payoffs should be interpreted as von Neumann-Morgenstern

utilities, not as monetary outcomes. This is important if there is uncertainty in the

game.

Sometimes we write vi(si, s−i) to show that payoff for individual i depends on his
own strategy si and on his opponent’s strategy s−i ∈ S−i.

We will assume throughout that all players know the structure of the game including

the payoff function of the opponent (one can analyze games without this assumption, but

this is slightly too complicated for this class, the econ department offers a class in game

theory where stuff like this is discussed; also, we will come back to this when we will talk

about auctions).

We will distinguish between normal-form games and extensive-form games.

In normal form games (the reason why they have this name will become clearer later

on) the players have to decide simultaneously which strategy to choose. Therefore, time

is not important in these games.

In some games it might be useful to explicitly model time. I.e. when two firms change

their prices over time to get a larger fraction of the market, they will certainly take into

account past actions. Things like this will be modeled in extensive form games. We will

come back to this in Section 3 below.

1.1 Some examples of normal-form games

It is useful to consider three different examples of games.

1.1.1 Prisoners’ dilemma

Rob and Tom commit a crime, get arrested and the police interrogates them in separate

rooms. If one of them pleads guilty and the other one does not, the first can cut a deal

with the police and go off free. The other one is sent to jail for 20 years. If they both plead

guilty, they both go to jail for 10 years. However, if they both maintain their innocence

each one goes to jail only for a year. The strategies in this game are “confess” and “not

confess,” for both Rob and Tom. If we assume that utility is negative of ‘time in jail’, we

can summarize the payoffs in a matrix

Confess Don’t confess

Confess (-10,-10) (-20,0)

Don’t confess (0,-20) (-1,-1)
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In this matrix, the horizontal player is Rob, the vertical player is Tom — each entry

of the matrix gives Rob’s payoffs, then Tom’s payoffs (the convention is to write the

horizontal guy’s payoff first).

1.1.2 A coordination game

A different example of a game is about how Rob and Tom might have to coordinate on

what they want to do in the evening (assuming they are not in jail anymore). Rob and

Tom want to go out. Tom likes hockey (he gets 5 utils from going to a hockey game), but

not baseball (he gets 0 utils from that). Rob likes baseball (gets 5 utils) but not hockey

(gets 0 utils). Mainly, however, they want to hang out together, so each one gets 6 utils

from attending the same sport event as his friend. The payoff matrix for this game looks

as follows (Rob is the horizontal guy):

Hockey Baseball

Hockey (6,11) (0,0)

Baseball (5,5) (11,6)

1.1.3 Serve and return in tennis

As a third and last example, suppose Ron and Tom play tennis. If Rob serves to a side

where Tom stands he loses the point, if he serves to a side where Tom does not stand,

he wins the point The payoff matrix to this game (Rob being the horizontal guy) is as

follows:

Left Right

Left (-1,1) (1,-1)

Right (1,-1) (-1,1)

2 Solution concepts for normal form games

In this section we want to examine what will happen in each one of the examples, if we

assume that both players are rational and choose their strategies to maximize their utility.

2.1 Dominant strategies

In the prisoners’ dilemma, it is easy to see what’s going to happen: whatever Rob does,

Tom is better off confessing. Whatever Tom does, Rob is better off confessing. So they

will both plead guilty. Confessing is a dominant strategy.
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Formally, a dominant strategy for some player i is a strategy si ∈ Si such that for all

s−i ∈ S−i and all s̃i ∈ Si
vi(si, s−i) ≥ vi(s̃i, s−i)

When both players in the game have a dominant strategy we know what will happen:

each player plays his dominant strategy and we can describe the outcome. We call this

an equilibrium in dominant strategies.

There is little doubt that in games where such an equilibrium exists this often will

be the actual outcome. Note, that the outcome might not be Pareto-efficient: in the

prisoners’ dilemma game, the cooperative outcome would be for both guys to keep their

mouths shut.

2.2 Nash equilibrium

In the coordination game neither Rob nor Tom have a dominant strategy. If Tom goes to

hockey, Rob is better off going to hockey, but if Tom goes to baseball, Rob is better off

going to baseball.

In order to solve this game (i.e. say what will happen) we need an equilibrium concept

which incorporates the idea that Tom’s optimal action will depend on what he thinks Rob

will do and that Rob’s optimal action will depend on Tom’s.

A strategy profile (i.e. a strategy of player 1 together with a strategy of player 2) is

a Nash-equilibrium if player 1’s strategy is a ‘best response’ to what player 2 does (i.e.

given what player 2 does, player one’s strategy gives him the highest payoff) and vice

versa.

A little bit more formally (s1, s2) ∈ S1 × S2 is a Nash-equilibrium if

v1(s1, s2) ≥ v1(s̃, s2) for all s̃ ∈ S1

v2(s1, s2) ≥ v2(s1, s̃) for all s̃ ∈ S2

Note that this definition does require that player 1 knows what player 2 is going to do

and player 2 knows what player 1 is up to.

2.2.1 Pure strategy Nash equilibria

Let’s go back to the coordination game. Even though there is no equilibrium in dominant

strategies (because none of the players has a dominant strategy) it turns out that there

are at least two Nash-equilibria: (H,H) and (B,B).

It is very easy to verify that these are both Nash-equilibria:
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• (HH) is a Nash equilibrium because

vR(H,H) = 6 > vR(B,H) = 5 and vT (H,H) = 11 > vT (H,B) = 0

• (BB) is a Nash equilibrium because

vR(B,B) = 11 > vR(H,B) = 0 and vT (B,B) = 6 > vT (B,H) = 5

However, in the Tennis example, we cannot find a Nash equilibrium so easily: whatever

Rob does, Tom will be better off doing something else — on the other hand, whatever Tom

does, Rob will be better off doing the same. So we cannot find a pair of strategies which

is a Nash equilibrium. In real life, Rob and Tom would be better off to randomize over

their possible strategies.

2.2.2 Mixed strategies

In some games, it is useful to allow players to randomize over their possible strategies.

We say they play a mixed strategy. A mixed strategy is simply a probability distribution

over the player’s pure strategies. Sometimes we will denote the set of all mixed strategies

for some player i by Σi and a given mixed strategy by σi ∈ Σi. If there are only two pure

strategies, a mixed strategy is just the probability to play the first pure strategy - it is

just a number between zero and one. When there are more than 2 pure strategies, things

get a little more complicated, but you should not worry about details there.

If players play mixed strategies they evaluate their utility according to the von-

Neumann Morgenstern criterion. If player one has n1 pure strategies and player 2 has n2
pure strategies there are generally n1 × n2 possible outcomes - i.e. possible states of the

world. The probabilities of these states are determined by the mixed strategies (this will

hopefully become clear in the examples below). We can write a player h’s payoff (utility

function) as a function uh(σ1, σ2)

A Nash equilibrium in mixed strategies is then simply a profile of mixed strategies

(σ1, σ2) (in the cases below these will just be two probabilities) such that

u1(σ1, σ2) ≥ u1(σ̃, σ2) for all σ̃ ∈ Σ1

u2(σ1, σ2) ≥ u2(σ1, σ̃) for all σ̃ ∈ Σ2

Equilibrium in Tennis

Suppose Rob can serve right with probability πR and serve left with probability (1−πR).

Suppose Tom can stand right with probability πT and stand left with probability (1−πT ).
A mixed strategy can then be represented by a number:

σR = πR ∈ [0, 1] and σT = πT ∈ [0, 1]
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Utilities are von-Neumann-Morgenstern, for h = R, T :

uh(σR, σT ) = πRπTv
h(L,L) + πR(1− πT )v

h(L,R) +

πT (1− πR)v
h(R,L) + (1− πT )(1− πR)v

h(R,R)

In tennis, πR = πT = 1/2 is a Nash-equilibrium. Evidently in this equilibrium payoffs are

given by

uR(0.5, 0.5) =
1

4
(vR(L,L) + vR(L,R) + vR(R,L) + vR(R,R)) = 0

uT (0.5, 0.5) =
1

4
(vT (L,L) + vT (L,R) + vT (R,L) + vT (R,R)) = 0

To show that it is an equilibrium we must show that neither Rob nor Tom do better

than getting a payoff of 0.

uR(π, 0.5) =
1

2
(πvR(L,L) + πvR(L,R) +

(1− π)vR(R,L) + (1− π)vR(R,R)) = 0

uT (0.5, π) =
1

2
(πvT (L,L) + (1− π)vT (L,R) +

πvT (R,L) + (1− π)vT (R,R)) = 0

Given that the other guy randomizes 1/2-1/2, your decision does not affect your payoff

and neither Rob nor Tom can get more than 0.

This suggests a general strategy for finding mixed strategy Nash equilibria: find prob-

abilities for Tom such that Rob is indifferent between his two pure strategies. Find prob-

abilities for Rob such that Tom is indifferent between his two pure strategies. These two

will be a mixed strategy equilibrium: if Rob is indifferent between his two pure strategies

he might as well play the mixed strategy, the same for Tom.

Mixed strategies in the coordination game

In the coordination game, we found two pure strategy Nash equilibria. As it turns out

there is an additional Nash equilibrium in mixed strategies.

Suppose Tom randomizes between hockey and baseball with some probability πT . At

what point is Rob indifferent?

uR(H, πT ) = πT · 6 + (1− πT ) · 0 = 6πT
uR(B, πT ) = πT · 5 + (1− πT ) · 11 = 11− 6πT
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11− 6πT = 6πT ⇒ πT =
11

12

Rob randomizes between hockey and baseball with πR. When is Tom indifferent?

uT (πR,H) = πR · 11 + (1− πR) · 5 = 5 + 6πR
uT (πR, B) = πR · 0 + (1− πR) · 6 = 6− 6πR

5 + 6πR = 6− 6πR ⇒ πR =
1

12

Therefore a Nash equilibrium in mixed strategies is πR = 1/12, πT = 11/12.

3 Extensive form games

So far we considered only games in which both parties had to decide simultaneously which

strategy to choose. Now we will consider situations in which one player moves first, the

other player observes what the first player did and then decides on which action to take.

To capture the sequential structure of the game, we will depict sequential games by

using game trees.

It is important to clarify what a strategy for a player is in extensive form games. A

strategy for a player who moves second will be a contingent plan: for all possible things

the first player could have done, the second player needs to specify his optimal action.

3.1 Examples

We will consider two examples and show what game theory predicts about the outcomes.

R and D Problem

The first example is a simple research and development problem. Suppose a small com-

pany (player A) has to decide how much to invest in research and development - if it

invests a lot it will invent a new method of production. However, a big firm moves (player

B) second and has the choice to imitate the small firm. If the small firm gets to use its

invention it gets a payoff of 9, the big firm gets 1. If the big firm imitates the small firm,

the small firm only gets 1 and the big firm gets 9.

If the small firm does not spend any money on research and development both firms

get 3. Figure 1 shows the game tree for this game.
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Figure 1:

In order to figure out how Nash-equilibria look like, we want to ask, what are the

possible strategies in this game. This part of the notes might seem mind-boggling at

first (in fact it still confuses me even now when I teach it) but if you think a little

about it, it makes sense. Obviously player A’s strategies are SA = {invest, dont invest}.
Naively one would think (and for inexplicable reasons some undergraduate textbooks (who

know better) make it sound like this) that Player B’s strategies are SB = {imitate, dont

imitate}. However, this is false. Player B knows what player one has done when it is his
turn to move. So his actual strategy has to specify what he does in each possible situation

- his strategies can differ depending on player A’s action.

We will see below why it is important to treat this issue carefully and why this for-

mulation gives us some problems with the concept of Nash equilibrium

Centipede game

The second example is a famous game which shows that there can be a real problem in

sequential games. It’s called centipede game after the looks of its game tree. The basic

idea here is that Rob and Tom go to a party together. Rob is there first; if he leaves

without waiting for Tom he gets a payoff of one util (say the food which was served at

the party). If he waits for Tom, it’ll only be fun if Tom stays for a while. If Tom leaves

right away, Tom gets a payoff of one (from the food) while Rob gets zero (the waiting got

on his nerves and his overall payoff is zero). However, if Tom decides to stay, Rob has to

make one final decision - he can stay the rest of the evening in which case he bores Tom

to death, he gets 3 and poor Tom gets 0. Or he can leave after he and Tom talked for a

while in which case they both get 2. Figure 2 shows the game tree for this game.
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3.2 Nash-equilibrium and backward induction

We now want to figure out how to solve these two games.

It makes sense to solve a sequential game by backward induction. We start at the

end and ask what is the players best move, given that he ever gets to this node of the

tree. Then we ask what will the player who moves first do, given that he knows that the

other player will react optimally.

Solving R and D by induction

• Player B:

— If A chooses to invest, player B should choose to imitate.

— If A chooses not to invest, player B has no choice.

• Player A:

— If A chooses to invest, then B will choose to imitate and A will get a payoff of

1.

— If A chooses not to invest, then A will get 3.

⇒ Nash equilibrium: A will choose not to invest.

Nash equilibrium in R and D

Note, however, that this game would have had a second Nash equilibrium if player B (the

big firm) could threat player A to fight it if it does not invest. Suppose, for example, that

player B can cut prices and make payoffs for both firms go to zero (instead of 3). If we

take the strategies as described above, player B could play (fight if no inestment, imitate
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if investment). Given that it plays this, player A’s best response will be to invest. The

outcome will be (1, 9) and player B is very happy.

Recall the definition of a Nash equilibrium. Check that these strategies satisfy the

definition of a Nash equilibrium.

Intuitively, player B threatens to fight even if A chose not to invest. A thinks that

the threat is credible and therefore invests.

Note, however, that the threat of B to fight if A chooses not to invest is not credible.

Once A has chosen not to invest, B will understand that he hurts himself by choosing to

fight and that he would do better by choosing not to fight. Hence, this Nash equilibrium

is not convincing.

In order to rule out these types of unconvincing Nash equilibria we require that in a

sequential game an equilibrium has to be “subgame perfect”.

Definition 1 (Subgame perfect equilibrium) A Nash equilibrium is subgame per-

fect, if the strategies of all players form a Nash equilibrium not only in the game as a

whole, but also in every subgame of the game. That is, after every possible history of the

game the strategies of the players have to be mutually best responses.

The Nash equilibrium [invest,(fight if no inestment, imitate if investment)] is not sub-

game perfect. It turns out (we will not prove this here, because the issue of subgame

perfection is a little too advanced for this class) that every equilibrium one obtains by

backward induction is subgame perfect. Therefore it makes sense to simply solve sequen-

tial games by backward induction without spending too much time thinking about the

possible Nash equilibria of the game.

Centipede and induction

We now want to solve the centipede game by backward induction: in the last stage, Rob

will certainly stay, since this gives him a payoff of 3, leaving would give him only a payoff

of 2. Knowing that Rob will stay at the end, Tom knows that we will get 0 if he stays. If

he leaves he will get 1 - therefore, when it is Tom’s turn to decide, his optimal decision

is to leave. Knowing this, what is Rob going to do? If Rob stays at the very beginning

he knows that Tom will leave and he will get 0, therefore he leaves right away, gets 1 and

the game is over.

The unique subgame-perfect Nash equilibrium of this game is therefore: Rob leaves

right away.

The problem with this outcome is that it is somewhat counterintuitive. True, at the

end Rob might stay and therefore Tom does not trust him, but in many experiments people

did it was actually observed that people played the cooperative outcome: stay,stay,leave
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which gives a payoff of 2 for both players. Also, a more careful examination reveals that

there is a slight problem with backward induction here: Suppose Rob stays, when it is

Tom’s turn, how is he going to reason?

One possibility is that he’ll say: If I stay, Rob will stay (because he is a selfish player

and does not care about my payoffs) and I will get 0, so I better leave now and I will get

1.

However, if Rob really is a rational (selfish) player, why did he stay in the first place?

This was not optimal, given that he knows Tom is rational. So may-be, Rob stayed

because he is not the rational selfish guy Tom thought he is and may-be he will not leave

if Tom stays.

3.3 Chess

As a last example for extensive form games, suppose Rob and Tom play chess. The final

payoffs are (1, 0) if Rob wins, (0, 1) if Tom wins and (0.5, 0.5) if it is a draw. Drawing

the game tree for this game is possible in principle but since there are billions of possible

sequences of moves I’ll pass on this.

A strategy for a player is a full contingent plan, given any possible sequence of previous

moves it must specify what the player should do in this situation.

Since the game will end after a finite number of moves for sure (recall that after three

times of the same thing, the game ends in a draw), we could in principle solve it by

backward induction. Note that there must be a strategy for one of the players which will

ensure that he either always wins or always draws - we just don’t know it, but it must be

true that in principle either black or white always wins or chess always ends in a draw.

4 Application: Duopoly

Suppose Rob and Tom both produce bananas at zero costs (you can do the whole thing

with positive costs — this makes everything slightly more complicated, but in my view it

does not add any additional insights) and face an aggregate demand curve for bananas

D(p) = 10− p. Rob and Tom are the only producers of bananas, so they realize that in

equilibrium they can control the price of bananas.

There are 4 different things that can happen:

• Collusion: Rob and Tom become buddies and try to maximize their joint profit.

• Cournot: Rob and Tom independently decide how much bananas to supply

• Stackelberg: First Rob decides how many bananas to supply, then Tom who lives

closer to the market sees this and makes his decision
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• Bertrand: Rob and Toms set different prices for their bananas.

You should remember from Econ 50 how to solve for the collusion outcome. If they

maximize joint profits, they will behave like a monopoly, i.e. they set a quantity q to

maximize profits π(q) = q(10− q) Therefore, we get 10− 2q = 0 or q = 5. They jointly
produce 5 bananas, get 25 dollars of profit and split them 50-50, so they each end up with

12.50.

I now want to discuss the other three situations (which are ‘non-cooperative’) and

show how to model them as games and how to solve for the Nash equilibria.

4.1 Cournot’s story

Augustin Cournot was a French economist who first studied oligopoly. In our modern

formulation, his idea is as follows. Rob’s strategy is to pick some amount of bananas (up

to 10) to supply, i.e. sR ∈ [0, 10] and Tom picks how many bananas to supply sT ∈ [0, 10].
The equilibrium price will satisfy

10− p = sR + sT ⇒ p = 10− sR − sT

and Rob’s and Tom’s payoffs will therefore be

vR(sR, sT ) = sR · (10− sR − sT )

vT (sR, sT ) = sT · (10− sR − sT )

Obviously this is a static game. What is a Nash-equilibrium for this game? The optimal

choice for Rob must satisfy:

∂vR(sR, sT )

∂sR
= 10− sT − 2sR = 0

Same for Jerry:
∂vT (sR, sT )

∂sT
= 10− sR − 2sT = 0

Since sR = sT we get that sR = sT = 10/3. So in the Nash equilibrium they will each

supply 10/3 - total supply will be 6.67 and total profits will be 20/30 ·(10−20/3) = 22.22,
less than under the collusion outcome.

4.2 Stackelberg’s story

Stackelberg included some time-component into Rob and Tom’s banana business. We

assume that Rob chooses first how many bananas to supply; he then walks by Tom’s
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farm with his bananas, Tom observes this and adjusts optimally. Since the players do not

move at the same time, we need to model the situation as an extensive form game: Rob

moves first and decides to supply sR ∈ [0, 10] bananas. Then it is Tom’s turn to supply
some sT ∈ [0, 10] (it is difficult to draw a game-tree because there are infinitely many
strategies).

We solve this game by backward induction: Given that Rob has chosen some fixed s̄R

Tom solves:
∂vT (s̄R, sT )

∂sT
= 10− s̄R − 2sT = 0

For any choice for Rob, Tom’s optimal solution satisfies

sT = 5− 1/2s̄R

When it is Rob’s turn to decide he knows that Tom will always choose sT = 5 − 1/2s̄R
and he will take this into account when picking sR. Therefore Rob maximizes

sR(10− (sR + sT )) = sR(10− (sR + 5− 1/2sR))

His first order conditions imply

10− sR − 5 = 0⇒ sR = 5

Therefore Rob just goes out with 5 bananas, Tom sees this and has no choice but to only

supply 2.5 bananas.

So in this situation, the total supply of bananas is 7.5 (even larger than in the Cournot

case) but the profits are not split equally. Rob has a first mover advantage.

4.3 Bertrand

Bertrand assumed that Rob and Tom both bring huge amounts of bananas to the market

but that they do not necessarily have to sell them all. Instead they set some price and

sell whatever amount of bananas they can at that price. So Rob’s strategy now is to set

some pR ∈ [0, 10] and Tom’s strategy is to set some pT ∈ [0, 10]. The buyers obviously
only buy at the lower price, so payoffs now are

vR(pR, pT ) =


pR · (10− pR) if pR < pT

1/2pR · (10− pR) if pR = pT

0 otherwise

vT (pR, pT ) =


pT · (10− pT ) if pT < pR

1/2pT · (10− pT ) if pR = pT

0 otherwise
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One can verify that the unique Nash equilibrium is (pR, pT ) = (0, 0). Whenever pT > 0

Ben can increase his payoff by setting pR = (1− �)pT for some small � > 0. However, the

same is true for Tom; he can increase his payoff by setting pT = (1− �)pR for some small

� > 0. Only if pR = pT = 0 none of them can do better.
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