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1 Introduction

Most machine learning algorithms are theoretically designed and practically applied with the consider-
ation that the training data and test data arise from a common distribution. In several applications
in natural language processing ranging from information extraction or sentiment analysis, classification
algorithms are trained using a limited set of documents and applied generally to works spanning different
genres. Also, in genetics, most experiments are done and predictive methods developed for people from
a particular geography but this is broadly applied to all humans whose genetic makeup arises from a
different distribution. It is of interest to learn how efficiently algorithms trained on samples from a source
distribution perform on test data arising from a target distribution. In [1], the authors investigate this
problem of domain adaptation.

The authors first consider the problem of binary classification trained on labeled data from a source
distribution. Classification error bounds are presented in terms of source domain error and divergence
measures between the two distributions. Unlabeled data from either domain is then leveraged to estimate
the divergence between domains to present a second bound. The third question the authors answer is
learning with different amounts of labeled target and source data and they do this via a hypothesis that
minimizes a convex combination of the error.

We aim to extend the results of the paper in a few directions. In Section 2, we introduce the problem
setup. We then present a simple upper bound on the generalization error with different domains. The
paper provides this result for only binary function with 0-1 loss. We extend it to arbitrary functions and
a large class of loss functions. Seeking to make this bound tighter, we define a classifier based distance
for a larger class of hypothesis and loss functions. We now extend the results by giving guarantees on
an algorithm that seeks to minimize a convex combination of training error and test error. We attempt
to use this bound to show what amount of regularization is appropriate. In Section 3, we present an
alternate view of looking at the correct amount of regularization. Finally, we validate some of the
theoretical results with simulations in Section 4. Conclusions are presented in Section 5.

2 Problem Setup and Theoretical Results

2.1 Problem Setup

Let us consider data x ∈ Rd which could arise from a source distribution DS with pdf φS or a target
distribution (DT and φT ). For data in the source distribution, We have y = fS(x) and for for data in
the target distribution, y = fT (x). Here, fS and fT are deterministic multilabel functions which we
aim to generalize further to random functions. For hypothesis h ∈ H, consider bounded loss functions
|`(h, x, f)| ≤ 1. We suppose that there are n unlabelled points from each distribution and βm and
(1− β)m labelled points in training and test data sets respectively.
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2.2 Generalized Results

2.2.1 A weak bound

The first theorem generalizes what is present in the paper and connects the estimation error E[`(h,X, fT )]
in the target distribution to what was learned on the training set.

Theorem 1. With the set-up described above,

EDT
[`(h, x, fT )] ≤ EDS

[`(h, x, fS)] + min{PrDS
(fT 6= fS),PrDT

(fT 6= fS)}+ 2‖φS − φT ‖TV

Proof.

EDT
[`(h, x, fT )] = EDS

[`(h, x, fS)] + EDT
[`(h, x, fT )]− EDT

[`(h, x, fS)] + EDT
[`(h, x, fS)]− EDS

[`(h, x, fS)]

≤ EDS
[`(h, x, fS)] + |

∫
x

φT (x)(`(h, x, fT )− `(h, x, fT ))dx|+ |
∫
x

(φT (x)− φS(x))`(h, x, fS)dx|

≤ EDS
[`(h, x, fS)] + EDT

[1(fT 6= fS)] + 2‖φT − φS‖TV

We can also split the first equality differently leading to the other inequality.

We can extend the proof to continuous bounded labelling functions as well. Consider a natural
Lipschitz type constraint on the loss function - |`(h, x, f)− `(h, x, f ′)| ≤ L|f(x)− f(x′)|. This holds for
a wide variety of loss functions such as `(h, x, f) = |h(x) − f(x)|. Now, recognize that if |`(h, x, fS) −
`(h, x, fT )| ≥ δ ⇒ |fS(x)− fT (x)| ≥ δ/L. using these in the previous proof for any δ > 0,

EDT
[`(h, x, fT )] ≤ EDS

[`(h, x, fS)] + δ + |
∫
x

φT (x)1(|fS(x)− fT (x)| ≥ δ/L)dx|+ |
∫
x

(φT (x)− φS(x))`(h, x, fS)dx|

≤ EDS
[`(h, x, fS)] + δ + min{PrDS

(|fS − fT | ≥ δ/L),PrDT
(|fS − fT | ≥ δ/L)}+ 2‖ΦS − ΦT ‖TV

If there is no difference in labelling functions between the two data sets, the error is bounded by the
total-variation distance between the two datasets. This is a very loose bound as it does not take into
account the loss function. Here is an example where it is loose. H = {x 7→ 1(1 ≤ b) : b ∈ R−}, `(h, x, f) =
|h(x) − f(x)|∀h, f ∈ H. Now consider source and target distributions on real line that differ on x ≥ 0.
In this case, there should be no error but the total variation distance is non-zero. Now we give an
example where this bound is tight. Consider x ∈ {0, 1}, fS = fT = 1{1}, h = 1{0},ΦS = B(ρ1),ΦT =
B(ρ2), `(h, x, f) = 1(h(x) ≥ f(x))−1(h(x) ≤ f(x)). In this case, the bound of 2‖ΦS−ΦT ‖TV = 2(ρ2−ρ1)
holds tightly.

2.2.2 Towards stronger bounds

We now aim to modify results in the paper to include bounds with Rademacher complexity instead of
VC dimensions to give tighter bounds in some conditions. We present here an extension to the lemma
giving performance bounds on the estimate of a general classifier based distance measure from empirical
estimates. This distance metric is defined in [2]. It is smaller than the total variation distance as it
restricts the subsets over which measures are taken by the hypothesis class.

We have,

dG(D,D′) = sup
g∈G
|ED[g(x)]− ED′ [g(x′)]|

= sup
g∈G
|E[g′(z)]|,

where z = (x, x′), x
iid∼ D, x′

iid∼ D′, g′(z) = g(x) − g(x′). Similarly, the empirical estimate with n
samples from D,D′ is,

d̂G(zn1 ) = sup
g∈G
| 1
n

∑
i∈[n]

g′(zi)|

Now observe that |dG−d̂G(zn1 )| ≥ ε implies ∃g ∈ G||E[g′(z)]|−| 1n
∑n
i=1 g

′(zi)|| ≥ ε. This is seen for the
g that either maximizes the real distance measure or the empirical one. This in turn implies by triangular
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inequality that supg |E[g′(z)] − 1
n

∑n
i=1 g

′(zi)| ≥ ε. Denote Gn(Z = zn1 ) = supg E[g′(z)] − 1
n

∑n
i=1 g

′(zi).
We observe bounded differences if one of the parameter changes and hence by McDiarmid inequality,

|Gn(Z)−Gn(Z\i, z
′
i)| ≤

2

n

Pr(Gn ≥ E[Gn] + ε) ≤ exp

(
−nε2

2

)
Here, Z\i indicates all components of Z except the ith one.

Now, we use Rademacher complexity to bound

E[Gn] ≤ 2E

[
sup
g

1

n

n∑
i=1

σig
′(z)

]
≤ 2Rn(G)

Combining these, we get a lemma which tells us how quickly we can learn the classifier based distance
from sample values.

Lemma 1. With probability ≥ 1− δ, we get the following bound on the estimate of the binary classifier
based distance,

dG ≤ d̂G(zn1 ) + 2Rn(G) +

√
2 log(2/δ)

n

We apply Lemma 1 to the symmetric difference hypothesis class defined as,

gh,h′ ∈ G = H∆H ⇒ gh,h′(x) = `(h, x, h′). (1)

We obtain the following lemma, an extension of that in the paper to continuous labelling functions.

Lemma 2. From the definition of the classifier based distance

|EDS
[`(h,X, h′)]− EDT

[`(h,X, h′)]| ≤ dH∆H(DS , DT )

We focus on loss functions and hypothesis classes that satisfy certain properties:

1. Loss functions:
`(h1, x, h2) ≤ `(h1, x, h3) + `(h3, x, h2)

Examples include 1(h1 6= h2), |h1 − h2|.

2. There is jointly optimum hypothesis h∗:

λ = inf
h∈H

EDS
[`(fS , x, h)] + EDT

[`(h, x, fT )]

Theorem 2. With the definitions and conditions holding from above,

EDT
[`(h, x, fT )] ≤ EDS

[`(h, x, fS)] + d̂H∆H(zn1 ) + 2Rn(H∆H) +

√
2 log(2/δ)

n
+ λ

Proof. Above conditions are applied to obtain

EDT
[`(h, x, fT )] ≤ EDT

[`(h, x, h∗)] + EDT
[`(h∗, x, fT )]

≤ EDT
[`(h∗, x, fT )] + EDS

[`(h, x, h∗)] + |EDT
[`(h, x, h∗)]− EDS

[`(h, x, h∗)]|
≤ EDT

[`(h∗, x, fT )] + EDS
[`(fS , x, h

∗)] + EDS
[`(h, x, fS)] + dH∆H(DS , DT )

≤ EDS
[`(h, x, fS)] + λ+ dH∆H(DS , DT )
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Now given some labeled data from source ((1 − β)m) and target ((β)m), we aim to solve find the
best hypothesis by minimizing an α combination of the empirical errors (denoted by Ê).

Êα(h) = αÊT (h, x, y) + (1− α)ÊS(h, x, y)

Eα(h) = αEDS
[`(h, x, fS)] + (1− α)EDT

[`(h, x, fT )]

It can be easily observed from the previous result and theorem that

|Eα(h)− EDT
[h, x, fT ]| ≤ (1− α)|dH∆H(DS , DT ) + λ| (2)

We now present a bound on how far Êα is from Eα. We can write the difference as,

Êα(h)− Eα(h) =
α

βm

βm∑
i=1

(`(h, xi, fS)− EDS
(h, x, fS)) +

1− α
(1− β)m

m∑
i=βm+1

`(h, xi, fT )− E[`(h, xi, fT )]

Similar to proof of Lemma 1, let Gn = suph Êα(h)−Eα(h). We have bounded differences for Gn with the

bound being 2α
βm when i ≤ βm variable is changed and 2(1−α)

(1−β)m otherwise. From McDiarmid inequality,

Pr(Gn − E[Gn] ≥ ε) ≤ exp

− 2mε2

α2

β + (1−α)2

(1−β)


Also, we use mechanism of Rademacher complexity to conclude that,

E[Gn] ≤ 2Rm(H∆H).

Thus, with probability ≥ 1− δ, we have

|Êα(h)− Eα(h)| ≤ 2Rm(H∆H) +

√
log(2/δ)

2m

(
α2

β
+

(1− α)2

1− β

)
(3)

Theorem 3. Suppose we have loss functions and hypothesis classes that satisfy constraints, we have n
unlabelled points in each points, βm labelled source distribution points and (1 − β)m target distribution

points and we find the empirical risk minimizer of an alpha combination (ĥ) and obtain with probability
≥ 1− 2δ,

EDT
[`(ĥ, x, fT )] ≤ EDT

[`(h∗, x, fT )] + 4Rm(H∆H) + 2

√
log(2/δ)

2m

(
α2

β
+

(1− α)2

1− β

)

+ 2(1− α)(d̂H∆H + 2Rn(H∆H) +

√
2 log(2/δ)

n
+ λ)

Proof. The proof employs a combination of all previous lemmas and theorems. We step through it here,

EDT
[`(ĥ, x, fT )] ≤ Eα(ĥ) + (1− α)(dH∆H(DS , DT ) + λ)

≤ Êα(ĥ) + 2Rm(H∆H) +

√
log(2/δ)

2m

(
α2

β
+

(1− α)2

1− β

)
+ (1− α)(dH∆H(DS , DT ) + λ)

≤ Êα(h∗) + 2Rm(H∆H) +

√
log(2/δ)

2m

(
α2

β
+

(1− α)2

1− β

)
+ (1− α)(dH∆H(DS , DT ) + λ)

≤ Eα(h∗) + 4Rm(H∆H) + 2

√
log(2/δ)

2m

(
α2

β
+

(1− α)2

1− β

)
+ (1− α)(dH∆H(DS , DT ) + λ)

≤ EDT
[`(h∗, x, fT )] + 4Rm(H∆H) + 2

√
log(2/δ)

2m

(
α2

β
+

(1− α)2

1− β

)

+ 2(1− α)(d̂H∆H + 2Rn(H∆H) +

√
log(2/δ)

2n
+ λ)
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2.3 Applications and Examples

Consider a regression setting. LetH = {x 7→ wᵀx : w ∈ Rd, ‖w‖2 ≤ Bw} for constant Bw ≤ 1/2. x in this
case is bounded as E[‖x‖22] ≤ B2. Let `(hw, x, hw′) = |hw(x)−hw′(x)|/B for hw, hw′ ∈ H. It can be seen
that Rn(H∆H) ≤ 2Bw/

√
n. Let fs = hwS

, fT = hwT
. Let distributions be DS = N (0, B2/dI), DT =

N (0, B2/4d). We can calculate

λ = inf
w

EDS
[|(w − wS)ᵀx|/B] + EDT

[|(w − wT )ᵀx|/B]

≤ inf
w

√
EDS

[((w − wS)ᵀx)2]/B +
√
EDT

[|(w − wT )ᵀ/Bx|2]

≤ inf
w

‖w − wS‖2√
d

+
‖w − (wT )‖2

2
√
d

≤ ‖wS − wT ‖2
3
√
d

The bound becomes

EDT
[`(ĥ, x, fT )] ≤ EDT

[`(h∗, x, fT )] + 4
Bw√
m

+ 2

√
log(2/δ)

2m

(
α2

β
+

(1− α)2

1− β

)
+

2(1− α)(d̂H∆H + 2
Bw√
n

+

√
log(2/δ)

2n
+
‖wS − wT ‖2

3
√
d

)

We can see that if increase Bw which is the regularization term, d̂H∆H+EDT
[`(h∗, x, fT )] goes down

but the rademacher complexity term goes up. There is an appropriate regularization to use. Depending
on β, the bound can be optimized to find the right mixing ratio α which also determines the appropriate
regularization to use. As the number of labelled or unlabelled data points increase, the error falls. As
the difference between the labelling functions decrease, the error bound falls as expected. This bound is
much tighter than the one in [1] because there is no dependence on the dimension.

3 Regularization in different domains

In this section, we see another view to analyse the amount of regularization to use with different domains.
For simplicity, consider a ridge-regression problem where we are interested in finding β∗ minimizing

β∗ = argmin
β

‖Xβ − Y ‖22 + λ‖β‖22, (4)

To see how the effect of regularization in reducing variance could be different in the multiple domains
case consider the following two scenarios:

1. yi = xiγ + εi, x ∼ N (0,Σ) for both source and test domains, we have N samples in total. Here εi
is drawn i.i.d. according to N (0, 1).

2. yi = xiγ + εi, xS ∼ N (µ,Σ1), xT ∼ N (−µ,Σ2) we have N/2 samples of each. Here εi is drawn
i.i.d. according to N (0, 1).

It can be seen that if τi is the ith eigenvalue of XTX, then we can formulate the bias and variance of
(4) as follows

Bias2 =

d∑
i=1

τiλ
2γ2
i

(τi + λ)2
(5)

Var =
σ2

n

d∑
i=1

τ2
i

(τi + λ)2
. (6)

To see the effect of multiple domains, assume in Scenario 2, every sample in XS is orthogonal to samples
in XT . Then eigenvectors of XT

SXS and XT
TXT are orthogonal to each other meaning that in a high-

dimensional space both Variance and Bias-square are roughly doubled, that needs higher coefficient of
regularization to reach a better bias-variance trade off, compared to Scenario 1.
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Figure 1: histogram of eunmerged − emerged for q1 = 0.4, q2 = 0.6, β1 = β2

4 Numerical Results

To evaluate the main idea of the paper, we did several numerical experiments. Here, we sought to test
the idea that we can learn on data drawn from a distribution DS and then predict on data points drawn
from a different distribution DT .

A simple idea is to perturb the predictors’ distribution, i.e the marginal DX because if we apply a
discriminative learning approach like logistic regression the goal would be to learn the conditional DY |X
that is independent from the marginal DX. To experiment this idea, first we generated n1 data points
(xi, yi)

n1
i=1, with X ∈ {0, 1}p drawn i.i.d. from a Bernoulli distribution with parameter P (Xi = 1) = q1

and

P (Yi = 1) =
1

1 + exp(−β∗1xi)
. (7)

Also we draw n2 datapoints (xi, yi)
n1+n2
i=n1+1, with X ∈ {0, 1}p drawn i.i.d. from a Bernoulli distribution

with parameter P (Xi = 1) = q2, and

P (Yi = 1) =
1

1 + exp(−β∗2xi)
. (8)

We expected that if β∗1 ≈ β∗2 then even if q1 and q2 are very different we would learn better when we
merge the two groups of data points together.

To test this hypothesis, we took β∗1 = β∗2 ∼ N (0, Ip) and q1 = 0.6 and q2 = 0.4. We used the
built-in Glmfit function in Matlab and averaged the results over 1000 Monte Carlo runs. As expected,
the test accuracy rate raised by 0.078 with merging the two datasets together. In Figure 1, the histogram
indicates that the test error when we separately learn over datasets is usually larger than the test error
when we merge the data points and learn over the merged dataset. In order to evaluate the effect of the
distance q1 − q2, the second time we set q1 = 0.9 and q2 = 0.1 and did the experiment again but this
time the test accuracy dropped by 0.02. In Figure 2, one can observe how the accuracy rate drops by
increasing q1 − q2.

We also did another experiment to understand how raising the ratio of samples coming from source
distribution can affect the performance of the trained model over the target distribution. To this end,
we trained a logistic regression model given 1000 samples with 50 features. The underlying distribution
for both target and source samples is i.i.d. Gaussian with identity covariance matrix, with random
Normally-distributed mean vectors. For each fixed proportion we averaged the results over 100 Monte
Carlo runs. In Figure 3, we plotted the drop in error-rate, compared to the case all samples coming from
target distribution, versus the proportion of samples drawn from the target distribution. We marked
different mean vector distances with different colors. Observe how the error difference increases to 0
while increasing the proportion of samples drawn from target distribution. Also notice how raising the
distance makes the difference larger.
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Figure 2: graph of accuracy rate change vs. q1 − q2
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Figure 3: Error difference vs. target sample proportion

Model complexity and domain adaptation

The paper [1] bounds the error rate in target domain by bounding the error rate in terms which decrease
when we make the hypothesis class more complex (corresponds to better classification between source
and target domain unlabelled data ) and another term which increases when we make the hypothesis
class more complex.

It is known that regularization helps when the amount of data is small compared to the param-
eter dimensions by restricting the learnt parameters to belong to small hypothesis classes. But does
regularization help when the training and testing distributions are different?

We study this behavior in the context of ridge regression, where we learn a regularized estimator
when data is generated by Y = θTX + ε, with X ∼ N (0, I) for source distribution, and ε ∼ N (0, I). We
vary the target test distribution to be X ∼ N (µed, I), where ed is the d dimensional vector of all ones.
We choose d = 10, and vary the number of training samples from source distribution to estimate θ with
different regularization parameter.

As we can see from Figure 4, when θ is estimated from limited number of source samples, there exists
some values of regularization coefficients which have much lower test error on very different target distri-
butions compared to unregularized (λ = 0) or over regularized estimators. In other words, regularization
is very important for test domains which are very different from source domains. Note that the ’best’
regularization amount is same for all target domains considered. However, once we have enough data in
source domain, the unregularized estimate performs well.

Hence, controlling model complexity by regularization makes estimator robust to changes test domain
relative to training domain.

5 Conclusions

In this paper, we have considered the problem of domain adaptation where a learning algorithm may
receive training and test data algorithms from different distributions. In particular, we have looked at
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Figure 4: Test error on target distribution when the parameter is estimated with different number of
source samples ’m’ and distance between the source and target distribution is varied. Different lines
correspond to different regularization amounts.

algorithms to minimize error with labelled and unlabelled data of different sizes from each domain. We
have extended the results of [1] to to arbitrary hypothesis and loss classes while analysing the error of
an algorithm which minimizes a convex combination of training and test error. The contribution of the
paper was to find out the optimal way to perform regularization in the domain adaptation problem.
Regularization reduces error to a larger extent when we have few data points and the domain and target
distributions widely vary.
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