Week 3

Monday	Tuesday	Wednesday	Thursday	Friday
Recap Bell, CHSH, KS	Interpretations	S.E. H atom	Q. Logic gates	Harm. Osc.
Q. Game: CHSH	(Relativity) No-cloning	PEP, standard model	Q. Teleportation	QFT
Measurement Problem	Continuous Obs.	Tunneling	GHZ	GR, BH
Decoherence 1	Generalized S.E.	Uncertainty principle	Jouza's alg.	String theory.
Density matrix	Schrödinger eqn. (SE)		(P vs NP) Q. Compl.	
Q. Eraser		Q. Computing Intro	P=NP with non-linear.	
Interpretations (start).	Time-Indep. SE,	Q. Crypto.		
	Afternoon	topics (tbd)		
	Solving TISE,	Q. Complexity (?)		
	(Relativity)	Why QM? (?)		
	(secret stuff)	MZ inter. LIGO, Q.E.		

Outside	readings

Scarani Ch 5,9			
	Possible p	roblems	

	Day 9 problems/Day 11	[none] / Day 11 problems (possibly more)	[none] possibly optional	TBD	
--	-----------------------	--	--------------------------	-----	--

Week 3 potential items

- Relativity (complete).
- Summary CHSH, KS, significance.
- Quantum game CHSH (afternoon problem).
- GHZ (problem, Mermin, Q. Game).
- Measurement problem.
- Schrödinger's cat.
- Decoherence 1
- Density matrix
- Decoherence 2
- Quantum Eraser, demo
- Interpretations
- Uncertainty principle
- Spin: Standard model
- PEP
- Why QM? (new).
- Q. Complexity (new)

- Continuous observables
- Gen. S.E.
- Maxwell's \rightarrow S.E.
- Solving S.E.
- Spectra, H atom (demo).
- Tunneling (STM)
- Harmonic Oscillator
- Q. Computing, introduction
- Q. Cryptography.
- Q. Teleportation.
- No cloning, monogamy.
- Jouza's algorithm.
- Grover's algorithm.
- Other quantum algorithms.
- Black hole info paradox.
- Advanced topics: QFT, QG, etc.

Stanford University

() Stanford University

Monday	Tuesday	Wednesday	Thursday	Friday
Recap polarization	Bell inequality	Interpretations (cont.)	Contextuality	Principles of QM
Operators	Probability, jpd.	Interp. probability	Kochen-Specker	Computational basis
Expectation values	Measurement problem	Mixtures	More experiments	Logic gates
Multiparticle states (tensor product)	Mixtures	Density matrix	GHZ	
Hermitian operators,	Interpretations	Decoherence	PR box	
Postulates of QM,		CHSH		
EPR intro.				
Resolution of identity				
	 Afterno	on topics (tbd)		
Basics of spin, PEP	Afterno	on topics (tbd) H atom		
Basics of spin, PEP	Afterno	• • • •		
Basics of spin, PEP		• • • •		
Basics of spin, PEP Scarani Ch 1, Susskind Ch 1,2		H atom		
		H atom		
	Outs	H atom		

All your polarization bases are belong to us

Eigenvalue:+1-1Operator
$$HV$$
 basis: $|H\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$ $|V\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$ $\hat{S}_{HV} = \begin{pmatrix} 1&0\\0&-1 \end{pmatrix}$ PM basis: $|P\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}$ $|M\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix}$ $\hat{S}_{PM} = \begin{pmatrix} 0&1\\1&0 \end{pmatrix}$ RL basis: $|R\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\i \end{pmatrix}$ $|L\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-i \end{pmatrix}$ $\hat{S}_{RL} = \begin{pmatrix} 0&-i\\i&0 \end{pmatrix}$ Most general state: $|\theta, \phi\rangle = \cos \theta |H\rangle + e^{i\phi} \sin \theta |V\rangle = \begin{pmatrix} \cos \theta\\e^{i\phi} \sin \theta \end{pmatrix}$

$$\hat{\Omega} = \sum_{i} \omega_{i} |\omega_{i}\rangle \langle \omega_{i}|$$

 $Prob(\text{to find }\omega \text{ when in state }\psi) = |\langle \omega |\psi \rangle|^2.$

(Stanford University

All your polarization bases are belong to us

- Eigenvalue:+1-1OperatorHV basis: $|H\rangle =$ $\begin{pmatrix} 1\\0 \end{pmatrix}$ $|V\rangle =$ $\begin{pmatrix} 0\\1 \end{pmatrix}$ $\hat{S}_{HV} = \begin{pmatrix} 1&0\\0&-1 \end{pmatrix}$
- $PM \text{ basis:} \quad |P\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \qquad \qquad |M\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \qquad \qquad \hat{S}_{PM} = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix}$ $RL \text{ basis:} \quad |R\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix} \qquad \qquad |L\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix} \qquad \qquad \hat{S}_{RL} = \begin{pmatrix} 0 & -i\\i & 0 \end{pmatrix}$

Finding probabilities for specific outcomes:

 $Prob(\text{to find }\omega \text{ when in state }\psi) = |\langle \omega |\psi \rangle|^2.$

Finding the expectation value of an observable Ω when in state ψ :

$$\langle \hat{\Omega} \rangle = \langle \psi | \hat{\Omega} | \psi \rangle. \quad \text{Why?} \quad = \langle \psi | \left[\sum_{i} \omega_{i} | \omega_{i} \rangle \langle \omega_{i} | \right] | \psi \rangle = \sum_{i} \omega_{i} \langle \psi | \omega_{i} \rangle \langle \omega_{i} | \psi \rangle = \sum_{i} \omega_{i} p(\omega_{i}).$$

Resolution of the identity: $\hat{1} = \sum_{i} |\lambda_i\rangle \langle \lambda_i|.$

Stanford University

For example, to expand a state vector into the RL basis we apply the identity as expressed in that basis:

$$\hat{1}|\psi\rangle = |R\rangle\langle R|\psi\rangle + |L\rangle\langle L|\psi\rangle = \psi_R|R\rangle + \psi_L|L\rangle,$$

where ψ_R and ψ_L are the components extending along R and L respectively.

Quantum Mechanics: Week 3 overview

Stanford University

Physical realization: photon polarization

 $|\psi\rangle = \cos\theta |H\rangle + e^{i\phi}\sin\theta |V\rangle \quad HV$

2 dimensional Hilbert space
$$\mathcal{H}$$

Physical realization: electron spin

$$\mathbf{z} \quad |\psi\rangle = \cos\frac{\theta}{2}|+\rangle + e^{i\phi}\sin\frac{\theta}{2}|-\rangle$$

$$\mathsf{PM} \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \mathsf{x}$$

 $\left(\begin{array}{c}1\\0\end{array}\right)\qquad \left(\begin{array}{c}0\\1\end{array}\right)$

RL
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$$
 $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$ y

1: State

The state, including all you can know about it, is represented mathematically by a normalized ket $|\psi
angle$ in Hilbert space.

2: Observables

A physical observable is represented mathematically by a Hermitian operator A that acts on kets on the Hilbert space \mathcal{H} .

3: Measurement

The probability of obtaining the eigenvalue a_n in a measurement of the observable A on the system in state $|\psi\rangle$ is $\mathcal{P}_{a_n} = |\langle a_n | \psi \rangle|^2$ where $|a_n\rangle$ is the normalized eigenvector of A corresponding to the eigenvalue a_n .

4: Time Evolution

The state $|\psi\rangle$ of the system at time t_1 is related to the state $|\psi'\rangle$ of the system at time t_2 by a unitary operator U which depends only on the times t_1 and t_2 ,

$$|\psi(t_2)\rangle = \hat{U}(t_2, t_1)|\psi(t_1)\rangle.$$

Stanford University

Stanford University

Day 12 (3.3) Plan

- Main topics: measurement problem, interpretations, decoherence, quantum eraser. (other?) Interpretations, points: von-Neumann/WIgner:
 - Pro: The mathematics of QM is clear. Atoms, and things made up of atoms are quantum. Thus, atom, detector, retina, etc. should all be in a superposition. The mind (consciousness) is presumably something different. We may not know, but vN (and Roger Penrose for that matter) might argue that we will eventually understand it. And there are arguments that it should be a non-algorithmic process as well (e.g. epiphanies). Thus, it might be that this is the non-linear source of wavefunction collapse.
 - Con: Mentioned before. This leads to a dualist view of nature.
 - Wigner's friend. Wigner steps back in and asks question. To him, the wavefunction collapsed at that point, or did it? Perhaps he asks the student what he felt right before he asked the question. The student would no doubt say that she saw the light flash. So he must conclude that the student collapsed it (or else he falls into solipsism that everything perceived is a figment of your imagination). Thus, Wigner concluded, the first conscious being collapsed the wavefunction.
 - Interesting suggestion. NPR had an author talking about those with ? syndrome. Where feel you are dead. Would these people be able to collapse a wavefunction? Somehow you would have them obtain

WPI, and later reveal the result. There are experiments that indicate that neural processing occurs well before conscious awareness. Minds can react to things prior to the person being consciously aware.