Project GHZ experiment

Reference 2: “Experimental Test of Quantum Nonlocality in Three-Photon GHZ Entanglement”
From the journal Nature February 2000.

Comments on notation etc.

This paper is almost a direct copy of the whole problem assigned. There are small notational differences to note in reading this article.

1) They begin with the GHZ state which is slightly different than we have (although note that in reference 1 the GHZ state is the same as ours). They start with $|H>|H>|H> + |V>|V>|V>$. The difference is only in the phases of the terms you get for the quantum kets. See eqn 4. This should be identical to the state you found in part C2 (the yyx state), except for the phases (they have all plus signs). These phases do not effect the argument of the article.

2) You probably immediately noticed that eqn 4 doesn’t agree with yours. If you examine equations 2 and 3, you will see what we call $|P>$ and $|M>$, they call $|H'>$ and $|V'>$ respectively. Thus whenever you see a H' in the article, think P and V' think M. It all works.

3) There is some stuff on experimental details, you can gloss over these.

A paragraph by paragraph comparison goes as follows:

Paragraph 1: Just states the GHZ state in the zzz basis (HV basis). This you derived in step B1 (though note difference above.

Paragraph 2: This defines the basis as you did problem A. See that they agree.

Paragraph 3: This corresponds to problem C2.

Paragraph 4: Says you can get others (C3, and C4) by permutation. You derived them explicitly.

Paragraph 5: Start real local hidden variable model. Reasoning for instruction sets.

Paragraph 6: Defines what we call parity.

Paragraph 7: Just includes the result from problem C1.

Paragraph 8: Argues what xxx state instruction set should be. This is a different argument than we pursued. This argument states that the instruction set should be the opposite of our xxx ket. What we tried to do is to make our instruction set compatible with the C1,C3, and C4 quantum kets and found that we got differences with the C2 (yyx) result then. A slightly different approach. They argue that (given parity of yyx, yxy, and xyy) the instruction set should have parity –1.

Paragraph 9: States what xxx state is (problem C1 again). States also that these terms do not agree with what the instruction set gives.

Paragraph 10: GHZ only needs 1 measurement (ideally) to discriminate between QM and Classical.

Paragraph 11: Discussion of experimental set up.

Paragraph 12: Differences with older Bell Ineq. Violations experiments.

Paragraph 13: Explains exactly how you observe a violation.

Paragraph 14: Starts to discuss experiment error (details).

Paragraph 15: Possible counter-arguments since measurements are not perfect.

Paragraph 16: The results for one possible case (yyx) and what data look like. Figure 3 is what you want to examine. Compare these results (especially the top one) with the ket you obtained in C2 AND your instruction sets (which are opposite. You should find that they agree with your ket and not your set.

Paragraph 17: Explains some experimental error and results. See fig 4. This is based on xxx state as argued in paragraph 8.

Paragraph 18: Discusses the experimental results discussed in previous paragraph.

Paragraph 19: Some details (don’t worry).

Paragraph 20: Extensions they would like to do.
Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement

Jian-Wei Pan*, Dik Bouwmeester†, Matthew Danieli‡, Harald Weinfurter§ and Anton Zeilinger‡

* Institut für Experimentalphysik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria
† Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
‡ Sektion Physik, Ludwig-Maximilians-Universität von München, Schellingstrasse 4/III, D-80799 München, Germany

Bell’s theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle—even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed ‘entanglement’ by Schrödinger) and the

Received 12 October; accepted 14 December 1999.

Acknowledgements

Correspondence and requests for materials should be addressed to H.C.M. (e-mail: hari@alumni.princeton.edu).
two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or ‘Greenberger–Horne–Zeilinger’ (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.

We first analyse certain quantum predictions for the entangled three-photon GHZ state:

$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|H\rangle_1 |H\rangle_2 |H\rangle_3 + |V\rangle_1 |V\rangle_2 |V\rangle_3)$$

where H and V denote horizontal and vertical linear polarizations respectively. This state indicates that the three photons are in a quantum superposition of the state $|H\rangle_1 |H\rangle_2 |H\rangle_3$ (all three are horizontally polarized) and the state $|V\rangle_1 |V\rangle_2 |V\rangle_3$ (all three are vertically polarized) with none of the photons having a well-defined state on its own.

We consider now measurements of linear polarization along directions H'/V' rotated by 45° with respect to the original H/V directions, or of circular polarization L/R (left-handed, right-handed). These new polarizations can be expressed in terms of the original ones as:

$$|H'\rangle = \frac{1}{\sqrt{2}} (|H\rangle + |V\rangle)$$

$$|V'\rangle = \frac{1}{\sqrt{2}} (|H\rangle - |V\rangle)$$

$$|L\rangle = \frac{1}{\sqrt{2}} (|H\rangle + i|V\rangle)$$

$$|R\rangle = \frac{1}{\sqrt{2}} (|H\rangle - i|V\rangle)$$

For convenience we will refer to a measurement of H'/V' linear polarization as an x measurement and one of R/L circular polarization as a y measurement.

Representing the GHZ state (equation (1)) in the new states by using equations (2) and (3), one obtains the quantum predictions for measurements of these new polarizations. For example, for the case of measurement of circular polarization on, say, both photon 1 and 2, and linear polarization H'/V' on photon 3, denoted as a yx experiment, the state may be expressed as:

$$|\Psi\rangle = \frac{1}{2} (|L\rangle_1 |L\rangle_2 |H'\rangle_3 + |L\rangle_1 |R\rangle_2 |H'\rangle_3 + |R\rangle_1 |L\rangle_2 |V'\rangle_3 + |R\rangle_1 |R\rangle_2 |V'\rangle_3)$$

This expression implies, first, that any specific result obtained in any individual or in any two-photon joint measurement is maximally random. For example, photon 1 will exhibit polarization R or L with the same probability of 50%, or photons 1 and 2 will exhibit polarizations RL, LR, RR or LL with the same probability of 25%. Second, given any two results of measurements on any two photons, we can predict with certainty the result of the corresponding measurement performed on the third photon. For example, suppose photons 1 and 2 both exhibit right-handed R circular polarization. Then by the third term in equation (4), photon 3 will definitely be V' polarized.

By cyclic permutation, we can obtain analogous expressions for any experiment measuring circular polarization on two photons and H'/V' linear polarization on the remaining one. Thus, in every one of the three yx, xy, and yy experiments, any individual measurement result — both for circular polarization and for linear H'/V' polarization — can be predicted with certainty for every photon given the corresponding measurement results of the other two.

Now we will analyse the implications for local realism. As these predictions are independent both of the spatial separation and of the relative time order of the three measurements, we consider them performed simultaneously in a given reference frame — say, for conceptual simplicity, in the reference frame of the source. Then, as Einstein locality implies that no information can travel faster than the speed of light, this requires any specific measurement result obtained for any photon never to depend on which specific measurements are performed simultaneously on the other two nor on their outcome. The only way then for local realism to
explain the perfect correlations predicted by equation (4) is to assume that each photon carries elements of reality for both \(x \) and \(y \) measurements that determine the specific individual measurement result\(^{5,6,8} \).

For photon \(i \) we call these elements of reality \(X_i \) with values \(+1(-1)\) for \(H'(V') \) polarizations and \(Y_i \) with values \(+1(-1)\) for \(R(L) \); we thus obtain the relations \(Y_i X_i = -1 \), \(Y_i X_i = -1 \) and \(X_i Y_i = -1 \), in order to be able to reproduce the quantum predictions of equation (4) and its permutations.

We thus obtain the relations of quantum mechanics for an experiment.

Because of Einstein locality any specific measurement for \(x \) must be independent of whether an \(x \) or \(y \) measurement is performed on the other photon. As \(Y_i Y_j = +1 \), we can write \(X_i X_j = (X_i Y_j)(Y_j X_j)(Y_j Y_j) \) and obtain \(X_i X_j = -1 \). Thus from a local realist point of view the only possible results for an experimental error we thus confirm the GHZ predictions for the experiments.

In the case of Bell's inequalities for two photons, the conflict between local realism and quantum physics arises for statistical predictions of the theory; but for three entangled particles the conflict arises even for the definite predictions. Statistics now only results from the inevitable experimental limitations occurring in any and every experiment, even in classical physics.

Thus we conclude that the local realistic model predicts none of the terms occurring in the quantum prediction and vice versa. This means that whenever local realism predicts that a specific result will definitely occur for a measurement on one of the photons based on the results for the other two, quantum physics definitely predicts the opposite result. For example, if two photons are both found to be \(H' \) polarized, local realism predicts the third photon to carry polarization \(V' \) while quantum physics predicts \(H' \). This is the GHZ contradiction between local realism and quantum physics.

A diagram of our experimental set-up is given in Fig. 1. The method to produce GHZ entanglement for three spatially separated photons is a further development of the techniques that have been used in our previous experiments on quantum teleportation\(^9\) and entanglement swapping\(^10\). GHZ entanglement has also been inferred for nuclear spins within single molecules from NMR measurements\(^11\), though there a test of nonlocality is impossible.

Thus we conclude that the local realistic model predicts none of the terms occurring in the quantum prediction and vice versa. This means that whenever local realism predicts that a specific result will definitely occur for a measurement on one of the photons based on the results for the other two, quantum physics definitely predicts the opposite result. For example, if two photons are both found to be \(H' \) polarized, local realism predicts the third photon to carry polarization \(V' \) while quantum physics predicts \(H' \). This is the GHZ contradiction between local realism and quantum physics.

In our second strategy we therefore accommodate local-realist predictions for the GHZ argument is inapplicable. We follow two independent possible strategies. In the first strategy we simply compare our experimental results with the predictions both of quantum mechanics and of a local realist theory for GHZ correlations, and assume that the spurious events are attributable to experimental imperfection that is not correlated to the elements of reality a photon carries. A local realist might argue against that approach and suggest that the non-perfect detection events indicate that the GHZ argument is inapplicable. In our second strategy we therefore accommodate local-realist theories, by assuming that the non-perfect events in the first three experiments indicate a set of elements of reality which are in conflict with quantum mechanics. We then compare the local realist prediction for the xxx experiment obtained under that assumption with the experimental results.

The observed results for two possible outcomes in a \(yxy \) experiment.
Our first experiment considered triple coincidence events. Two experiments, a and b, were performed. The experiment a, which involved three photons and a singlet pair, showed a low coincidence rate (0.05). Experiment b, which involved two singlets and a photon, had a higher coincidence rate (0.20). Experiment c, which involved two singlets and a photon, had a coincidence rate of 0.30. These results are shown in Fig. 5a. The maximum possible conflict arises between the predictions of quantum mechanics and local realism, and observed results for the triple coincidence experiment. The conflict is shown in Fig. 5b.

We then investigated whether local realism could reproduce the experimental results. We used the results of experiment a to calculate the probability of observing a single photon in the presence of a singlet pair. The results showed a low coincidence rate (0.05). Experiment b, which involved two singlets and a photon, had a higher coincidence rate (0.20). Experiment c, which involved two singlets and a photon, had a coincidence rate of 0.30. These results are shown in Fig. 5c. The maximum possible conflict arises between the predictions of quantum mechanics and local realism, and observed results for the triple coincidence experiment. The conflict is shown in Fig. 5d.

Possible future experiments could include: further study GHZ correlations over large distances with space-like separated randomly switched measurements; extending the techniques used here to the observation of multi-photon entanglement; observation of GHZ-correlations in massive objects like atoms; and investigation of possible applications in quantum computation and quantum communication protocols.
Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil

John Abrahamson & James Dinness

Chemical and Process Engineering Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Observations of ball lightning have been reported for centuries, but the origin of this phenomenon remains an enigma. The ‘average’ ball lightning appears as a sphere with a diameter of 300 mm, a lifetime of about 10 s, and a luminosity similar to a 100-W lamp. It floats freely in the air, and ends either in an explosion, or by simply fading from view. It almost invariably occurs during stormy weather. Several energy sources have been proposed to explain the light, but none of these models has succeeded in explaining all of the observed characteristics. Here we report a model that potentially accounts for all of those properties, and which has some experimental support. When normal lightning strikes soil, chemical energy is stored in nanoparticles of Si, SiO or SiC, which are ejected into the air as a filamentary network. As the particles are slowly oxidized in air, the stored energy is released as heat and light. We investigated this basic process by exposing soil samples to a lightning-like discharge, which produced chain aggregates of nanoparticles: these particles oxidize at a rate appropriate for explaining the lifetime of ball lightning.

Away from buildings, the material most commonly in the path of a lightning strike is a tree, and then soil. Lightning leaves solid tubular or lummy residues (fulgurites) after interacting with sand or soil, which indicate that the discharge has penetrated beneath the ground surface, and that the material has been molten. If soils or tree roots are regarded as a fine mixture of silica and carbon, then under such high-temperature treatment, one expects chemical reduction to silicon metal, silicon monoxide, or silicon carbide, followed by oxidation by oxygen from the air.

Such reduction of a C/SiO ratio using an electric arc is commonly used in industry. Liquid silicon is the dominant equilibrium condensed phase around 3,000 K (ref. 5) for C/SiO mole ratios of 1–2, with solid SiC expected for ratios >2. This ratio can range from 0.1 to about 2 for mineral soils, and is much higher for wood. Silicon metal has been observed2 in the silicate glass deposit adjacent to a charred tree root after a large lightning strike.

Such fast-cooling processes often yield nanometre-sized particles7. For lightning action on a soil, or a soil/wood mix with a C/SiO ratio of 1–2, we expect the particles to be Si and SiO (formed by condensation of the dominant vapour species3), with SiC and soot dominating for C/SiO > 2. Most nanoparticle suspensions are found in the form of chain aggregates4, which extend where charged particles influence their neighbours8 in conditions of higher particle charge and numbers, and fewer gaseous ions, as at cooler flame temperatures. Charge on the growing chain may induce a dendrimer-like structure, growing from the centre. The possible size is suggested by the following observations in quiescent air. Filamentary particle structures spanning 50 mm have been found after vaporizing metal in air in the presence of electric fields. Early work with charged aerosols9 showed the formation of a spherical networked aerosol suspension of diameter 200 mm.

Particle networks have been proposed more recently10 as a general basis for ball lightning, with the aggregation influenced by the field of the growing ball2, but without a clear proposal for the chemical reaction occurring. Oxidation of copper particles has also been suggested11, but with this process occurring at the perimeter of the sphere of air carrying the particles: a network structure or rate limitation at the particle surface was not mentioned.

A Si/SiO/SiC nanoparticle network would have a large surface, and could be expected to oxidize rapidly, even explosively. However, we emphasize that the rate of oxidation would be limited by the need for oxygen to diffuse through the developing SiO2 layer to the metal (or carbide) beneath. Laboratory oxidation studies on silicon surfaces12,13 show that both oxygen and water are reactants. Whether oxygen or water dominate the reaction with silicon depends on their partial pressures. SiC oxidizes at a similar rate to Si (ref. 17).

We checked for the existence of nanosphere chains after exposing soil to a lightning-like discharge. A 10–20 kV d.c. discharge penetrated a 3-mm layer of soil, transferring up to 3.4 C of charge. Sampling of the air space close to the discharge caused deposits to form on a glass-fibre filter and a filter-mounted transmission electron microscope (TEM) grid. Examination of these deposits using scanning electron microscopy (SEM) showed ‘lumpy’ filament links (width 100 nm, length 10 μm) between the glass fibres. TEM at high resolution (Fig. 1) showed chain aggregates of nanospheres, 5–70 nm in diameter. Larger spheres, several micrometres in diameter, were collected on all the filters, and were collectively of similar mass to the nanoparticles.

Despite using charge transfer within the range observed for lightning strikes18, we did not observe any luminous ball. At the higher power levels, the soil sample was always completely blown away in the radial direction. It appeared unlikely that a network of delicate long filaments could survive the discharge shockwave. If the

Figure 1 Transmission electron micrograph of nanoparticle chains sampled from the discharge environment. These particles were deposited on a nickel grid, after sampling the gas space above a 14.9-kV discharge on a silt loam soil containing 12.5% carbon. The soil was placed in a layer on a flat conducting (graphite) base below a vertical graphite electrode, with a gap of 22 mm to the soil, and 3.0 C charge transferred from a 204 μF capacitor. The extended chains are made up of spheres 5–70 nm in diameter; the chain width is 25–125 nm. Six of the highest-power runs were examined in this way, with three soils. All showed similar results, except one showing only larger particles.