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These are my lecture notes for Math 258 taught at Stanford, Fall 2021. They cover old and

new topics in stable minimal surfaces (and generalizations), and in particular applications to

scalar curvature. Thanks to the participants of the class for pointing out numerous issues,

and I am grateful to hear about any more errors at ochodosh@stanford.edu.

Conventions

• manifolds = smooth, Riemannian metrics = C∞.

• complete Riemannian manifolds = no boundary (unless indicated)

• closed manifold = compact no boundary

• R(X,Y)Z = ∇2
X,YZ − ∇2

Y,XZ, R(X,Y,Z,W) = 〈R(X,Y)Z,W〉, Ric(X,Y) =

tr(Z 7→ R(Z,X)Y) = trR(·,X,Y, ·)
• If Σ is a hypersurface with unit normal ν then the scalar second fundamental form

satisfies II(X,Y) = −〈∇XY, ν〉 = 〈∇Xν,Y〉 for X,Y tangent to Σ

1. First and second variation of area

Consider an immersed Σn → (Mn+1, g) hypersurface (with no boundary). We will always

assume that Σ is two-sided, i.e., NΣ is trivial, or equivalently there is a smooth choice of

unit normal. Recall that the Levi–Civita connection ∇Σ of the induced metric on Σ (the

pullback metric of the inclusion) satisfies

∇Σ
AB = (∇AB)T

for A,B vector fields tangent to Σ. We define the scalar second fundamental form by the

orthogonal component:

∇AB = ∇Σ
AB− II(A,B)ν.

(Note that there is some disagreement in the sign here between various sources.) Taking the

inner product with ν, we find

(1.1) II(A,B) = −〈∇AB, ν〉 = 〈∇Aν,B〉 .

(With this convention, the unit sphere S1(0) ⊂ Rn+1 with outwards pointing unit normal

ν(x) = x has II(A,B) = 〈A,B〉.)

Definition 1.1. The (scalar) mean curvature is H = tr II.

ochodosh@stanford.edu
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(So the mean curvature of S1(0) ⊂ Rn+1 with outwards pointing unit normal is H = n.)

Suppose that (i) we have a smooth family of immersions (Ft)t∈(−ε,ε) : Σ → M with (ii)

Ft ≡ Id outside of some fixed compact subset of Σ. We will also assume that (iii) ∂tFt = ftνt

(note that if this did not hold, then we could precompose Ft with a family of compactly

supported diffeomorphisms ϕt : Σ → Σ to ensure that it did hold.) We call such an Ft a

variation.

Lemma 1.2. For f ∈ C∞c (Σ), there is a variation Ft with ft|t=0 = f .

Proof. Set

F̃t(x) = expx(tf(x)νΣ(x)).

For t small this is an embedding. Because f is compactly supported, so is F̃t. We have

∂tF̃t|t=0 = fν. Finally, we can modify F̃t to satisfy (iii) as explained above. �

Theorem 1.3 (First and second variation of area). Writing f = ft|t=0, ḟ = ∂tft|t=0, we have

d

dt

∣∣∣
t=0

area(Σt) =

∫
Σ

Hf

d2

dt2

∣∣∣
t=0

area(Σt) =

∫
Σ

|∇f |2 − (| II |2 + Ric(ν, ν))f 2 +H2f 2 +Hḟ.

Note that both of these formulas have pointwise versions. If we write µt for the volume

form induced by F ∗t g, then

(1.2) ∂tµt = Htftµt

(this yields the first variation formula by differentiating under the integral sign). Similarly,

(1.3) ∂tHt = −∆Σtft − (| IIΣt |2 + Ricg(νΣt , νΣt))ft.

This yields the second variation formula by differentiating the first variation formula (note

that the derivative could also hit ft and µt which is where the last two terms come from).

Definition 1.4. Consider Σn → (Mn+1, g).

• If d
dt

∣∣
t=0

area(Σt) = 0 holds for all variations, we say that Σ is a minimal hypersurface.

• If Σ is a minimal hypersurface with d2

dt2

∣∣
t=0

area(Σt) ≥ 0 then Σ is stable.

Proposition 1.5 (Minimality and stability). A two-sided hypersurface Σn → (Mn+1, g), Σ

is minimal if and only if H = 0. If Σ is minimal, then Σ is stable if and only if

(1.4)

∫
Σ

|∇f |2 ≥
∫

Σ

(| II |2 + Ric(ν, ν))f 2.

for all f ∈ C∞c (Σ).
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Proof. We have seen that we can find a variation with ft|t=0 = f ∈ C∞c (Σ) arbitrary. Thus,

if Σ is stable, then ∫
Σ

Hf = 0

for all f ∈ C∞c (Σ). Thus, H = 0. Using H = 0 in the second variation formula, we find that

if Σ is stable then

0 ≤ d2

dt2

∣∣∣
t=0

area(Σt) =

∫
Σ

|∇f |2 − (| II |2 + Ric(ν, ν))f 2 +H2f 2 +Hḟ︸ ︷︷ ︸
=0

.

This completes the proof (the reverse implications are clear). �

Remark 1.6. We note that the (standard) terminology used here might be confusing. Min-

imality does not mean that Σ minimizes area, just that it is a critical point. One generally

says that Σ is area-minimizing if it has least area among all competitors in some class

(homology, homotopy, isotopy, etc.).

Remark 1.7. Above we have not discussed the behavior at the boundary. Above, we have

implicitly assumed that ∂Σ = ∅. If this does not hold, we should always assume that

f |∂Σ ≡ 0. (Other options are possible, but we won’t discuss them in these notes.)

2. Variational characterization of stability

We will investigate the basic properties of stable minimal hypersurfaces. First we note the

following immediate result.

Theorem 2.1 (Simons [Sim68]). If (Mn+1, g) has Ric > 0 then there are no closed stable

two-sided minimal hypersurfaces. If Ric ≥ 0, then any stable two-sided minimal hypersurface

is totally geodesic and satisfies Ric(ν, ν) ≡ 0.

Proof. Take f = 1 in stability to find∫
Σ

| II |2 + Ric(ν, ν) ≤ 0.

If Ric ≥ 0, the integrand is non-negative, so it must vanish identically. If Ric > 0 this is

impossible. �

Lemma 2.2 (Variational characterization of first eigenvalue/eigenfunction). If (Σ, gΣ) is a

compact Riemannian manifold and V ∈ C∞(Σ) then

λ := inf
f∈C∞(Σ)\{0}

f |∂Σ≡0

∫
Σ
|∇f |2 − V f 2∫

Σ
f 2

is achieved by ϕ ∈ C∞(Σ) with ϕ > 0 in Σ \ ∂Σ, ϕ = 0 on ∂Σ, and

∆ϕ+ V ϕ+ λϕ = 0.
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Moreover, any other ϕ̃ ∈ C∞(Σ) \ {0} with ϕ̃|∂Σ ≡ 0 achieving λ satisfies ϕ̃ = µϕ for

µ ∈ R \ {0}.

Remark 2.3. It is a standard fact that one can replace the space of compactly supported

smooth functions C∞c (Σ) with the space of compactly supported Lipchitz functions C0,1
c (Σ)

above (and thus in the stability inequality, etc.).

We will call ϕ the first eigenfunction of ∆ + V and λ the first eigenvalue. (Note that our

convention for the Laplacian is that ∆f = div(∇f), so the Laplacian is a negative operator;

this is why we put the eigenvalue on the left-hand-side).

It is common to call

LΣ := ∆ + | II |2 + Ric(ν, ν)

the stability operator.

Corollary 2.4. For a two-sided minimal hypersurface Σn → (Mn+1, g) and Ω ⊂ Σ comapct

with smooth boundary, let λ(Ω) denote the first eigenvalue of LΣ on Ω. Then λ(Ω) ≥ 0 for

all Ω if and only if Σ is stable.

We have the following useful result (really about Schrödinger operators ∆ + V , not just

about stability).

Proposition 2.5 (Barta [Bar37]). A two-sided minimal hypersurface Σn → (Mn+1, g) is

stable if and only if there is u ∈ C∞(Σ \ ∂Σ) with u > 0 on Σ \ ∂Σ, so that LΣu ≤ 0.

Proof. Suppose that Σ is stable. If Σ is compact we note that the first eigenfunction ϕ

of LΣ satisfies LΣϕ = −λϕ ≤ 0, since λ ≥ 0, ϕ > 0. If Σ is non-compact, choose p ∈
Ω1 ⊂ Ω2 ⊂ . . .Σ an exhaustion by compact regions with smooth boundaries. Fix ϕi the

first eigenfunction of LΣ on Ωi normalized so that ϕi(p) = 1. Note that the variational

characterization of the first eigenfunction yields (with V = | II |2 + Ric(ν, ν))

0 ≤ λ(Ωi+1) ≤
∫

Σ
|∇ϕi|2 − V ϕ2

i∫
Σ
ϕ2
i

=
−
∫

Σ
ϕiLΣϕi∫
Σ
ϕ2
i

= λ(Ωi),

so λ(Ωi) → λ∗ ≥ 0 as i → ∞. Thus, for any fixed compact set K ⊂ Σ, we find that ϕi

satisfies an elliptic PDE given by LΣϕi + λ(Ωi)ϕi = 0 with uniformly bounded coefficients

(and ellipticity) on K. Thus, the Harnack inequality implies that for K ′ b K, we have

sup
K′

ϕi ≤ C inf
K′
ϕi ≤ Cϕi(p) = C.

Schauder theory thus yields

‖ϕi‖Ck,α(K′′) ≤ C

for all k ∈ N, where K ′′ b K ′. We can thus pass to a diagonal subsequence (in i, K ′′, k) to

find ϕi → u in C∞loc(Σ) so that

LΣu+ λ∗u = 0.
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Note that u ≥ 0 and u(p) = 1, so the maximum principle yields u > 0 on Σ \ ∂Σ.

We now suppose that there is u > 0 on Σ \ ∂Σ with LΣu ≤ 0. It suffices to show that

λ(Ω) ≥ 0 for any Ω b Σ \ ∂Σ with smooth boundary. Set w = log u. Then,

∇w =
∇u
u

⇒ ∆w =
∆u

u
− |∇w|2 ≤ −V − |∇w|2

For f ∈ C∞c (Ω), multiply by f 2 and integrate by parts:∫
Σ

V f 2 + |∇w|2f 2 ≤
∫

Σ

〈
∇w,∇f 2

〉
=

∫
Σ

2|f ||∇w||∇f |

≤
∫

Σ

|∇w|2f 2 + |∇f |2.

Thus, we find ∫
Σ

V f 2 ≤
∫

Σ

|∇f |2,

proving stability. �

Remark 2.6. In the LΣu ≤ 0⇒ stable direction, one can also solve for the first eigenfunction

of LΣ on Ω and touch from above by a multiple of ϕ. This would violate the maximum

principle if λ(Ω) < 0.

Remark 2.7. If Σ is (complete) non-compact, we can argue that the inequality obtained

above is strict: λ(Ωi+1) < λ(Ωi). Indeed, if not, then the first eigenfunction on Ωi, ϕi, would

be a multiple of the first eigenfunction of Ωi+1, ϕi+1, eigenfunction, a contradiction since ϕi

is not smooth ojn ϕi+1. This implies that each Ωi is strictly stable, i.e., λ(Ωi) > 0. The

Fredholm alternative then implies that we can solveLΣϕi = 0 on Ωi

ϕi = 1 on ∂Ωi.

One can check that stability implies that ϕi > 0 on Ωi. Then, we can argue as above to

find u > 0 solving LΣu = 0 (not just ≤ 0). Note that if Σ is compact, then this may not be

possible (if λ > 0).

Corollary 2.8. If Σn → (Mn+1, g) is a two-sided stable minimal hypersurface. If Σ̃→ Σ is

any cover, then Σ̃→ (M, g) is a stable minimal hypersurface.

Proof. Because Σ is stable, Barta’s theorem yields u > 0 solving LΣu ≤ 0. Lift u to ũ > 0 on

the cover Σ̃. Note that LΣ̃ũ ≤ 0 (these equations are the same when the cover is trivialized).

This implies that Σ̃ is stable again by Barta’s theorem. �
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Remark 2.9. This result is specific to two-sided hypersurfaces. For example, the standard

RP 2 ⊂ RP 3 (with the constant curvature metric) is stable (even area-minimizing relative

to H2(RP 3;Z2) competitors) but the double cover S2 → RP 2 ⊂ RP 3 is not stable (because

RP 3 has Ric > 0, see Theorem 2.1).

Remark 2.10. In general, the converse to Corollary 2.8 is false. An example (attributed

to Schoen in [MR06, Appendix A]) is as follows. Consider Σ a closed surface of constant

curvature −1. Deform the product metric on M = Σ × R slightly (as a warped product)

so that Σ × {0} is totally geodesic and Ric(ν, ν) ≡ ε > 0. Since Ric(ν, ν) > 0 along Σ, we

find that Σ is unstable. On the other hand, the universal cover is (H2, gH2) and the stability

operator becomes ∆ + ε, which is stable for ε > 0 sufficiently small. This follows from the

standard fact that for Ω b H2, λ(∆; Ω) ≥ 1
4
.1

If the group of deck transformations of the cover Σ̃→ Σ is sufficiently small, one can prove

that stability does descend (cf. [MR06, Appendix A]).

3. Bernstein’s problem

For u ∈ C∞(Ω), Ω ⊂ Rn, we consider the graph

graphu = {(x, u(x)) : x ∈ Ω}.

Note that graphu is two-sided. Recalling that area(graphu) =
∫

Ω

√
1 + |∇u|2, one can

consider variations of u to show that

div

(
∇u√

1 + |∇u|2

)
= 0

if and only if graphu is a minimal hypersurface.

Proposition 3.1. Suppose that is a minimal surface. Then graphu is stable.

Proof. Consider the variation F̃t : Ω → Rn+1, F̃t(x) = (x, u(x) + t). This just shifts the

graph up and down, so it is clear that Σt = F̃t(Ω) is minimal for all t. Choose ϕt : Ω → Ω

1Indeed, if we use the upper half-space model g = dx2+dy2

y2 , then, for f ∈ C∞0 (H2), we have (following

[McK70] ∫
H
f2 =

∫ ∞
−∞

∫ ∞
0

f(x, y)2y−2dydx.

We can integrate by parts and use Hölder to write∫ ∞
0

f(x, y)2y−2dy = 2

∫ ∞
0

fy(x, y)f(x, y)y−1dy ≤ 2

(∫ ∞
0

fy(x, y)2dy

) 1
2
(∫ ∞

0

f(x, y)2y−2dy

) 1
2

.

Thus, ∫ ∞
−∞

∫ ∞
0

f(x, y)2y−2dydx ≤ 4

∫ ∞
−∞

∫ ∞
0

fy(x, y)2dydx.

Because the Dirichlet energy is conformally invariant in 2-dimensions, the right hand side is ≤ 4
∫
H2 |∇f |2.
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so that Ft = F̃t ◦ϕt is a normal variation (we are just interested in a pointwise computation

away from the boundary of Ω, so we ignore issues at the boundary). Note that

∂

∂t

∣∣∣
t=0
Ft =

∂

∂t

∣∣∣
t=0
F̃t ◦ ϕt = en+1 + dF̃0 ◦ ϕ̇0.

Because ϕ̇0 is a vector field on Ω, dF̃0 ◦ ϕ̇0 is a vector field tangential to graphu. Thus, we

see that ϕt must have been chosen to cancel the tangential component of en+1, so

∂

∂t

∣∣∣
t=0
Ft = e⊥n+1 = 〈en+1, ν〉 ν.

This produces a variation Ft with speed fν, f = 〈en+1, ν〉 at t = 0. We have seen that (the

pointwise second variation formula (1.3))

0 =
∂

∂t

∣∣∣
t=0
Ht = −∆f − | II |2f,

so LΣf = 0 (we call such f a Jacobi field based on the terminology for geodesics). Note that

〈en+1, ν〉 > 0 (or < 0 depending on convention) so Barta’s theorem implies that graphu is

stable. �

Remark 3.2. One can actually prove that the graph of u minimizes area in an appropriate

sense (which implies stability).

In 1917, Bernstein showed that an entire (i.e., Ω = R2) minimal graph in R3 must be a

flat plane. We will prove this later by proving that any two-sided stable minimal surface in

R3 is a plane (the proof will be different from the original one of Bernstein). In general, we

have the following remarkable result:

Theorem 3.3 (Bernstein, Fleming, De Giorgi, Almgren, Simons, Bombieri–de Giorgi–Giusti

[Ber27, Fle62, DG65, Alm66, Sim68, BDGG69]). For n ≤ 7, an entire minimal graph in Rn+1

is a hyperplane. For n ≥ 8 there exist non-flat entire minimal graphs.

Briefly, Flemming and De Giorgi proved any non-flat entire minimal graph graphu ⊂ Rn+1

would yield a non-flat area minimizing (thus stable minimal) cone Cn−1 ⊂ Rn (note the drop

in dimension, this is due to De Giori). (Here, a cone is a set that is invariant under scaling

x 7→ λx). Thus, the (non-existence part) of the higher dimensional Bernstein theorem

follows from a theorem of Simons showing that there are no non-flat stable minimal cones

Cn−1 ⊂ Rn for n ≤ 7. This is sharp: the “Simons cone”

C3,3 := {(x,y) ∈ R4 × R4 : |x| = |y|} ⊂ R8

is a stable minimal cone (and is actually area-minimizing as established by Bombieri–De

Giorgi–Giusti). We will prove Simons’ theorem later (but not De Giorgi’s reduction).
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4. Stable minimal surfaces in 3-manifolds

Recall that we saw that there are no closed stable minimal surfaces in (Mn+1, g) when

Ric > 0. This cannot hold if we replace positive Ricci curvature by PSC (positive scalar

curvature) R > 0 (where R = tr Ric). For example S2 × S1 has R = 2 and Σ = S2 × {t} but

II = 0, Ric(ν, ν) = 0 and thus Σ is two-sided, stable minimal in PSC.

In the next result, we need the (traced) Gauss equation for a hypersurface Σn → (Mn+1, g)

(4.1) R = RΣ + 2 Ric(ν, ν) + | II |2 −H2.

Recall that RΣ = 2K when dim Σ = 2. The Gauss equations follow by writing the curvature

tensor of Σ in as a commutator of of the induced Levi–Civita connection, and then using (1.1)

to rewrite this in terms of the ambient Levi–Civita connection and the second fundamental

form (and then tracing to get scalar curvature).

Proposition 4.1 (Schoen–Yau [SY79b]). Suppose that (M3, g) has R > 0. If Σ2 → (M, g)

is a closed two-sided stable minimal surface then each component of Σ has genus zero.

Proof. Assume Σ is connected. Rearrange the Gauss equations into

R + | II |2 − 2K = 2(Ric(ν, ν) + | II |2)

(since H = 0). Hence, stability (1.4) becomes∫
Σ

(R + | II |2 − 2K)f 2 ≤ 2

∫
Σ

|∇f |2.

Take f = 1 to find (using Gauss–Bonnet)

0 <

∫
Σ

R + | II |2 = 2

∫
Σ

K = 4πχ(Σ).

This completes the proof. �

Note that if we just assumed R ≥ 0, the same proof would give χ(Σ) ≥ 0.

4.1. Geroch conjecture for n + 1 = 3. Recall that stable (length minimizing) geodesics

are a basic tool in “comparison geometry” to prove various results about Ricci and sectional

curvatures. However, it turns out to be difficult to prove comparison geometry results about

scalar curvature by analyzing stable geodesics.

Instead, stable (area-minimizing) minimal hypersurfaces can be used to prove certain

comparison results about scalar curvature. (One can think about how minimal hypersurfaces

are sort of dual to geodesics, but in this case they are capturing different information.)

We state (without proof) some fundamental existence results.

Theorem 4.2 (Federer, Fleming, De Giorgi, Almgren, Allard; cf. [Sim83a]). For n+ 1 ≤ 7,

suppose that (Mn+1, g) is an closed oriented Riemannian manifold. For any element α ∈
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Hn(M ;Z), we can minimize area among representatives of α to write

α = [Σ1] + · · ·+ [Σk].

The Σk are embedded two-sided stable minimal surfaces.

The n+ 1 ≤ 7 restriction has to do with the appearance of singularities in higher dimen-

sions. In many cases it is possible to overcome this issue (cf. [SY17]) but we will focus on

the low-dimensional situation here.

Theorem 4.3 (Geroch conjecture; Schoen–Yau, Gromov–Lawson [SY79b, SY79a, SY17,

GL83]). T n+1 does not admit PSC.

In fact, it is possible to prove that if g is a metric on T n+1 with R ≥ 0 then g is flat (the

“standard” proof is to combine the behavior of scalar curvature under Ricci flow with the

splitting theorem of Cheeger–Gromoll [CG72], although one can also give a minimal surface

proof of this, cf. [CG00]).

Note that the fact that T 2 does not admit PSC follows from Gauss–Bonnet.

Proof of Geroch conjecture when n+ 1 = 3. Assume that (T 3, g) has PSC. Recall thatH2(T 3,Z) =

Z3 6= 0. Take α = [{x3 = 0}] ∈ H2(T 3,Z). Note that any representative Σ ∈ α has

(4.2)

∫
Σ

ω = 1

for the two-form ω = ω1 ∧ω2 where ωi = dxi. Minimize area in the homology class α to find

Σ1∪ · · ·∪Σk disjoint embedded two-sided stable minimal surfaces with [Σ1] + · · ·+ [Σk] = α.

By (4.2) we see that there is some component Σ = Σi so that∫
Σ

ω 6= 0.

We claim that [ω1|Σ], [ω2|Σ] 6= 0 ∈ H1
dR(Σi;R). Indeed, if2 ω1 = df , then

1 =

∫
Σi

df ∧ ω2 =

∫
Σi

d(fω2)−
∫

Σi

fdω2 = 0

This proves the claim. Hence H1
dR(Σi;R) 6= 0, which implies that the genus of Σi is at least

one. This is a contradiction, since Σi is a stable two-sided minimal surface in a PSC three

manifold and is thus a sphere. �

We will discuss how to generalize this to higher dimensions later.

Remark 4.4. Note that we did not assert that Σi is topologically T 2. For example, it is easy

to see that there is an embedded genus two representative of α (grow a handle) and one can

2Here we need that f single valued on Σi. Taking f = x1 doesn’t count (unless x1 is actually single valued).
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presumably construct a metric on T 3 so that the minimizer of area among representatives

of α has higher genus.

Remark 4.5. The original proof of the Geroch conjecture for T 3 in [SY79b] uses a different

minimizing result. Namely, they prove that if there is a subgroup of π1(M) isomorphic

to π1(genus ≥ 1 surface) then there is a two-sided stable minimal immersion Σ → M with

genus(Σ) ≥ 1. This shows that no such M can admit PSC. In particular π1(T 3) = Z3 has

Z2 = π1(T 2) as a subgroup.

Remark 4.6. Gromov–Lawson [GL83] used a completely different obstruction to PSC com-

ing from the Dirac equation for spinors. Stern has recently discovered a rather short proof

of the Geroch conjecture (in three-dimensions) that avoids spinors and the existence of area-

minimizing surfaces [Ste19]. We will discuss Stern’s proof later.

4.2. Non-compact stable minimal surfaces. Assume that (M3, g) has R ≥ 0 and that

Σ2 → (M3, g) is a complete3 two-sided stable minimal surface. Using Barta’s theorem we

showed that two-sided stability lifts to covers, so we can consider Σ̃→ (M3, g) complete two-

sided stable minimal immersion with Σ̃ simply connected. Let h̃ be the induced (complete)

metric on Σ̃. By the uniformization theorem, h̃ is conformally equivalent to one of (i) S2,

(ii) R2, or (iii) D = {x ∈ R2 : |x| < 1}. We now show that case (iii) cannot occur (we saw

S2 × {t} ⊂ S2 × S1 as an example of (i) and note that (ii) also occurs, e.g., R2 ⊂ R3 is a

two-sided stable minimal).

Theorem 4.7 (Fischer-Colbrie–Schoen [FCS80] (cf. [dCP79])). In the setting described

above, (Σ̃, h̃) is not conformal to D.

We will prove this later by using a different method than originally used in [FCS80, dCP79].

Assuming this for now, we find:

Corollary 4.8. For (M3, g) oriented with R ≥ 0 and Σ2 → (M3, g) complete connected two

sided stable minimal surface then Σ with its induced metric h is conformal to one of

(1) S2,

(2) C/Λ for Λ ⊂ C a lattice,

(3) R2,

(4) S1 × R.

Theorem 4.9 (Fischer-Colbrie–Schoen, do Carmo–Peng, Pogorelov [FCS80, dCP79, Pog81]).

Suppose that Σ2 → R3 is a complete connected two-sided stable minimal surface. Then Σ2 is

a flat plane.

3i.e., we assume that the induced metric on Σ is complete
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Proof. There are no closed minimal surfaces in R3 (touch the image of the immersion by a

sphere to contradict the maximum principle). Thus, passing to the universal cover we can

assume that Σ is conformal to R2. Suppose we can find ϕi ∈ C0,1
0 (Σ) with ϕi → 1 pointwise

and
∫

Σ
|∇ϕi|2 → 0. If so, then taking f = ϕi in the stability inequality, we find∫

Σ

ϕ2
i | II |2 ≤

∫
Σ

|∇ϕi|2 → 0

so Fatou’s lemma yields ∫
Σ

| II |2 = 0,

completing the proof.

It remains to find such ϕi. Note that the Dirichlet energy is conformally invariant in two

dimensions. Thus, it suffices to find a sequence of such functions on R2.4 Note that if we

take the obvious cutoff

ϕR(x) =


1 |x| ≤ R

2−R−1|x| R ≤ |x| ≤ 2R

0 |x| ≥ 2R,

then ∫
R2

|∇ϕR|2 = 2π

∫ 2R

R

R−2rdr = 3π,

which is bounded, but does not tend to zero. We thus need to do slightly better. We can

accomplish this by using the log cutoff trick. We take

ψR(x) =


1 |x| ≤ R

2− log |x|
logR

R ≤ |x| ≤ R2

0 |x| ≥ R2,

and note that ∫
R2

|∇ψR|2 = 2π

∫ R2

R

(logR)−2r−1dr = 2π(logR)−1 = o(1)

as R→∞. This yields the desired cutoff function, completing the proof. �

Corollary 4.10 (Bernstein’s theorem in R3). An entire minimal graph in R3 is a flat plane.

Proof. A minimal graph is stable (Proposition 3.1) and thus flat (Theorem 4.9). �

(This is not Bernstein’s original proof.)

4Compare with the λ(∆) ≥ 1
4 on H2, conformal to D.
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5. Conformal descent

We want to understand the behavior of stable minimal hypersurfaces in higher dimensions.

Before doing so, we recall some facts about scalar curvature under conformal change.

Definition 5.1. For (Nm, h) a (closed) Riemannian manifold of dimension m ≥ 3, define

the conformal Laplacian

L = 4m−1
m−2

∆u−Ru.

Denote the associated first eigenvalue by λ1(L).

(The conformal laplacian gets this name since it transforms nicely under conformal de-

formations of the metric. For our purposes we just need that it is related to the conformal

change of scalar curvature.)

We have seen that if we set

λ(L) = min
u∈C∞(N)\{0}

∫
N

4m−1
m−2
|∇u|2 +Ru2∫
N
u2

.

then there is a first eigenfunction ϕ > 0 with Lϕ+ λ(L)ϕ = 0.

Lemma 5.2. For (Nm, h) as above, and u ∈ C∞(N) positive, then h̃ = u
4

m−2h has scalar

curvature

R̃ = −u−
m+2
m−2Lu = u−

m+2
m−2

(
Ru− 4m−1

m−2
∆u
)
.

We will say that a closed manifold M is PSC if it admits a metric of positive scalar

curvature R > 0, and that a Riemannian manifold (M, g) is PSC if it has positive scalar

curvature.

Corollary 5.3. If λ(L) > 0 then N admits PSC. More precisely, if ϕ > 0 is the first

eigenfunction then h̃ = ϕ
4

m−2h has PSC.

Proof. Recall that there exists a positive first eigenfunction ϕ > 0. We have

R̃ = −ϕ−
m+2
m−2Lϕ = λ(L)ϕ−

m+2
m−2

+1 = λ(L)ϕ−
4

m−2 > 0

by assumption. �

Proposition 5.4 (Schoen–Yau [SY79a]). If Mn is a two-sided closed stable minimal hyper-

surface in a PSC manifold (Mn+1, g), then Mn is PSC.

Note that this does not say that the induced metric on Mn is PSC, just that some metric is

PSC. In fact, we will show that there is some positive function ϕ ∈ C∞(Mn) so that ϕ
4

n−2 g|Mn

has positive scalar curvature. Put differently, we will show that the induced metric on Mn

is conformal to a metric of positive scalar curvature.

This is a nontrivial restriction on the topology of Mn. For example, if M4 has PSC, then

a two-sided stable minimal hypersurface cannot be diffeomorphic to T 3. We will later use
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a slightly more general version of this observation to prove the Geroch conjecture in higher

dimensions.

Proof of Proposition 5.4. To begin, we follow the n = 2 proof. Using the Gauss equations

RMn+1 = RMn + 2 RicMn+1(ν, ν) + | II |2 − H2︸︷︷︸
=0

.

we can rewrite the stability condition∫
Mn

|∇Mnf |2 ≥
∫
Mn

(| II |2 + Ric(ν, ν))f 2

as

(5.1)

∫
Mn

(RMn+1 + | II |2)f 2 ≤
∫
Mn

2|∇f |2 +RMnf
2.

When n = 2, we took f = 1 and used Gauss–Bonnet to control
∫
M2
RM2 . Here, we argue

differently.

Since Mn is compact, there is δ > 0 so that RMn+1 ≥ δ along Mn. Hence,

δ

∫
Mn

f 2 ≤
∫
Mn

2|∇f |2 +RMnf
2.

Recall the first eigenvalue of the conformal Laplacian is

λ(L) = min
u∈C∞(Mn)\{0}

∫
Mn

4n−1
n−2
|∇u|2 +RMnu

2∫
Mn

u2

Furthermore,

4n−1
n−2
≥ 2

for any n ≥ 3. Thus, (5.1) implies that for any u ∈ C∞(N) \ {0}, it holds

δ

∫
Mn

u2 ≤
∫
Mn

4n−1
n−2
|∇u|2 +RMn−1u

2,

so λ(L) ≥ δ > 0. We have seen (Corollary 5.3) that this implies that Mn is PSC. �

5.1. Inductive approach to Geroch conjecture.

Proposition 5.5 (Schoen–Yau [SY79a]). For 3 ≤ n + 1 ≤ 7, suppose that Mn+1 is closed

and there are ω1, . . . , ωn ∈ H1(M ;R) so that ω1 ∧ · · · ∧ ωn 6= 0 ∈ Hn
dR(M ;R). Then M does

not admit PSC.

This result actually holds without the n ≤ 7 restriction by recent work of Schoen–Yau

[SY17], but we will not discuss this here.

Proof. We induct on n. We have already proven n = 2 above (the only fact about T 3 we used

was that the cohomology had this structure). In general, choose a homology class α Poincaré
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dual to ω1 ∧ · · · ∧ωn and minimize area to find a two-sided stable minimal hypersurface Mn

with ∫
Mn

(ω1 ∧ · · · ∧ ωn)|Mn 6= 0.

We have seen in Proposition 5.4 that Mn is PSC. This implies that it satisfies the inductive

hypothesis with the forms ω1|Mn , . . . , ω
n−1|Mn , completing the proof. �

Remark 5.6. Recall that for X, Y oriented closed manifolds, f : X → Y smooth, then

deg f =
∑

p∈f−1(q)

sign det dfp

for q a regular value. Equivalently, the induced map on the top (co)homology is multiplication

by deg f . In terms of de Rham cohomology (used below), this means that for ω a (n+1)-form

on Y then ∫
X

f ∗ω = deg f

∫
Y

ω.

We have

Corollary 5.7. For Mn+1 closed oriented, if f : Mn+1 → T n+1 has non-zero degree then M

does not admit PSC.

Note there is always a degree 1 map M#N →M formed by collapsing N to a point.

Proof. Set ωi = f ∗dxi and note that

ω1 ∧ · · · ∧ ωn = f ∗(dx1 ∧ · · · ∧ dxn) 6= 0,

in Hn
dR(M ;R). �

6. Geometric results

Until now, we have mostly used the stability inequality to obtain topological conclusions.

For example, when we proved the Geroch conjecture for n = 3, we showed that in (T 3, g),

there must exist a two-sided stable minimal surface of non-zero genus, while if R > 0,

stability implies genus zero (this is a topological conclusion). Even in the inductive step, we

used stability to conclude that the hypersurface admits a PSC metric, but we did not say

anything specifically about the induced metric on the hypersurface.

Similarly, the resolution of the Geroch conjecture tells us that certain manifolds do not

admit PSC, but tells us nothing about the geometry of manifolds admitting PSC.

6.1. Revisiting the n+ 1 = 3 case.

Proposition 6.1. Suppose that (M3, g) has R ≥ 2. If Σ → (M, g) is a closed two-sided

stable minimal surface then each component of Σ has area ≤ 4π
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Proof. Assume Σ is connected. Taking f = 1 in the stability inequality (along with the

Schoen–Yau rearrangement), we have∫
Σ

(R + | II |2 − 2K) ≤ 0,

i.e., ∫
Σ

R + | II |2 = 2

∫
Σ

K = 4πχ(Σ) ≤ 8π.

Use R ≥ 2 to write

2 area(Σ) ≤ 8π

This completes the proof. �

Example 6.2. Note that S2× S1 has scalar curvature R = 2. Furthermore Σ := S2×{0} ⊂
S2 × S1 is totally geodesic. Note that R = 2 and RΣ = 2, so the Gauss equations yield

Ric(ν, ν) = 0. Hence, the stability inequality becomes∫
Σ

|∇Σf |2 ≥?

∫
Σ

(| II |2 + Ric(ν, ν))︸ ︷︷ ︸
=0

f 2,

which trivially holds for all f ∈ C1(Σ). Thus Σ is stable. Note that area(Σ) = 4π, showing

that the previous estimate area ≤ 4π is sharp.

In fact, we can analyze the case of equality as follows.

Proposition 6.3. Suppose that (M3, g) has R ≥ 2. If Σ is a closed connected two-sided

stable minimal surface with area(Σ) = 4π then Σ is totally geodesic, R ≡ 2 and Ric(ν, ν) ≡ 0

along Σ, and (Σ, g|Σ) is isometric to a round sphere of radius 1.

Proof. Examining the above proof, we find Σ is a topological sphere, II ≡ 0, and R ≡ 2 along

Σ. By stability, we know that

0 ≤ inf
f∈C∞(Σ)\{0}

∫
Σ
|∇f |2 − (| II |2 + Ric(ν, ν))f 2∫

Σ
f 2

,

but we saw that taking f = 1 gave 0 on the right hand side (rearrange using the Gauss

equations). This shows that 1 is the first eigenfunction of ∆ − (| II |2 + Ric(ν, ν)) with

eigenvalue 0. In other words,

∆1− (| II |2 + Ric(ν, ν))1 = 0.

Since ∆1 = 0 and we saw II ≡ 0, we find Ric(ν, ν) ≡ 0. Returning to the Gauss equations,

we find that K ≡ 1. This completes the proof. �

A similar argument yields
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Proposition 6.4. Suppose that (M3, g) has R ≥ 0. If Σ2 → (M3, g) is a closed connected

two-sided stable minimal surface then χ(Σ) ≥ 0. If χ(Σ) = 0, then R ≡ 0,Ric(ν, ν) ≡ 0

along Σ. Furthermore, Σ is totally geodesic, and intrinsically flat.

The same result holds for non-compact minimal surfaces: if Σ → (M3, g) is a complete

(non-compact) connected two-sided stable minimal immersion then we saw that Σ is either

(conformally) R2 or S1×R. In the latter case R ≡ 0,Ric(ν, ν) ≡ 0 along Σ and furthermore,

Σ is totally geodesic, and intrinsically flat. However, the proof is somewhat more involved.

See [FCS80, FC85, Lee89, CCE16].

6.2. First and second variation of µ-bubbles. A careful examination of the proof of the

Geroch inequality shows that we did not use minimality (H = 0) of the area minimizer in

a particularly strong way. We now explain an idea of Gromov [Gro18] in which we “give

up” minimality in exchange for a more powerful geometric obstruction to PSC. Later, we

will show how to combine this with an appropriate inductive descent argument to estab-

lish geometric estimates for stable minimal surfaces in PSC. (In turn, this leads to further

topological/geometric results about PSC manifolds).

Consider h ∈ C1(M). For Ω ⊂ (Mn+1, g) an open set with smooth boundary Σ = ∂Ω, set

µ(Ω) = area(∂Ω)−
∫

Ω

h.

We will choose ν to be the outwards pointing unit normal to Ω.

Consider a variation (Ft)t∈(−ε,ε) : Σn → M and write Σt = Ft(Σ). Vary Ω along with Σt

to find Ωt with ∂Ωt = Σt. Recall that ∂tFt = ftνt.

Theorem 6.5 (µ-bubble first variation). For f = ft|t=0, we have

d

dt

∣∣∣
t=0
µ(Ωt) =

∫
Σ

(H − h)f.

Thus, we see that a critical point of µ(·) then it has prescribed mean curvature H = h.

Proof. We have seen that
d

dt

∣∣∣
t=0

area(Σ(t)) =

∫
Σ

Hf

and it is easy to compute that
d

dt

∣∣∣
t=0

∫
Ωt

h =

∫
Σ

hf

by e.g. working in local coordinates. �

Theorem 6.6 (µ-bubble second variation). Suppose that ∂Ω is stationary for the µ-functional,

i.e., H = h. For f = ft|t=0, we have

d2

dt2

∣∣∣
t=0
µ(Ωt) =

∫
Σ

|∇f |2 − (| II |2 + Ric(ν, ν) + 〈∇h, ν〉)f 2.
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Proof. By the first variation (which applies for any t ∈ (−ε, ε) not just t = 0) we find

d

dt
µ(Ωt) =

∫
Σt

(Ht − h)ft.

We want to differentiate this once more. We have seen that

∂tHt|t=0 = −∆f − (| IIt |2 + Ricg(νt, νt))f

Furthermore, if we differentiate under the integral sign and hit h, then we will find

∂th|t=0 = ft 〈∇h, ν〉

(basically this is because we really mean
∫

Σ
(H − h ◦Ft)ft so we just use the chain rule). We

thus find

d2

dt2

∣∣∣
t=0
µ(Ωt) =

∫
Σ

(−∆f − (| II |2 + Ricg(ν, ν) + 〈∇h, ν〉)f)f + (H − h)ḟ + (H − h)f 2H

=

∫
Σ

|∇f |2 − (| II |2 + Ricg(ν, ν) + 〈∇h, ν〉)f 2,

where we integrated by parts and used H = h. �

As such, we say that Ω is a stable µ-bubble if H = h and

(6.1)

∫
Σ

|∇f |2 ≥
∫

Σ

(| II |2 + Ric(ν, ν) + 〈∇h, ν〉)f 2

for any f ∈ C1
0(Σ).

Example 6.7. Consider h = 2
|x| on R3\{0}. Recall that the mean curvature of Sr(0) satisfies

H = 2
r
, so H = h along Sr(0) for any r > 0. Furthermore, Sr(0) has | II |2 = 2

r2 (the principal

curvatures are 1
r
, 1
r
). Moreover, 〈∇h, ν〉 = − 2

|x|2 . This cancels the second fundamental form

term in the stability operator, so the stability condition becomes∫
Σ

|∇f |2 ≥? 0,

which holds for all f .

It will be important to combine the Schoen–Yau rearrangement with the µ-bubble stability

inequality.

Lemma 6.8. If Ω is a stable µ-bubble in (Mn+1, g) then Σ = ∂Ω satisfies∫
Σ

(R−RΣ + n+1
n
h2 + 2 〈∇h, ν〉)f 2 ≤

∫
Σ

2|∇f |2.

for all f ∈ C1
c (Σ).

Proof. The Gauss equation (4.1)

R = RΣ + 2 Ric(ν, ν) + | II |2 −H2
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rearranges to

2(Ric(ν, ν) + | II |2) = R + | II |2 −RΣ +H2.

Hence, the µ-bubble stability (6.1) yields∫
Σ

2|∇f |2 ≥
∫

Σ

(R + | II |2 −RΣ +H2 + 2 〈∇h, ν〉)f 2

We can use Cauchy–Schwarz to write | II |2 ≥ 1
n
H2 (choose a basis diagonalizing II) and then

use H = h. Thus we find∫
Σ

2|∇f |2 ≥
∫

Σ

(R−RΣ + n+1
n
h2 + 2 〈∇h, ν〉)f 2

This completes the proof. �

The main idea of µ-bubbles is that if we choose h so that it does not mess up the stability

inequality too badly, we can use the same arguments we used for stable minimal surfaces.

6.3. Band inequalities for scalar curvature. We now use µ-bubbles to prove the fol-

lowing result. While the statement might seem innocuous, it is remarkable that one can

use scalar curvature to control distance in such a manner (normally one needs to assume

something about Ricci or sectional curvature to gain control on the distance function). The

use of µ-bubbles below will be the starting point for further results controlling the geometry

of PSC manifolds.

Theorem 6.9 (Gromov [Gro18]). Suppose that g is a metric on [−1, 1]×Tn with R ≥ R0 > 0.

Then

dg({−1} × Tn, {1} × Tn) ≤ 2π

√
n

R0(n+ 1)

(Note that when R0 = R(Sn+1) = n(n+ 1), the lower bound becomes simple: 2π
n+1

.)

Remark 6.10. The estimate in Theorem 6.9 is sharp. In fact, if Mn is any closed manifold

then there is a metric g with R ≥ R0 > 0 on [−1, 1]×M with

dg({−1} ×M, {1} ×M) > 2π

√
n

R0(n+ 1)
− ε

for any ε > 0.

We will take n = 2 for simplicity and will prove the following result.

Theorem 6.11. Suppose that g is a metric on [−1, 1]× T2 with R ≥ R0 > 0. Then,

dg({−1} × T2, {1} × T2) ≤ 2π

√
2

3R0

.

Proof. Assume the result is false. Then, we can find L with

dg({−1} × T2, {1} × T2) > L > 2π

√
2

3R0

.



20 OTIS CHODOSH

Let ρ : [−1, 1]× T2 → [0,∞) be a smoothing of the distance to {−1} × T2. We can do this

so that (i) ρ({−1} × T2) = 0, (ii) |∇ρ| ≤ 1 and (iii) ρ({1} × T2) = L. Then, take

h(x) = 4π
3L

tan( π
L
ρ(x) + π

2
)

Note that h(x)→ −∞ as x→ {−1} × T2 and h(x)→ +∞ as x→ {1} × T2.

We claim that there is Ω ⊂ [−1, 1] × T2 with (1 − δ, 1] × T2 ⊂ Ω for some δ > 0 small,

so that ∂Ω has H = h and satisfies the µ-bubble stability inequality (6.1). This will follow

from the behavior of h at {±1} × T2; we will prove this later.

Granted the existence of Ω we can finish the proof. Note that ∂Ω ∩ (−1, 1) × T2 is

homologous to {∗}×T2 and thus the argument from the Geroch conjecture shows that some

component Σ of ∂Ω ∩ (−1, 1) × T2 has genus > 0. On the other hand, Lemma 6.8 implies

that

(6.2)

∫
Σ

(R− 2K + 3
2
h2 + 2 〈∇h, ν〉)f 2 ≤

∫
Σ

2|∇f |2.

We should take f = 1 to use Gauss–Bonnet (for n > 2 one would need to use the conformal

descent technique at this point) to find∫
Σ

R + 3
2
h2 + 2 〈∇h, ν〉 ≤ 4πχ(Σ) ≤ 0

We now estimate the integrand (recalling that (tan)′ = 1 + tan2)

R + 3
2
h2 + 2 〈∇h, ν〉 ≥ R0 + 3

2
h2 − 2|∇h|

≥ R0 + 3
2

16π2

9L2 tan2( π
L
ρ(x) + π

2
)− 8π2

3L2 − 8π2

3L2 tan2( π
L
ρ(x) + π

2
)

= R0 − 8π2

3L2 .

We now use L > 2π
√

2
3R0

to conclude that

L2 > 8π2

3R0
⇔ R0 >

8π2

3L2 .

This contradicts (6.2), completing the proof. �

We owe the following existence result.

Proposition 6.12 (Existence of (relative) µ-bubbles). Suppose that (Mn+1, g) is a closed

Riemannian manifold with boundary so that ∂M = ∂−M ∪∂+M for ∂±M non-empty unions

of components of ∂M . Fix a function h ∈ C∞loc(M \ ∂M) so that M → ±∞ at ∂±M . Then,

there exists Ω ⊂ M containing a small tubular neighborhood of ∂+M and avoiding a small

tubular neighborhood of ∂−M so that ∂Ω is smooth5 satisfies H = h and the µ-bubble stability

inequality.

5when n ≥ 8, ∂Ω could have some singular set, but we will ignore this issue
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Proof. There are two main issues. Firstly, the µ-bubble functional may not be well-defined

since h → ±∞ at ∂M . Secondly, we need to prevent a minimizing sequence from running

into ∂M .

Fix a region Ω0 containing a small tubular neighborhood of ∂−M and avoiding a small

tubular neighborhood of ∂+M so that ∂Ω0 is smooth. Define the relative µ-bubble functional

µ(Ω; Ω0) = area(∂Ω)−
∫
M

(χΩ − χΩ0)h.

Note that this functional is well-defined (even if h is poorly behaved at ∂M). Moreover, a

(stable) critical point Ω will satisfy H = h and the stability inequality.

To see that minimizing sequences stay away from the boundary, if we let Σ±,t denote the

t-distance sets to ∂±M , then

(H − h)|Σ−,t →∞, (H − h)|Σ+,t → −∞.

(since HΣ±,t = O(1)). Thus, these surfaces can serve as barriers to push the minimizing

sequence away from ∂M .

Thus, we see that if Ωi is a sequence of sets as above with µ(Ωi; Ω0) approaching the

infimum over all such sets, then ∂Ωi is bounded away from ∂M . In particular,∫
M

(χΩi − χΩ0)h = O(1)

as i→∞. Thus,

area(∂Ωi) = µ(Ωi; Ω0) +

∫
M

(χΩi − χΩ0)h = µ(Ωi; Ω0) +O(1) ≤ µ(Ω0; Ω0) +O(1),

so area(∂Ωi) is bounded. The theory of BV-functions/sets of finite perimeter/Caccioppoli

sets allows us to pass to a subsequence so that χΩi limits to χΩ in the weak BV and strong

L1 sense. The weak BV convergence implies

area(∂Ω) ≤ lim inf
i→∞

area(∂Ωi)

and the strong L1 convergence implies that

lim
i→∞

∫
M

(χΩi − χΩ0)h =

∫
M

(χΩ − χΩ0)h.

Hence,

µ(Ω; Ω0) ≤ lim inf
i→∞

µ(Ωi; Ω0),

so Ω is a minimizer. It turns out that ∂Ω is smooth (up to a small singular set) in higher

dimensions by the arguments used to prove regularity of area minimizing hypersurfaces, see

[Tam84]. �
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6.4. Diameter estimates for stable minimal surfaces. Recall that we have seen that

if Σ2 → (M3, g) is connected two-sided stable minimal and Rg ≥ 2, then Σ has genus zero

and area(Σ) ≤ 4π. This should be contrasted with the following result

Proposition 6.13. If (S2, g) is a metric on S2 with K ≥ 1 then area(Σ) ≤ 4π.

Proof. We have

area(Σ) ≤
∫

Σ

K = 4π

by Gauss–Bonnet. �

We are now interested in the stable minimal surface analogue of the following result

Proposition 6.14. Suppose that (Σ2, g) is a complete surface with compact boundary so

that K ≥ 1. Then, Σ must be compact. If ∂Σ = ∅ then diam Σ ≤ π. If ∂Σ 6= ∅ then

dg(p, ∂Σ) ≤ π for all p ∈ Σ.

Proof. One can of course prove this via the second variation of length. Here, give a proof

using µ-bubbles as a warmup for the minimal surface argument. If ∂Σ = ∅, we can consider

Σ \Bε(p) to reduce to the case that ∂Σ 6= ∅.
Assume that there is p ∈ Σ with

dg(Bδ(p), ∂Σ) > L > π

for some L, δ. Then,we can smooth out the distance function to Bδ(p) to find a smooth

1-Lipschitz ρ so that M := ρ−1(L) is not all of Σ. Take

h(x) = π
L

tan( π
L
ρ(x) + π

2
).

Then, we can find a stable µ-bubble Ω using this prescribed curvature function. Write γ for

one of the components of ∂Ω (a closed loop). Stability yields∫
γ

(k2 +K + 〈∇h, ν〉)f 2 ≤
∫
γ

|∇f |2.

(We have used that II(T, T ) = k, the geodesic curvature.) As usual, we can take f = 1 and

use k = h, K ≥ 1 to write ∫
γ

(1 + h2 + 〈∇h, ν〉) ≤ 0.

On the other hand, we have

1 + h2 + 〈∇h, ν〉 ≥ 1 + h2 − |∇h|

≥ 1 + π2

L2 tan2( π
L
ρ(x) + π

2
)− π2

L2 − π2

L2 tan2( π
L
ρ(x) + π

2
)

= 1− π2

L2

> 0,
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since we assumed that L > π. This is a contradiction, completing the proof. �

We now turn to the case of a two-sided stable minimal surface in a 3-manifold with positive

scalar curvature Σ2 → (M3, g), with R ≥ 2. The main complication is that the minimal

surface may not have positive Gaussian curvature. However, by Barta’s theorem (and the

Schoen–Yau rearrangement), there is u > 0 on Σ so that

∆u+ 1
2
(R + | II |2 − 2K)u ≤ 0

We can write R + | II |2 ≥ 2 and thus conclude

∆u+ (1−K)u ≤ 0.

Notice that if K ≥ 1 then u = 1 would satisfy this equation. Thus, this inequality can be

thought of as a weakening of the K ≥ 1 condition.

Based on the conformal descent technique of Schoen–Yau one might be tempted to consider

a conformal change based on u. However, it turns out that it is more effective to consider a

warped product metric as follows.

Lemma 6.15. If ∆u+ (1−K)u ≤ 0 on (Σ, h) then the metric

g̃ = h+ u2dt2

on Σ× S1 has R̃ ≥ 2.

Proof. A calculation shows that the scalar curvature of g̃ satisfies

R̃ = Rh − 2∆u
u

= 2K − 2∆u
u
≥ 2K − 2K + 2 = 2.

This completes the proof. �

Corollary 6.16 (Schoen–Yau [SY83]). Suppose that (Σ2, g) is a complete surface with com-

pact boundary and u > 0 on Σ with ∆u + (1 − K)u ≤ 0. Then, Σ must be compact. If

∂Σ = ∅ then diam Σ ≤ 2√
3
π. If ∂Σ 6= ∅ then dg(p, ∂Σ) ≤ 2√

3
π for all p ∈ Σ.

Remark 6.17. As explained above, a two-sided stable minimal surface in a 3-manifold with

R ≥ 2 satisfies the conditions of Corollary 6.16.

Proof. As above, we can assume that ∂Σ 6= 0. If there is p ∈ Σ with dg(p, ∂Σ) > L > 2√
3
π

then we can find a 1-Lipschitz function ρ on Σ so that ρ−1(0) = ∂Σ and ρ−1(L) is a smooth

closed curve. Then, if we consider the µ-bubble function

h(x, t) = 4π
3L

tan( π
L
ρ(x) + π

2
)

on M = ρ−1([0, L])×S1, then by the computation in the band inequality result (with R0 = 2),

we find

R̃ + 3
2
h2 − 2|∇̃h| ≥ 2− 8π2

3L2 > 0.
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(Note that |∇̃ρ| ≤ 1 due to the warped structure of the metric.) This implies that any stable

µ-bubble on (M, g̃) will have genus zero.

On the other hand, we h → ± appropriately at ∂M , so we can apply the previous argu-

ments to find a (relative) stable µ-bubble in M . However, we slightly modify the setup to

only consider regions of the form Ω̃ := Ω×S1 in M . Examining the proof of existence shows

that we can find a minimizer among this class. Alternatively, we can note that

µ(Ω̃) =

∫
∂Ω

u−
∫

Ω

hu

(really we should consider the relative version) and check that the arguments used above

apply to a functional of this form as well (we can think of this as a weighted µ-bubble

functional on Σ).

Now, a minimizer Ω̃ will be of the form Ω× S1 for some Ω ⊂ Σ. As such, any component

of ∂Ω̃ in ρ−1((0, L)) will be of the form γ × S1 for some closed curve γ ⊂ M . However, we

have seen that any such component has genus zero! This is a contradiction, completing the

proof. �

Remark 6.18. It is not clear if the bound obtained in Corollary 6.16 is sharp. A natural

conjecture is that a closed two-sided stable minimal surface in R ≥ 2 should satisfy diam Σ ≤
π (as in S2×R). One can also ask the same question about compact stable minimal surfaces

in a 3-manifold with Ric ≥ 1 and conjecture that S2
+ ⊂ S3 saturates the bound for dΣ(p, ∂Σ).

One can improve the constant in Corollary 6.16 by using Ricci curvature as opposed to scalar

curvature, it is still unclear whether or not this is a sharp bound.

Corollary 6.19 (Schoen–Yau [SY83]). For (M3, g) oriented with R ≥ 2, if Σ2 → (M, g) is

a complete, connected, boundaryless, two-sided stable minimal surface then Σ is a two-sphere

with diam(Σ) ≤ 2√
3
π and area(Σ) ≤ 4π.

Proof. The diameter estimate (Corollary 6.16) implies Σ is compact (and satisfies the given

diameter estimate). Thus, Σ is a two-sphere (Proposition 4.1). The area estimate follows

from Proposition 6.1. �

7. Geometry/topology of PSC manifolds

Recall that we proved that T 3 does not admit PSC (the Geroch conjecture) by using the

fact that two-sided closed stable minimal surfaces in PSC have genus zero. Now that we have

improved this topological fact to include geometric information (area, diameter bounds), we

can push this further.

Before doing this, we pause to discuss some examples of PSC manifolds and to explain

dangers with trying to classify PSC manifolds in dimension n ≥ 4.
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7.1. Examples of PSC. Clearly Sn+1 is PSC. In fact, Sk ×Mn+1−k is PSC for any closed

Mn+1−k and k ≥ 2. To see this, choose any metric g on M and scale the round metric on Sk

to gλ with scalar curvature λ−2k(k − 1). Then,

R(gλ × g) = λ−2k(k − 1) +R(g),

so for λ sufficiently small, this is uniformly positive. (This works even if M is noncompact,

as long as R(g) ≥ R0 for some fixed R0 ∈ R.) Note that this already indicates that the effect

of PSC on the geometry/topology is subtle. For example, recall

Theorem 7.1 (Bonnet–Myers). Suppose that (Mn+1, g) is complete connected and Ric ≥ n.

Then M is closed and diam ≤ π. In particular π1(M) is finite.

This does not hold for scalar curvature replacing Ricci curvature, since e.g., S2 × Rk and

S2 × Tk have PSC.

Most examples of PSC rely in some sense on the fact that small Sk’s have very positive

scalar curvature (cf. the surgery theorem below). It is important to remember that this fails

for k = 1.

Example 7.2. Take [0,∞) × Sn and cap it off with a hemisphere Sn+1
+ . One can smooth

this out near the seam. When n+ 1 = 2 one cannot arrange that the scalar curvature of the

resulting metric is uniformly positive (Bonnet–Myers). On the other hand, when n+ 1 > 2,

the cylinder and the hemisphere both have strictly positive scalar curvature, so there is room

to smooth out the metric to arrange R ≥ R0 > 0.

Note that R2 does admit a PSC metric, e.g., take the induced metric on the paraboloid

{z = x2 + y2} ⊂ R3.

Example 7.3. A compact non-abelian Lie group is PSC (take the bi-invariant metric and

recall that for X, Y ∈ TIdG orthonormal K(X, Y ) = 1
4
‖[X, Y ]‖2).

More generally, if M admits a smooth faithful6 action by a compact, connected, non-

abelian Lie group (e.g., S3) action we can shrink the fibers (note that the construction is

delicate near any fixed points), so M is PSC [LY74].

7.1.1. Surgery and PSC. Recall that surgery in topology is basically the observation that

∂(Sp ×Dq) = Sp × Sq−1 = ∂(Dp+1 × Sq−1)

so given an embedded Sp ×Dq ⊂ M (where p + q = n + 1 = dimM), then we can remove

it and glue in Dp+1 × Sq−1, changing the topology of M . We call p the dimension and q the

co-dimension of the surgery.

6i.e., no non-identity element acts as the identity
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Theorem 7.4 (Gromov–Lawson, Schoen–Yau [GL80a, SY79a]). If M is PSC and M ′ is

obtained from M by a co-dimension ≥ 3 surgery then M ′ is PSC.

In particular, this holds when the co-dimension q = n + 1 = dimM ≥ 3, i.e., we replace

S0×Dn+1 = {±1}×Dn+1 by D1×Sn = [−1, 1]×Sn. When M = M−
∐
M+ and ±1 ∈M±

this is known as a connected sum.

Remark 7.5. The key to the co-dimension restriction is that for co-dimension q ≥ 3, the

spherical factor in the “glued in” model is Sq−1 and since q − 1 ≥ 2, this admits PSC.

Co-dimension ≥ 3 cannot be removed (in general). For example, T 2 is obtained from S2

by replacing S0 ×D2 with S1 ×D1, i.e., a dimension 0, co-dimension 2 surgery.

Remark 7.6. In fact one can perform the surgery in a “local” manner, so e.g. in the

connect sum construction the resulting manifolds will geometrically look like the disconnected

manifolds but with tubes joining them.

7.1.2. PSC and surgery. Note that any lens space S3/Γ as well as S2 × S1 have PSC. The

surgery theorem implies that any connected sum of these manifolds is also PSC. (Later we

will see that this describes all closed PSC three-manifolds.) It is useful to also keep this in

mind as a geometric depiction of a three-dimensional PSC manifold.

A striking application of the surgery theorem is the following result

Theorem 7.7 ([Car88]). Given any finitely presented group G there is (M4, g) closed PSC

with π1(M) = G.

Proof. (This is not exactly the original proof.) Write G = 〈x1, . . . , xm | r1, . . . , rk〉 for xi the

generators and rj the relations. Consider

M0 = S3 × S1# . . .#S3 × S1︸ ︷︷ ︸
m factors

.

By Van Kampen’s Theorem, we find that π1(M0) = Z ∗Z ∗ · · · ∗Z = 〈x1, . . . , xm〉. Note that

these are 0-surgeries, so their co-dimesnsion is = 4 ≥ 3. Hence Theorem 7.4 implies that M0

is PSC.

Choose loops γ1, . . . , γk corresponding to the relations. Since 1 + 1 < 4 we can use

transversality to ensure that the γj are embedded and pairwise disjoint. We can choose

pairwise disjoint tubular neighborhoods U1, . . . , Uk of the γj and note that Uj ' S1 × D3

(since M0 is oriented). We can now perform 1-surgery on each U1, . . . , Uk, replacing it

(topologically) by a copy of D2 × S2.

Since these are co-dimension 3 surgeries, Theorem 7.4 implies that this preserves PSC.

Write the resulting manifold as M . Applying Van Kampen’s Theorem again implies that

π1(M) = G. �
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It is an interesting exercise to imagine what M can be constructed in this way. For

example, you might consider G = Z2 = 〈a, b | aba−1b−1〉 and try to understand what M (and

the universal cover of M) look like.

Remark 7.8. Recall that there is no algorithm to determine if a finite presentation yields

the trivial group. Thus, this places restrictions on what kind of “classification” result one

can hope for concerning PSC four-manifolds.

Remark 7.9. Recall that not all finitely presented groups are π1(M3) for M3 a (closed)

3-manifold. In fact, we will see that PSC 3-manifolds have relatively simple fundamental

groups, so Theorem 7.7 cannot be true for dimension n = 3.

7.2. Classification of closed PSC 3-manifolds. In 3-dimensions, we have some obvious

examples of PSC manifolds S3/Γ (spherical space forms) and S2 × S1. Furthermore, we can

connect sum (co-dimension 0 surgery) such manifolds together to find that

S3/Γ1# . . . S3/Γk#S2 × S1# . . .#S2 × S1

admits PSC. Conversely, we will see that this describes all (oriented) closed M3 admitting

PSC.

Remark 7.10. This classification will require Perelman’s resolution of the Poincaré conjec-

ture [Per02, Per03a, Per03b]. In fact, by using Perelman’s results about the Ricci flow, one

obtains a direct classification of PSC 3-manifolds. We will describe an different argument

using minimal surfaces (cf. [GL80b, Theorem 8.1]) that proves the same result modulo the

Poincaré conjecture.

We will need to recall the Kneser–Milnor prime decomposition for 3-manifolds.

Definition 7.11. A closed 3-manifold M is prime if M = M ′#M ′′ implies that either M ′

or M ′′ is diffeomorphic to S3.

Theorem 7.12 (Kneser, Milnor (cf. [Mil62]). Any closed 3-manifold M3 can be uniquely

decomposed into prime factors

M = X1# . . .#X`#(S2 × S1)# . . .#(S2 × S1)#K1# . . .#Km

where each Xi has π1(Xi) finite and each Kj has contractible universal cover.

Remark 7.13. The Poincaré conjecture (proven by Perelman) implies that the Xi are of the

form S3/Γ (the universal cover of Xi is compact and thus diffeomorphic to S3). Moreover,

Thurston’s geometrization conjecture (also proven by Perelman) gives a huge amount of

information about the K(π, 1) summands, but we will not need this here.
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Theorem 7.12 is relatively easy to prove (especially if one does not worry about unique-

ness). First, one argues7 that we cannot keep splitting M into nontrivial connected sums, so

we can find a prime decomposition

M = X1# . . .#X`#K̃1# . . .#K̃j#K1# . . .#Km

where we have ordered the summands so that the Xi have finite π1 and the other summands

have infinite π1. We distinguish the Ki and K̃i by assuming that the Ki are irreducible: any

embedded S2 bounds a 3-ball.

Lemma 7.14. If K is a closed orientable prime 3-manifold then either K is irreducible or

K = S2 × S1.

Clear S2×S1 is not irreducible (S2×{∗} does not bound a ball, since e.g. it is nontrivial

in homology).

Proof. Assume that K is not irreducible, so that there is an embedded S2 not bounding a

3-ball. Since K is prime, if S2 separates K into two components, then we can think of this

as a connected sum, so one of the components is S3, i.e. the S2 bounds a 3-ball. Thus, we

can assume that S2 does not separate.

Take a tubular neighborhood S2 × I and connect the boundary components in the com-

plement with an embedded arc. Fattening this up, we find K ′ embedded in K where K ′ is

diffeomorphic to S2 × S1 \ B. This yields K = S2 × S1#K ′′, so K ′′ is a ball, implying that

K = S2 × S1. �

Thus, it remains to consider the irreducible prime factors K with π1(K) infinite. We will

need the following useful results from homotopy theory relating higher homotopy groups to

homology groups (we have only stated the very simplest versions of these results). Recall

that πk(M) is the space of (continuous) maps Sk →M up to homotopy and that for k > 1,

these spaces are abelian groups.

Theorem 7.15. Let X be8 a smooth manifold:

• Hurewicz Theorem: For m ≥ 2, assume that π1(X) = · · · = πm−1(X) = 0. Then

πm(X) ≈ Hm(X), cf. [Hat02, Theorem 4.32]

• Whitehead Theorem: If π1(X) = π2(X) = . . . then X is contractible, cf. [Hat02,

Theorem 4.5]

We can now study the other summands in the prime decomposition. We will need two

more fact from topology. First, we recall the Sphere theorem: For M3 oriented connected

7As observed by Milnor, this is relatively easy if we use the Poincaré conjecture, since then one can prove
that the fundamental group becomes strictly “simpler” with each non-trivial connect sum decomposition.
8These results hold for a much more general class of spaces X, but we won’t need to discuss this here.
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3-manifold with π2(M) 6= 0, there is an embedded S2 ⊂ M nontrivial in π2(M). Secondly,

we recall the basic fact that because Sk is simply connected (k > 1), the homotopy lifting

property yields πk(M) = πk(M̃) for k > 1, where M̃ is the universal cover.

Lemma 7.16 (cf. [Hat07, Corollary 3.9]). Consider a closed irreducible 3-manifold M3 with

π1(M) infinite. Then M̃ is contractible.

Proof. Suppose that π2(M) 6= 0. Then, the sphere theorem yields an embedded S2 that is

not null-homotopic. However, by irreducibility, such an S2 must bound a 3-ball. This is a

contradiction. Thus π2(M) = 0. We now consider the universal cover M̃ . By definition,

π1(M̃) = 0. Furthermore, π2(M̃) = π2(M) = 0.

Hurewicz thus implies that π3(M̃) = H3(M̃). On the other hand, π1(M) is infinite, M̃

is non-compact. The top homology class of a non-compact manifold vanishes H3(M̃) = 0.

Thus, π3(M̃) = 0.

Now, we can continue this to conclude that all πk(M̃) = 0. Indeed, any 3-manifold has

H4(M̃) = H5(M̃) = · · · = 0, so we can use Hurewicz to show that each πk(M̃) = 0 for

k = 4, 5, . . . . Thus, M̃ is contractible by the Whitehead theorem. �

Definition 7.17. We will call a (n + 1)-manifold X with X̃ contractible a K(π, 1) or as-

pherical manifold.9

Note that the proof given above shows that X is a K(π, 1) if and only if π2(X) = π3(X) =

· · · = 0. We can now give the classification of closed PSC 3-manifolds:

Theorem 7.18. A closed 3-manifold M3 admitting PSC has no K(π, 1) factors in its prime

decomposition.

The map that collapses all of the prime summands but one is a degree 1 map. As such, it

suffices to prove:

Theorem 7.19. If a closed 3-manifold M admits a map M → K of non-zero degree to a

closed K(π, 1) 3-manifold K, then M does not admit PSC.

We need the following “co-dimension 2 linking lemma” (which we will state/prove in all

dimensions).

Lemma 7.20. Suppose that (Xn+1, g) is a closed Riemannian manifold with non-compact

universal cover (X̃, g̃). Assume that Hn(X̃) = 0. Then, for any ρ > 0 there exists a properly

embedded curve σ ⊂ X̃ and closed embedded (n− 1)-dimensional submanifold Σn−1 ⊂ X so

that:

9The K(π, 1) terminology comes from homotopy theory, and we won’t explain it further besides remarking
that π in K(π, 1) stands for π1(X).
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(1) [Σn−1] = 0 ∈ Hn−2(X̃),

(2) Σn−1 is linked with σ in the sense that if Σn ⊂ X̃ has ∂Σn = Σn−1 then10 σ∩Σn−1 6= ∅,
and

(3) dg̃(Σn−1, σ) ≥ ρ.

Sketch of the proof. We claim that there exists a length minimizing geodesic in (X̃, g̃). (This

holds for any non-compact universal cover of a compact Riemannian manifold.) Fixing

p ∈ X̃, take pi → ∞ in X̃ and construct σi minimizing length from p to pi. Arzelá–Ascoli

lets us pass to a subsequential limit to find a minimizing ray σ̃. Now, for t → ∞, we can

choose deck transformations to pull σ(t) back to a bounded distance from a fixed base point

(since X is compact). Again, passing to the limit, we find the minimizing line.

We now consider the tubular neighborhoods Uρ(σ(R)) (perturb ρ so this is smooth) and

then choose ρ0 � ρ and consider Σn := ∂Uρ0(σ([0,∞))) ∩ Uρ(σ(R)). Choosing ρ0 appro-

priately, Σn is smooth and intersects σ transversally. The number of intersections must be

non-zero when counted with multiplicity (since σ starts inside of Uρ0(σ([0,∞))) ∩ Uρ(σ(R))

and eventually leaves).

We can thus set Σn−1 := ∂Σn. Note that [Σn−1] = 0 ∈ Hn−1(X̃) by construction. Fur-

thermore, if Σn−1 = ∂Σ′n with zero intersection count (counted with multiplicity) with σ,

then Σn−Σ′n would be a n-cycle with non-trivial intersection with σ. This would imply that

[Σn − Σ′n] 6= 0 ∈ Hn(X̃) = 0 (by assumption), a contradiction.

Note that this proves, in particular, that Σn−1 6= ∅. (Think about X = Sn × S1 to see

what could happen when we don’t assume that Hn(X̃) = 0.)

Finally, we note that Σn−1 ⊂ ∂Uρ(σ(R)), so the final condition holds. �

σ(0)

σ((−∞, 0])

σ([0,∞))

∂M
∂U

Figure 1. The idea of the co-dimension 2 linking lemma (figure from [CL20]).

Recall that we claimed that if a 3-manifold M that admits a non-zero degree map M → K,

where K is a K(π, 1), then M does not admit PSC. We start by considering the case where

M = K and the map is the identity.

10Really, we mean that after perturbing so that the intersection is transverse, then there are a non-zero
number of intersection points counted with multiplicity.
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Proposition 7.21. If K is a closed 3-manifold with K̃ contractible, then K does not admit

PSC.

Proof. Suppose that (K, g) is PSC. By scaling, we can assume that R ≥ 2. Lift to the

universal cover (K̃, g̃). Note that K̃ is non-compact (a compact manifold is not contractible

since Hn 6= 0). Apply the co-dimension 2 linking lemma to find a loop Σ1 linked with a curve

σ so that dg̃(Σ1, σ) = ρ > 2√
3
π. Since [Σ1] = 0 ∈ H1(K̃), we can minimize area (using an

appropriate version of Theorem 4.2) to find Σ2 ⊂ (K̃, g̃) a two-sided stable minimal surface

with ∂Σ2 = Σ1.

By the linking lemma (since K̃ is contractible, H2(K̃) = 0), there is some point p ∈ Σ2∩σ,

so dg̃(p, ∂Σ2) ≥ ρ. On the other hand, since Σ2 is a stable minimal surface in a 3-manifold

with R ≥ 2, we saw in Corollary 6.16 that dΣ(p, ∂Σ2) ≤ 2√
3
π. Comparing intrinsic and

extrinsic distance we find

ρ ≤ dg̃(p, ∂Σ2) ≤ dΣ(p, ∂Σ2) ≤ 2√
3
π,

contradicting the choice of ρ. This completes the proof. �

We now generalize the argument to the mapping problem. We first need a general lemma

from differential topology. Recall that a map f : N → X is proper if f−1(K) is compact for

compact K ⊂ X. The degree of a proper map is well-defined, using exactly the same defi-

nition as in the compact case (count preimages of a regular point with sign). Alternatively,

the induced map on compactly supported cohomology is multiplication by deg f . (Degree is

unchanged by proper homotopy, i.e., F : N × [0, 1]→ X proper.)

Lemma 7.22. Suppose that f : Nn → Xn is a map between closed oriented n-manifolds

with deg f 6= 0. Let X̃ denote the universal cover of X. Then, there is a connected cover

N̂ → N and a lift f̂ : N̂ → X̃ so that f̂ is proper and deg f̂ = deg f .

Note that we cannot in general take N̂ to be the universal cover on N . For example, there

is a degree 1-map T n → Sn, but the uiversal cover map Rn → Sn is not proper. (In this

case, we can should take N̂ = T n.)

Note also that we can either consider M,K oriented and use the integer degree, or use the

mod 2 degree in general, either case is basically the same. We will consider oriented degree

below.

Proof. Choose x ∈ X a regular value and set f−1(x) = {z1, . . . , zk}. Set H = ker f# :

π1(N, z1)→ π1(X, x). There is a (connected) covering space p : N̂ → N with p#(π1(N̂ , ẑ1)) =

H (this is the cover corresponding to H). Recall that a loop in N lifts to a loop in N̂ if

and only if it is in H (we do not need to be careful about basepoints when we make this

statement, since H is normal!)
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Consider f ◦ p : N̂ → X. Note that the induced map on π1 is trivial. Thus, by the lifting

property of covers, we can lift this to a map f̂ : N̂ → X̃.

(N̂ , ẑ1)
f̂
//

p

��

(X̃, x̃)

π

��
(N, z1)

f
// (X, x)

We now claim that #(f̂−1(x̃) ∩ p−1(zj)) = 1. Indeed, if there is a 6= b in f̂−1(x̃) ∩ p−1(zj)

then, if we choose γ̂ a path (not a loop) connecting them in N̂ , γ = p ◦ γ̂ is a loop in N

(based at zj). Note that f#[γ] = e ∈ π1(X). Indeed, we note that f̂ ◦ γ̂ is a loop in X̃, so

π ◦ f̂ ◦ γ̂ (= f ◦ p ◦ γ̂) is trivial in π1(X). However, this implies that [γ] ∈ H, i.e., the lift of

γ (i.e., γ̂), is a loop, so a = b.

We now claim that f̂ is proper. Indeed, consider a diverging sequence r̂i ∈ N̂ so that

f̂(r̂i) → q ∈ X̃. By compactness of N , we can pass to a subsequence to assume that

p(r̂i) → r. Note that π(q) = f(r). Choose a contractible neighborhood r ∈ U ⊂ N so that

f(U) is contained in a contractible open set W ⊂ X. Then, π−1(W ) consists of disjoint

copies of W . Taking i large, we can assume that f̂(r̂i) and q are all in the same copy.

Similarly, for i large, we have p(r̂i) ∈ U . Fix paths ηi from p(r̂i) to r in U and γ̂i from r̂1

to r̂i in N̂ . Then, we have a loop

αi = (ηi) ∗ (p ◦ γ̂i) ∗ (−η1)

in N . Lift αi to a path α̂i that agrees with γi on that portion. If α̂i is a loop for i large, this

would contradict r̂i diverging. On the other hand, we see that f̂ ◦ α̂i is a loop for i large.

This is a contradiction as before.

Thus, we have proved that f̂ is proper and #(f̂−1(x̃)∩ p−1(zj)) = 1 for j = 1, . . . , k where

f−1(x) = {z1, . . . , zk}. Note that f̂−1(x̃) ⊂ p−1({z1, . . . , zk}), so we can write f̂−1(x̃) =

{ẑ1, . . . , ẑn) with p(ẑj) = zj. The degree is counted with sign, but the behavior of f̂ near ẑj

is exactly the same as f near zj, so the signs match up. Thus, we find that deg f̂ = deg f . �

Proposition 7.23. Consider K a closed 3-manifold with K̃ contractible, and M closed

3-manifold with f : M → K non-zero degree. Then, M does not admit PSC.

Proof. Assume that (M, gM) has R ≥ 2. Choose a metric gK on K so that f : (M, gM) →
(K, gK) is distance non-increasing, i.e., dgK (f(x), f(y)) ≤ dgM (x, y). (Basically, make gK

small enough so that this holds).

Apply the lifting lemma to lift to a map f̂ : (M̂, ĝM) → (K̃, g̃K) of non-zero degree.

Note that the distance non-increasing condition lifts to covers (consider the infinitesimal

version). Apply the co-dimension 2 linking lemma to find a loop Σ1 linked with a curve σ
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so that dg̃K (Σ1, σ) = ρ > 2√
3
π. Choose a disk Σ2 with ∂Σ2 = Σ1. We can assume that f̂ is

transversal to Σ2,Σ1. Set Σ̂1 = f−1(Σ1), Σ̂2 = f−1(Σ2). (Note that dim Σ̂1 = 1, dim Σ̂2 = 2

because dimM = dimK.)

As in Proposition 7.21 (the non-mapping version), since Σ̂1 = ∂Σ̂2, we have that [Σ̂1] =

0 ∈ H1(M̂,Z). Thus, we can minimize area (and use the diameter estimate for minimal

surfaces in R ≥ 2) as before to find Σ̂′2 with ∂Σ̂′2 = Σ̂1 and dĝM (p, Σ̂1) ≤ 2√
3
π for p ∈ Σ̂′2.

We now push Σ̂′2 forwards as a 2-chain to find Σ′2 = f#(Σ2) in K̃ so that ∂Σ′2 = f#(Σ̂1).

The distance non-increasing property gives

dg̃K (p, Σ̂1) ≤ 2√
3
π

for p ∈ Σ′2. This is close to a contradiction as before (since it looks like a fill-in of Σ1 that

avoids σ). However, the one thing we should be careful is that we actually are covering Σ1

(think about what happens if deg f̂ = 0).

Tho this end, we claim that deg(f̂ |Σ̂1
: Σ̂1 → Σ1) = deg f̂ . Indeed, pick a regular value q of

f̂ |Σ̂1
, i.e., p ∈ f̂−1(q), dpf̂ |Σ̂1

(TpΣ̂1) = TqΣ1. Transversality yields dpf̂(TpM̂) + TqΣ1 = TqK̃.

Thus, we find that q is also a regular value of f̂ . We immediately see that deg2 f̂ |Σ̂1
= deg2 f̂ .

For oriented degree, the argument is similar but more complicated (if we orient Σ̂1 using the

pullback orientation, then the signs in the degree sum will turn out to be the same for f̂ and

f̂ |Σ̂1
).

Thus, we find that f#(Σ̂1) = (deg f̂)Σ1 as 1-cycles, so

(deg f̂)[Σ2]− [Σ′2]

is a non-zero element inH2(K̃,Z) (by intersection count with σ), yielding a contradiction. �

Corollary 7.24. A closed oriented 3-manifold admits PSC if and only if it is diffeomorphic

to a connect sum of the form

S3/Γ1# . . . S3/Γk#S
2 × S1# . . .#S2 × S1

Proof. We have seen that such manifolds admit PSC. Conversely, if the prime decomposition

M = X1# . . .#X`#(S2 × S1)# . . .#(S2 × S1)#K1# . . .#Km

(where π1(Xj) is finite and Kj is a K(π, 1)) has any non-trivial K(π, 1) factors, then we get

a degree 1 map to K1, contradicting the previous result. Thus,

M = X1# . . .#X`#(S2 × S1)# . . .#(S2 × S1).

By the resolution of the Poincaré conjecture, the Xj’s are spherical space forms. �
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7.3. Geometry of PSC 3-manifolds. Recall that we have seen that positive scalar curva-

ture does not control the diameter of a 3-manifold. However, it turns out that PSC manifolds

tend to be “small” in a certain sense.

Theorem 7.25 (Gromov–Lawson [GL83, Corollary 10.11]). Suppose that (M3, g) is complete

simply connected and R ≥ 2. For p ∈M consider f(x) = dg(p, x). Let Γ denote a connected

component of f−1(t). Then diam Γ ≤ 12√
3
π.

This proves that such an M is “macroscopically 1-dimensional” in the following sense:

Corollary 7.26. Suppose that (M3, g) is complete simply connected and R ≥ 2. Then, there

is a “metric graph” (K, d) and a distance non-increasing map ϕ : (M, g) → (K, d) so that

diamϕ−1(p) ≤ 12√
3
π.

This is known as having Urysohn 1-width bounded by 12√
3
π.

Idea of the proof. Define an equivalence relation on M by x ∼ y if x, y are in the same

connected component of f−1(t) for some t ∈ [0,∞). If, e.g., we perturbed f to be Morse

then K := M/ ∼ will be a metric graph. The map to K is obviously distance non-increasing,

since we just glued points together. The diameter bound follows since the preimages of points

in K are connected components of f−1(t), which have diameter bounds. �

Proof of Theorem 7.25. Suppose that Γ is some connected component of f−1(t). If diam Γ ≥
12√

3
π then we can find x, y ∈ Γ with dg(x, y) ≥ 12√

3
π. Connect x and y to p and x to y to form

a triangle T (with sides given by geodesics). (We will write px, for a fixed geodesic from p

to x, etc. Note that the geodesics need not be unique in spite of this notation.)

Note that

2t = dg(x, p) + dg(x, p) ≥ dg(x, y) ≥ 12√
3
π,

so t ≥ 6√
3
π.

Find a connected two-sided stable minimal surface Σ with ∂Σ = T . We know that

dg(z, T ) ≤ 2√
3
π for any z ∈ Σ. Consider

γ′ := {z ∈ Σ : dg(z, p) = t− 2√
3
π − ε}

where ε is chosen so that γ′ is a smooth collection of curves on Σ. Because px, py are length

minimizing, there must be exactly one element of ∂γ′ on px and one on py. Thus, we see

that there is a component γ′′ of γ′ that goes from px to py.

Fix z′′ ∈ γ′′ with dg(z
′′, px) ≤ 2√

3
and dg(z

′′, py) ≤ 2√
3
. To do this, first note that for any

z ∈ γ′′,

dg(z, xy) ≥ dg(p, xy)− dg(p, z) = t− (t− 2√
3
π − ε) = 2√

3
π + ε > 2√

3
π.
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Thus, since every point on γ′′ is a distance ≤ 2√
3
π from T , every point on γ′′ is a distance

≤ 2√
3
π from px ∪ py. Now, if we start on the end of γ′′ on px and move towards the other

end, there is some first point that is distance ≤ 2√
3
π from py. Prior to that point, we must

have been distance ≤ 2√
3
π from px, so this point works.

Now, there is x′′ ∈ px, y′′ ∈ py so that dg(x
′′, z′′), dg(y

′′, z′′) ≤ 2√
3
π. Note that

dg(x
′′, p) ≥ dg(p, z

′′)− dg(x′′, z′′) = t− 4√
3
π − ε

and similarly for dg(y
′′, p). Since px, py are length minimzing, we thus find that

dg(x
′′, x) ≤ 4√

3
π

and similarly for dg(y
′′, y). We can now use the triangle inequality to write

dg(x, y) ≤ dg(x, x
′′) + dg(x

′′, z′′) + dg(z
′′, y′′) + dg(y

′′, y) ≤ 12√
3
π,

completing the proof.

�

7.4. Higher dimensions. The classification of PSC (n + 1)-manifolds for n + 1 ≥ 4 is far

out of reach (and probably impossible due to the π1/computability issues discussed above).

Some well-known conjectures/questions about PSC in higher dimensions are as follows.

Question 7.27. Which (closed) simply connected 4-manifolds admit PSC?

There are obstructions coming from the Dirac equations and Seiberg–Witten theory, but

it is unknown if the vanishing of these obstructions suffices for the existence of a PSC metric

(cf. [Ros07, Theorem 1.20]).

We note that when n ≥ 5, Gromov–Lawson [GL80b] and Stolz [Sto92] have proven the

remarkable result that vanishing of the obstruction coming from the Dirac equation is nec-

essary and sufficient for a simply connected n-manifold to admit PSC.

For non-trivial fundamental group (and for n = 4), the situation is still very much unre-

solved (cf. [Ros07]). The following conjecture can be seen as probing the “far from simply

connected regime” since the topology of a K(π, 1)-manifold is entirely dictated by the fun-

damental group.

Conjecture 7.28 (K(π, 1) conjecture; Gromov [Gro19], Schoen–Yau [SY87]). If M is a

closed n-dimensional manifold with M̃ contractible, then M does not admit PSC.

This (and the more general mapping version) is known for n = 3 (discussed above) and

n = 4, 5 (discussed later) [CL20, Gro20, CLL21]. The n > 6 situation is still unresolved.

Conjecture 7.29 (Urysohn width bounds; Gromov [Gro19]). If (Mn, g) is closed with R ≥
1 then there is a (n − 2)-dimensional metric polyhedral complex K and continuous map

f : (M̃, g̃)→ K with diam f−1(p) ≤ Λ for all p ∈M .
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We have seen this holds when n = 3, but it is unresolved for n > 3 (cf. [Kat88, Bol09,

BD10, CLL21, MN12, ML20] for various related results). One can show that the Urysohn

width conjecture implies the K(π, 1) conjecture (heuristically, to look (n − 2)-dimensional,

the universal cover needs to wrap around on itself, which creates some nontrivial topology).

Conjecture 7.30 (S1-stability; folklore, cf. [Ros07, Conjecture 1.24]). For a closed Mn, Mn

admits PSC if and only if Mn × S1 admits PSC.

This is true for n = 3 (as we will prove later) and false (!) for n = 4 (cf. [Ros07, Remark

1.25]), but the counterexample depends crucially on the Seiberg–Witten equations so one

could hope that it is again true for n > 5.

We now discuss the K(π, 1) problem for n = 4, 5. Before doing so, we must discuss the

following iterated warped descent argument. (We will not make any attempt to obtain the

best numerical constants possible.)

Lemma 7.31. For (X4, g) with R ≥ 3, suppose that Σ3 → (X, g) is a two-sided stable

minimal surface with compact boundary. If there is p ∈ Σ3 with dΣ3(p, ∂Σ3) > L >
√

2
3
π

then we can find Σ′2 homologous to ∂Σ3 in Σ3 with Σ′2 ⊂ UL(∂Σ3) so that each component of

Σ′2 has diameter ≤ 2√
3
π.

Proof. Fix u > 0 with LΣ3u ≤ 0. By slicing off a small strip near ∂Σ3 we can assume that

u > 0 all the way up to ∂Σ3. Using the Schoen–Yau rearrangement we find

∆u+ 1
2
(R + | II |2 −RΣ3)u ≤ 0,

which implies that

∆u+ 1
2
(2−RΣ3)u ≤ 0.

We can now consider the warped metric g̃3 := gΣ3 +u2dt2 on Σ3×S1. We can compute that

R̃Σ3×S2 = RΣ3 − 2∆u
u
≥ 3.

We can now consider S1-symmetric µ-bubbles in Σ3 × S1 with the function

h(x) = 2π
3L

tan( π
L
ρ(x) + π

2
),

where ρ is a 1-Lipschitz function on Σ3 with ρ = 0 along ∂Σ3 and ρ−1(L) smooth closed

surface Note that

R̃Σ3×S2 + 3
2
h2 − |∇̃h| ≥ 2− 2π2

3L2 = 2.

Hence, if we let Ω ⊂ Σ3 denote the usual stable µ-bubble (starting from ∂Σ3) we find that

each component Γ of ∂Ω \ Σ3 satisfies∫
Γ×S1

(2− R̃Γ×S1)f 2dµ̃ ≤
∫

Γ×S1

(R̃Σ3×S2 + 3
2
h2 + 2〈∇̃h, ν〉 − R̃Γ×S1)f 2dµ̃ ≤

∫
Γ×S1

2|∇̃f |2dµ̃
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for f ∈ C∞(Γ× S1). This implies that there is w > 0 on Γ× S1 satisfying

∆̃w + 1
2
(2− R̃Γ×S1)w ≤ 0

(take w to be the first eigenfunction). Moreover, by uniqueness of the first eigenfunction, we

see that w is S1-invariant.

We thus find that the doubly warped metric

ĝΓ×S1×S1 = gΓ + u2dt2 + w2ds2

(where gΓ is the induced metric on Γ by Γ→ (M4, g)) has

R̂Γ×S1×S1 ≥ 2.

We can now repeat the proof of the diameter bound for a stable minimal surface in PSC

(Corollary 6.16) essentially verbatim, except with this doubly warped metric instead of the

singly warped one. �

Theorem 7.32 ([CL20, Gro20, CLL21]). For n + 1 = 4, 5, if Mn+1 is a closed (n + 1)-

dimensional K(π, 1) manifold then M does not admit PSC. More generally, if Mn+1 admits

a map of non-zero degree to a closed (n + 1)-dimensional K(π, 1) then M does not admit

PSC.

Proof of non-mapping version of Theorem 7.32 when n+ 1 = 4. Suppose that (M, g) is a closed

4-dimensional K(π, 1) with R ≥ 3. Lift to (M̃, g̃) and Apply the co-dimension 2-linking

lemma to find a linked surface Σ2 ⊂ M̃ , and curve σ, so that dg̃(σ,Σ2) ≥ ρ (we will take

ρ� 0 below). Choose an area-minimizing 3-manifold Σ3 with ∂Σ3 = Σ2.

As long as we took ρ >
√

2
3
π, we can apply the previous lemma to find Σ′2 ⊂ Σ3, homol-

ogous to Σ2, with Σ′2 ⊂ U
2

√
2
3
π
(Σ2) with diam Γ ≤ 2√

3
π for each component Γ of Σ′2. We

claim that there is D = D(M, g) independent of ρ so that for each Γ there is Σ(Γ)3 with

∂Σ(Γ)3 = Γ and diam Σ(Γ) ≤ D. Granted this fact, we can consider the following fill-in of

Σ2:

Σ′3 := {the region in Σ3 between ∂Σ3 and Σ2}
⋃( ⋃

components Γ

Σ(Γ)3

)

Note that this 3-chain stays within a distance 2
√

2
3
π+D of Σ2. Since D was assumed to be

independent of ρ, we could take ρ > 2
√

2
3
π +D and find that Σ′3 ∩ σ = ∅. This contradicts

the linking lemma.

Finally, it we show that we can fill Γ in a uniform radius in the lemma below. �

Lemma 7.33. If (M, g) is a closed manifold with Hk(M̃) = 0 then for Γk ⊂ M̃ with

diam Γ ≤ r, there is D = D(M, g, r) and a (k + 1)-chain Γ̃ with ∂Γ̃ = Γ and diam Γ̃ ≤ D.
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Proof. Because M is closed, there is d > 0 so that for x0 ∈ M̃ fixed and any other x ∈ M̃ ,

there is a deck transformation ψ : M̃ → M̃ with ψ(x) ∈ Bd(x0). To see this, consider

π(x) ∈M and note that dg(π(x), π(x0)) ≤ diamM := d. Thus there is some x′ ∈ π−1(π(x))

with dg̃(x, x
′) ≤ d. The deck transformations of the universal cover act transitively on the

fibers of π (this follows from the homotopy lifting property of covers), so we can find one

taking x to x′.

Now, we see that ψ(Γ) ⊂ Bd+r(x0). Assume that Bd+r(x0) is a compact manifold with

boundary (by taking d slightly larger if necessary). Then Hk(Bd+r(x0)) is finitely generated.

Since Hk(M̃) = ∅, we can find D sufficiently large so that Hk(Bd+r(x0))→ Hk(BD/2(x0)) is

the zero map. (Fill each generator of Hk(Bd+r(x0)) and take D/2 to be the radius needed

to enclose them all.) Thus, ψ(Γ) = ∂Γ̃′ for Γ̃′ ⊂ BD/2(x0). Taking Γ̃ = ψ−1(Γ̃′) completes

the proof. �

We now briefly indicate how to prove the mapping version.

Proof of mapping version of Theorem 7.32 when n+ 1 = 4. Suppose that f : M4 → K4 has

nonzero degree, K4 has K̃ contractible, and (M, gM) has R ≥ 3. We can choose gK so that

f is distance non-increasing. The lifting lemma yields proper

f̂ : (M̂, ĝM)→ (K̃, g̃K)

of non-zero degree. Apply the co-dimension 2 linking lemma to find Σ2 linked with σ with

dK̃(Σ2, σ) ≥ ρ (large) and Σ2 = ∂Σ3. Perturb so that f̂ is transversal to Σ2,Σ3. Set

Σ̂2 = f−1(Σ2), Σ̂3 = f−1(Σ3).

As in the non-mapping version, we can fill Σ̂2 = Σ̂′3 with

Σ′3 ⊂ B
2
√

2
3
π+D

(Σ̂2),

where D depends on (M, gM) but not ρ. We thus can assume that

2
√

2
3
π +D < ρ.

Now, we set Σ′3 = f#(Σ̂′3), and by the same argument as in ambient 3-dimensions, we find

that

(deg f̂)[Σ3]− [Σ3]

is a non-zero element of H3(K̃,Z) (by the intersection count), a contradiction. �

Corollary 7.34 (S1-stability of PSC 3-manifolds). For M3 a closed 3-manifold, M × S1

admits PCS if and only if M does.

(We will prove this using the techniques developed above, but one can also prove this

using the Schoen–Yau conformal descent method [SY79a] as explained here: https://math

overflow.net/a/215872/1540.)

https://mathoverflow.net/a/215872/1540
https://mathoverflow.net/a/215872/1540
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Proof. If M admits PSC then we can cross with S1 to get a PSC metric on M × S1. As

such, the converse is the non-trivial direction. Suppose that M×S1 is PSC. Then, it suffices

to show that M 6≈M ′#K for K a K(π, 1) (by the classification of PSC 3-manifolds). Note

that if this did hold the the “collapse M ′ map” f : M → K has degree 1, so we get

f̄ : M × S1 → K × S1 of degree 1. Note that K × S1 is again a K(π, 1), contradicting the

no PSC mapping to K(π, 1) result for n = 4. �

We now sketch the proof of the n + 1 = 5 aspherical theorem. For simplicity, we only

consider the non-mapping version. The general strategy is the same:

(1) Find Σ3 linked with σ in K̃ (with R ≥ 4) with d(Σ3, σ) ≥ ρ� 0.

(2) Find Σ4 area-minimizing with ∂Σ4 = Σ3. Using the µ-bubble argument, we can

find a stable (with respect to the warped product metric) µ-bubble Σ′3 ⊂ Σ4 with

Σ′3 ⊂ Br1(Σ3) for r1 a numerical constant.

(3) Show that Σ′3 can be filled in Br2(Σ′3), for r2 depending on K but not ρ.

(4) This contradicts Σ3 linked with σ, as in the lower dimensional case.

The difficult step is (3). Indeed, in one dimension lower, we used the fact that each component

had controlled diameter and thus can be filled in a controlled radius. However, here, Σ′3
should act like a 3-manifold with R ≥ R0 > 0, and we have seen that the class of such

manifolds does not admit diameter bounds. However, one can imagine that somehow Σ′3 is

“1-dimensional,” and thus can be filled in a bounded distance.

The basic idea to actually do this is to try to divide Σ′3 by 2-dimensional µ-bubbles (with

respect to the doubly warped metric) which will then the S2’s with bounded diameter.

When Σ′3 is simply connected, this works well. We can use µ-bubbles to find an exhaustion

Ω1 ⊂ Ω2 ⊂ . . .Ωm = Σ′3 so that Ωj \Ωj−1 has controlled diameter. The key is to observe that

simple connectivity ensures that you cannot connect distinct components of ∂Ωj in M \ Ωj

(otherwise there would be a noncontractible loop).

When Σ′3 is not simply connected, this argument breaks down. The resolution is somewhat

complicated but basically, the idea is to first find area minimizing minimal surfaces (again,

using the doubly warped metric) in Σ′3 that slice Σ′3 into simply connected manifolds with

boundary. Then, in each sliced manifold we can use a “free-boundary µ-bubble” decompo-

sition, as in the simply connected case above. Extending the analysis to this case, we find

that the free-boundary µ-bubbles are either disks or spheres. Using this, we can again fill

Σ′3 in a bounded neighborhood.

For the aspherical problem in dimensions n + 1 > 5 this filling argument becomes more

difficult (and has not been resolved). There are at least two issues (also related to the fact

that the Urysohn width problem is not solved for dimensions > 3): first of all, one has to go

down a further dimension to get to S2’s. Secondly, a 3-dimensional free boundary µ-bubble

may have more than one boundary components.
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M3

Σ1

p

Slice

Dice

∂Ω1

∂Ω2

∂Ω3

∂Ω4

∂Ω5

U1

U2

U3

U4

U5

U6

U7

Σ1

Figure 2. The idea of “slice-and-dice” to decompose Σ′3 (figure from [CL20]).

Group all Γ
i
j so that

Γ
i
j ∩ Σ̂1 �= ∅

Fill in each Γ
i
j with Γ̂

i
j

Obtain a 3-cycle

Fill in by Ξ1

Figure 3. Using the slice-and-dice to fill Σ′3 (figure from [CL20]).

Finally, we remark that it is possible to refine the K(π, 1) result discussed above into a

positive result:

Theorem 7.35 ([CLL21]). Suppose that (M4, g) is a PSC 4-manifold with π2(M) = 0. Then

a finite cover M̂ is homotopy equivalent to S4 or a connected sum of S3 × S1’s.

(A similar statement holds for (M5, g) PSC with π2(M) = π3(M) = 0.) We won’t prove

this, but loosely, the strategy is as follows:

(1) Modify the proof of “macroscropic 1-dimensionality of PSC 3-manifolds to show

that under the π2 = 0 condition, M̃4 looks macroscopically 1-dimensional, and thus

resembles a tree in a coarse sense.

(2) Using geometric group theory, show that this implies that π1(M) is “virtually free”

(i.e., admits a finite index free subgroup). Geometrically, this produces the finite

cover M̂ with π1(M̂) free (with π2(M̂) = 0).

(3) Using topology, one can classify the homotopy type of such M̂ as stated.
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7.5. Difficulties with classifying simply connected PSC 4-manifolds. We briefly dis-

cuss an example11 related to the study of simply connected PSC 4-manifolds.

First, we recall the K3 manifold12 is

K3 := {x4 + y4 + z4 + w4 = 0} ⊂ CP 3.

Some facts about K3 are:

(1) K3 is simply connected,

(2) K3 does not admit PSC (this is due to a spin-theoretic obstruction: if M is spin and

PSC then Â(M) = 0, a topological inveriant known as the A-hat genus vanishes ;

in 4-dimensions, for a spin manifold M , Â(M) = 0 is equivalent to vanishing of the

signature σ(M) = 0)

Recall that for an oriented closed 4-manifold, the intersection form QM : H2(M4,Z) ×
H2(M4,Z) → Z is defined by e.g. QM(A,B) = A ∩ B (oriented intersection). Friedman’s

famous result says that if M,M ′ are smooth closed connected simply-connected 4-manifolds

with QM isomorphic to QM ′ then M and M ′ are homeomorphic (but not necessarily dif-

feomorphic!). In particular, one can check that the intersection forms of K3#CP 2 and

#3CP 2#20CP 2 are isomorphic, and thus these manifolds are homeomorphic. On the other

hand the following well-known result says that after stabilizing by connect sums with enough

S2 × S2’s, we can replace homeomorphism by diffeomorphism

Theorem 7.36 (Wall [Wal64]). If M,M ′ are smooth closed connected simply-connected

4-manifolds with QM isomorphic to QM ′ then there is k ∈ N so that M#kS
2 × S2 is diffeo-

morphic to M ′#kS
2 × S2.

(See, e.g., [Sco05] for further discussion of the relevant 4-manifold topology.) Thus, we

find that

M := K3#CP 2#kS
2 × S2

is diffeomorphic to

#3CP 2#20CP 2#kS
2 × S2.

On the one hand, M admits a degree 1 map M → K3 (and K3 does not admit PSC). On

the other hand,

#3CP 2#20CP 2#kS
2 × S2.

is the connected sum of PSC manifolds, and thus M admits PSC.

Some related results are discussed in [Ros07] including a “stable” classification of simply

connected PSC manifolds (M#kS
2×S2 admits PSC for some k if and only if M is non-spin

11as explained to me by Chao Li
12Note that there are many inequvalent complex surfaces known as K3 surfaces, but to a topologist, all of
these are diffeomorphic to the same 4-manifold just called K3.



42 OTIS CHODOSH

or is spin and Â(M) = 0). On the other hand, this is not true without the “stable” condition.

Indeed, there exist (cf. [Ros07, Counterexample 1.13]) closed simply-connected 4 manifolds

that are:

(1) non-spin but do not admit PSC13

(2) spin and Â = 0 but do not admit PSC14

(Basically, the point is that although there is no spin theoretic obstruction, there is another

obstruction coming from Seiberg–Witten theory.) Note that a simply connected 4-manifold

has H3(M,Z) = 0 (from Hurewicz, universal coefficient theorem, and Poincaré duality), so

there is no obvious obstruction to PSC by using the Schoen–Yau conformal descent technique.

8. Stable minimal hypersurfaces in Rn+1

We now return to complete two-sided stable minimal hypersurfaces in Euclidean space.

Recall that we saw (Theorem 4.9) that a complete two-sided stable minimal surface in R3 is

flat. We will discuss various generalizations of this to higher dimensions.

8.1. Curvature estimates. We briefly explain one motivation for studying complete stable

minimal hypersurfaces (cf. [Hei52, Sim76]).

Theorem 8.1. For n = 2, 3, 4, . . . , the following statements are equivalent:

(1) A complete two-sided connected stable minimal immersion Σn → Rn+1 is flat.

(2) There is C > 0 so that any two-sided stable minimal immersion Σn → Rn+1 satisfies

| IIΣ |(x)dΣ(x, ∂Σ) ≤ C.

(To be precise, in (2) we can consider Σ a manifold without boundary and define dΣ(x, ∂Σ)

to be the maximal r so that any unit speed geodesic starting at x exists for at least time r.

For example, if Σ = R2 \ {0} → R3, then even though Σ is not a manifold with boundary,

we can take dΣ(x, ∂Σ) = |x|.) Note that if Σ is connected and dΣ(x, ∂Σ) = ∞, then Σ is

complete.

Note that by [BDGG69, HS85], there is a non-flat area-minimizing (and thus stable min-

imal) complete two-sided hypersurface in Rn+1, n + 1 ≥ 8, so both statements are false in

these dimensions. We have (mostly) seen the proof that both statements are true when

n = 2 (we’ll prove the missing piece soon).

13Ciprian Manoulescu explained to me that one example of this is a “minimal surface of general type with
y = 8x” (minimal surface in the sense of complex geometry, nothing to do with the minimal surfaces discussed
here) as described in in [GS99, Theorem 7.4.14].
14(Again from Ciprian) there are many examples (again from complex geometry): the blow-up of any complex
manifold with b+2 ≥ 2 (e.g., K3) has odd intersection form and is thus non-spin. Alternatively: the elliptic
surface E(n) for n odd (cf. [GS99, Proposition 3.1.11]) or the degree d hypersurface in CP 3 with d odd (cf.
[GS99, Lemma 1.3.9]).
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Proof. There is no closed minimal surface in Rn+1 so if (2) holds, then given complete two-

sided connected stable minimal immersion Σn → Rn+1, we find that dΣ(x, ∂Σ) = ∞. Thus

IIΣ(x) = 0.

Conversely, suppose that (1) holds and there is a sequence Σn
k → Rn+1 of two-sided stable

minimal immersions with

sup
Σk

| IIΣk(x)|dΣk(x, ∂Σi)→∞.

We can exhaust any manifold by compact manifolds with boundary, so we can choose such

a Σ′k ⊂ Σ with

sup
Σ′k

| IIΣ′k
(x)|dΣ′k

(x, ∂Σ′k)→∞.

Now, | IIΣ′k
(x)|dΣ′k

(x, ∂Σ′k) is a continuous function on a compact manifold, it attains its

maximum. Translate so that this maximum occurs at x = 0. Set rk = dΣ′k
(0, ∂Σ′k) and

λk = | IIΣ′k
|(0) (note that λkrk →∞).

Define Σ′′k = λkB
Σ′k
rk (0). Note that

| IIΣ′′k
|(0) = λ−1

k | IIΣ′k
|(0) = 1

and for x ∈ Σ′′k we have

| IIΣ′′k
|(x)dΣ′′k

(x, ∂Σ′′k) ≤ | IIΣ′′k
|(0)dΣ′′k

(0, ∂Σ′′k) = dΣ′′k
(0, ∂Σ′′k) = λkrk.

so for x ∈ Σ′′k with dΣ′′k
(0, x) ≤ R, we have

| IIΣ′′k
|(x) ≤ λkrk

λkrk −R
→ 1.

Thus, we see that Σ′′k has uniformly bounded curvature on compact sets. This suffices to take

a subsequential smooth limit as an immersion to find a complete stable minimal immersion

Σ′′∞ → Rn+1 (with | IIΣ′′∞ | ≤ 1). By construction, | IIΣ′′∞ |(0) = 1, so Σ′′∞ is not flat. This

contradicts (1). �

We need to discuss the notion of limit we used above. We say that a sequence of pointed

immersions (ϕk : Σk → Rn+1, pk) (pointed just means that there is a distinguished point

pk ∈ Σk) smoothly converges to a pointed immersion (ϕ∞ : Σ∞ → Rn+1, p∞) if there is an

exhaustion of Σ∞ by connected open sets Ω1 ⊂ Ω2 ⊂ · · · ⊂ Σ∞ and diffeomorphisms

Φk : Ωk → Φk(Ωk) ⊂ Σk

so that ‖ϕ∞ − ϕk ◦ Φk‖Ck(Ωk) → 0 as k →∞.

The basic convergence result used here is:

Proposition 8.2. Suppose that (ϕk : Σk → Rn+1, pk) is a sequence of minimal immersions

with |ϕk(pk)| ≤ d, supΣk
| IIΣk | ≤ C and dΣk(p∞, ∂Σk) ≥ Rk → R ∈ (0,∞]. Then, up to
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passing to a subsequence, (ϕk : Σk → Rn, pk) converges to a minimal immersion (ϕ∞ : Σ∞ →
Rn+1, p∞) with |ϕ∞(p∞)| ≤ d, supΣ∞ | IIΣ∞ | ≤ C and dΣ∞(p∞, ∂Σ∞) ≥ R.

Sketch of the proof. By rescaling we can assume the curvature bound satisfies C = 1. We

proceed via the following steps:

Suppose that ϕ : Σ→ Rn+1 is a minimal immersion with supΣ | IIΣ | ≤ C.

(1) There is ρ = ρ(n) with the following property. Fix q ∈ Σ and take

r = min{ρ, dΣ(q, ∂Σ)/2}.

There is a diffeomorphism Ψ : Br(0) ⊂ TqΣ → Φ(Br(0)) ⊂ Σ and a function u :

Br(0) ⊂ TqΣ→ (TqΣ)⊥ with |u|+ |∇u| ≤ 1 and |D2u| ≤ 10, and so that ϕ(Ψ(x)) =

x+ u(x) for all x ∈ Br(0).

(2) The function u constructed in step (1) has ‖u‖Ck(Br/2(0)) ≤ Ck (where Ck depends

only on the bound supΣ | IIΣ | ≤ C and k, n).

Now, consider a pointed sequence of immersions (ϕk : Σk → Rn+1, pk) as in the statement of

the lemma.

(3) Choose qk ∈ Σk with lim supk→∞ dΣk(pk, qk) < ∞ and lim infk→∞ dΣk(qk, ∂Σk) > 0.

Then, up to passing to a subsequence, ϕk(qk) → Q∞, TqkΣ converges to some affine

hyperplane Π∞ + Q∞, the radii rk (defined in Step 1) converge to r > 0 and the

functions (defined in Step 1) uk : Brk(0) ⊂ TqkΣk → (TqkΣk)
⊥ converge in C∞loc to

some function u : Br(0) ⊂ Π→ Π⊥ so that {x+ u(x) : x ∈ Br(0)} is minimal.

(4) We can patch these graphs together to obtain ϕ∞ : Σ∞ → Rn+1 so that (ϕk : Σk →
Rn+1, pk) converges to (ϕ∞ : Σ∞ → Rn+1, p∞).

We now discuss the proofs of these facts.

Step 1: Write ν for the unit normal vector field. Note that |∇ν| ≤ | II | ≤ 1. This shows that

ν cannot tilt too quickly in a short distance. This shows that an intrinsic ball of definite

size is graphical over Br(0) ⊂ TqΣ. Finally, we note that |∇u| is comparable to the angle

between (TqΣ)⊥ and ν, so this allows us to ensure that u has bounded gradient. Finally, for

a graph of bounded gradient, the second fundamental form and the Hessian are comparable.

(See [CM11, Lemma 2.4] for a careful proof.)

Step 2: The graph of u is a minimal surface. This means that u solves the minimal surface

equation Di((1 + |∇u|2)−1/2Dju) = 0. Schauder estimates give Ck bounds.

Step 3: Arzelà–Ascoli.

Step 4: In this step, we assume that R =∞ (i.e., dΣk(pk, ∂Σk)→∞). This is the only case

we care about in the blow-up argument, in any case.

Apply Step (3) with qk = pk. We obtain convergence over a full ball of radius ρ ⊂ Π.

We claim that there is N2 so that BΣk
2ρ (pk) can be covered by ≤ N1 balls BΣk

ρ (·). This

follows, e.g., from the fact that (Σk, ϕ
∗
kgRn+1) has bounded Riemann curvature (by the Gauss
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equations) so we can use volume comparison to prove a doubling estimate at this radius.

Choosing such a cover, we can pass to a diagonal sequence and find a bounded number of

points Q2
k ⊂ Σk so that Step (3) applies at each point (without further subsequence) and so

that BΣk
2ρ (pk) ⊂ BΣk

ρ (Q2
k).

Note that we can patch together the graphs obtained in Step (3) to find ϕ2
∞ : Σ2

∞ → Rn+1

so that (ϕk|BΣk
2ρ (pk)

, pk) converges as pointed immersions to (ϕ2
∞, p∞). The point here is to

consider the (bounded number of) overlaps of the blls BΣk
ρ (·) centered at Q2

k and pass to

a further subsequence so that the transition maps converge. This shows that the limiting

graphs can be glued back together. Using this, we can complete the proof by taking a further

diagonal sequence to cover BΣk
jρ (pk) for j →∞. �

Remark 8.3. Note that if dk(p∞, ∂Σk)→∞, then the previous result shows that Σ∞ → Rn

is complete. We have crucially used this above.

Remark 8.4. Note that we actually prove that the following three statements are equivalent:

(1) A complete two-sided connected stable minimal immersion Σn → Rn+1 is flat.

(2) A complete two-sided connected stable minimal immersion Σn → Rn+1 so that

supΣ | II | <∞ is flat.

(3) There is C > 0 so that any two-sided stable minimal immersion Σn → Rn+1 satisfies

| IIΣ |(x)dΣ(x, ∂Σ) ≤ C.

Indeed, we first observe that (1) implies (2) and (3) implies (1). The point-picking argument

given above shows that (3) follows from (2) (not just (1)).

8.2. Bochner methods and the improved Kato inequality. Recall that we showed

that complete two-sided stable immersions Σ2 → R3 are flat by (1) showing that Σ is

conformally R2 and then (2) using the log-cutoff trick to find ϕk → 1 compactly supported

with
∫

Σ
|∇ϕk|2 → 0. In higher dimensions, both of these steps fail. For (1), we have no

analogue of uniformization in higher dimensions (particularly for non-compact Σ) and for

(2), no such functions exist. On important observation is that step (2) above would show

that any Schrödinger operator ∆ + V with V ≥ 0 on Σ2 conformal to R2 is unstable unless

V ≡ 0. In other words, step (2) did not use the fact that Σ was a minimal surface.

To generalize these results to higher dimensions we should thus try to improve step (2)

using minimality of Σ. The most famous result along these lines is probably the work of

Schoen–Simon–Yau [SSY75], but we will start with a different result (from [SY76]) which

involves simpler computations.

We start by recalling the Bochner formula.

Proposition 8.5. For a C3 function on a Riemannian manifold (Mm, g), we have

(8.1) 1
2
∆|∇u|2 = |D2u|2 + 〈∇∆u,∇u〉+ Ric(∇u,∇u).
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Proof. Since the Hessian of a function is symmetric we find

〈∇Y∇u,Z〉 = 〈∇Z∇u,Y〉

for any vector fields Y,Z.

Hence, assuming that Ei is a local orthonormal frame, parallel at the given point, we have〈
∇2

Ei,Ei
∇u,Ej

〉
=
〈
∇2

Ei,Ej
∇u,Ei

〉
=
〈
∇2

Ej ,Ei
∇u,Ei

〉
+R(Ei,Ej,∇u,Ei)

=
〈
∇Ej∇Ei∇u,Ei

〉
+R(Ei,Ej,∇u,Ei)

= ∇Ej 〈∇Ei∇u,Ei〉+R(Ei,Ej,∇u,Ei).

Tracing with respect to i, we find

∆∇u = ∇∆u+ Ric(∇, ·).

Thus,

1
2
∆|∇u|2 = 1

2
∆ 〈∇u,∇u〉 = 〈∆∇u,∇u〉+ |D2u|2 = |D2u|2 + 〈∇∆u,∇u〉+ Ric(∇u,∇u),

as claimed. �

In particular, when ∆u = 0, we find

1
2
∆|∇u|2 = |D2u|2 + Ric(∇u,∇u).

We need to analyze the Hessian term more closely.

∇|∇u|2 = 2D2u(∇u, ·)⇒ 4|∇u|2|∇|∇u||2 = |∇|∇u||2 ≤ 4|D2u||∇u|2.

This yields the Kato inequality. At a point with |∇u| 6= 0, we have

|∇|∇u||2 ≤ |D2u|2.

Note that this holds for any u ∈ C2(M). However, a very important observation is that

when u is harmonic, we can improve the Kato inequality.

Lemma 8.6 (Refined Kato inequality). If ∆u = 0, then(
1 + 1

n−1

)
|∇|∇u||2 ≤ |D2u|2.

on the set {|∇u| 6= 0}.

Proof. Choose an orthonormal basis E1, . . . ,En ∈ TpM so that ∇u = |∇u|E1. We saw that

∇|∇u| = D2u(E1, ·) so |∇|∇u||2 =
∑n

j=1D
2u(E1,Ej)

2. Now, we compute

|D2u|2 ≥
n∑
j=1

D2u(E1,Ej)
2 +

n∑
j=2

D2u(E1,Ej)
2 +

n∑
i=2

D2u(Ei,Ei)
2
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≥
n∑
j=1

D2u(E1,Ej)
2 +

n∑
j=2

D2u(E1,Ej)
2 +

1

n− 1

(
n∑
i=2

D2u(Ei,Ei)

)2

≥
n∑
j=1

D2u(E1,Ej)
2 +

n∑
j=2

D2u(E1,Ej)
2 +

1

n− 1
D2u(E1,E1)2

≥
n∑
j=1

D2u(E1,Ej)
2 +

1

n− 1

n∑
j=1

D2u(E1,Ej)
2.

This completes the proof. �

In particular, if we combine the improved Kato inequality with the Bochner formula we

find that if ∆u = 0 then

|∇u|∆|∇u| = 1
2
∆|∇u|2 − |∇|∇u||2 ≥ 1

n−1
|∇|∇u||2 + Ric(∇u,∇u)

on {|∇u| 6= 0}. Now, suppose that Σn → Rn+1 is a minimal hypersurface. The Gauss

equations yield

RicΣ(X,Y) = H II(X,Y)− 〈II(X, ·), II(Y, ·)〉 = −〈II(X, ·), II(Y, ·)〉 .

From this we easily find15 Ric(X,X) ≥ −| II |2|X|2.

Putting this all together, we have

|∇u|∆|∇u| ≥ 1
n−1
|∇|∇u||2 − | II |2|∇u|2.

We can now use this in the stability inequality as follows.

Theorem 8.7 (Schoen–Yau [SY76]). If Σn → Rn+1 is a complete two-sided stable minimal

hypersurface then there is no non-constant harmonic function on Σ with |∇u| ∈ L2(Σ).

Proof. For a test function ϕ ∈ C∞c (Σ), we take f = |∇u|ϕ in the stability inequality. We

find ∫
Σ

| II |2|∇u|2ϕ2 ≤
∫

Σ

|ϕ∇|∇u|+ |∇u|∇ϕ|2

=

∫
Σ

ϕ2|∇|∇u||2 + 2ϕ|∇u| 〈∇|∇u|,∇ϕ〉+ |∇u|2|∇ϕ|2

=

∫
Σ

ϕ2|∇|∇u||2 + 1
2

〈
∇|∇u|2,∇ϕ2

〉
+ |∇u|2|∇ϕ|2

=

∫
Σ

ϕ2|∇|∇u||2 − 1
2
ϕ2∆|∇u|2 + |∇u|2|∇ϕ|2

=

∫
Σ

−ϕ2|∇u|∆|∇u|+ |∇u|2|∇ϕ|2

15In fact, we can do better using minimality of Σ (like in the improved Kato inequality) and show that
RicΣ(X,X) ≥ −

(
1− 1

n

)
| II |2|X|2, but we will not need this. See [Li04, Lemma 10.2].
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=

∫
Σ

− 1
n−1
|∇|∇u||2ϕ2 + | II |2|∇u|2ϕ2 + |∇u|2|∇ϕ|2.

Rearranging, we find ∫
Σ

1
n−1
|∇|∇u||2ϕ2 ≤

∫
Σ

|∇u|2|∇ϕ|2.

Now, take ϕ to be a cutoff function that is ≡ 1 in BΣ
R, cutting off to 0 outside of BΣ

2R. We

can do this with |∇ϕ| ≤ CR−1 (just take ϕ a function dΣ(p, ·)). Thus,∫
BΣ
R

1
n−1
|∇|∇u||2 ≤ O(R−2)

∫
Σ

|∇u|2 = O(R−2),

so sending R → ∞, we find |∇|∇u|| ≡ 0, i.e., |∇u| is constant. Because u is not constant,

|∇u| is a non-zero constant. This implies that Σ has finite volume (since
∫

Σ
|∇u|2 < ∞).

This contradicts the next lemma which says that any minimal immersion Σn → Rn+1 has

infinite volume.16 �

Remark 8.8. Note that we have been a bit sloppy with the points where {|∇u| = 0} above.

In the previous argument it is quite easy to avoid this issue, but when we consider lower

powers of |∇u| it could a priori be a problem. We will not worry about such issues in these

notes (you can find the justification in the original papers), but we will just mention that

one way to handle it would be to consider
√
|∇u|2 + δ ϕ ∈ C∞c (Σ) in stability, sending δ → 0

at the end of the argument.

We owe the following result:

Lemma 8.9 (cf. [Yau75b, CSZ97]). If Σn → Rn+1 is a minimal immersion with dΣ(x, ∂Σ) >

r then |BΣ
r (x)| ≥ |B1(0) ⊂ Rn|rn

Proof. Recall that ∆Σ|x|2 = 2n. Thus,

2n|BΣ
r (x)| =

∫
BΣ
r

∆Σ|x|2 =

∫
∂BΣ

r

∂η|x|2 ≤ 2r|∂BΣ
r (x)|.

On the other hand,
d
dr
|BΣ

r (x)| = |∂BΣ
r (x)| ≥ n

r
|BΣ

r (x)|.

Integrating this from r = 0 (and using |BΣ
r (x)| ≈ |B1(0) ⊂ Rn|rn for r small) the assertion

follows. �

16Alternatively, we can use stability here. Take f = ϕ the cutoff function as above to find∫
BΣ

R

| II |2 ≤ O(R−2)|BΣ
2R|,

and by assumption the right hand side is o(1) as R→∞. Thus, we find that II ≡ 0, so Σ is a flat hyperplane
(having infinite volume). This is a contradiction.
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At this point, we can also prove Theorem 4.7 saying that if Σ→ (M3, g) is a simply con-

nected complete stable minimal surface in a 3-manifold with non-negative scalar curvature,

then the induced metric (Σ, h) is not conformal to the disk.

Proof of Theorem 4.7. Recall the Schoen–Yau rearrangement in three dimensions:∫
Σ

(−2K)f 2 ≤
∫

Σ

(R + | II |2 − 2K)f 2 ≤
∫

Σ

2|∇f |2

Supposing that Σ is conformal to D, then there exists a non-constant harmonic function

∆u = 0 with finite Dirichlet energy
∫

Σ
|∇u|2 <∞ (both of these properties are conformally

invariant in two-dimensions). Taking |∇u|ϕ in stability and integrating by parts as above,

we find ∫
Σ

(| II |2 − 2K)|∇u|2ϕ2 ≤
∫

Σ

−2|∇u|∆|∇u|ϕ2 + 2|∇u|2|∇ϕ|2.

Now, the Bochner formula (along with improved Kato) reads (since RicΣ(X,Y) = K 〈X,Y〉
in two-dimensions)

|∇u|∆|∇u| ≥ |∇|∇u||2 +K|∇u|2,

so ∫
Σ

|∇|∇u||2ϕ2 ≤
∫

Σ

2|∇u|2|∇ϕ|2.

As before, we can use the finite Dirichlet energy to conclude that |∇u| is a constant. This is

a contradiction. For example, if we write the induced metric as h = ρ2ḡ, for ḡ the flat metric

on D, and if we took u = x1, then |∇̄u|ḡ = 1 and |∇u|h = ρ−1, so we find that ρ is constant.

This contradicts the completeness of h. �

Building on Theorem 8.7 we now have

Theorem 8.10 (Cao–Shen–Zhu [CSZ97]). If Σn → Rn+1 is a two-sided complete stable

minimal immersion then Σ only has one end.

Recall that this means that for any compact set K ⊂ Σ, then Σ \ K has exactly one

unbounded component (e.g., Rn has one end for n > 1 and two ends for n = 1). For the

proof, we will need the Michael–Simon Sobolev inequality.

Theorem 8.11 (Michael–Simon [MS73]). For Σk → Rn a minimal immersion and w ∈
C0,1
c (Σ \ ∂Σ), we have (∫

Σ

w
2k
k−2

) k−2
k

≤ C

∫
Σ

|∇w|2

for C = C(n).

This is the form of the usual Sobolev inequality in Rk, and the key point here is that the

constant is independent of the geometry. (In fact, the stronger L1-Sobolev inequality holds
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as well, but we will not need this.) We also note that Brendle has recently resolved a well-

known conjecture about the sharp constant in the above inequality (when k = n− 1, n− 2)

[Bre21] (see also [Bre20]).

We now have the following lemma.

Lemma 8.12. If Σn → Rn+1 is a complete minimal immersion with more than one end

then there is a non-constant harmonic function u ∈ C∞(Σ), 0 ≤ u ≤ 1, with finite Dirichlet

energy.

Combining this lemma with Theorem 8.7 we immediately obtain Theorem 8.10.

Proof. Choose an exhaustion of Σ by pre-compact open sets Ω1 ⊂ Ω2 . . . so that Σ \ Ωj has

at least two unbounded components for j = 1, 2, . . . . Write Σ \ Ω1 = E1 ∪ E2 ∪ E3 where

E1, E2 are unbounded and E3 is the (possibly empty) union of the other components and

set ∂kΩj = ∂Ωj ∩ Ek.
Let uj solve ∆uj = 0 on Ωj with uj = 1 on ∂1Ωj and uj = 0 on ∂2Ωj ∪ ∂3Ωj. We can

extend uj by 1 and 0 to E1, E2 ∪ E3 respectively. Note that∫
Σ

|∇uj+m|2 ≤
∫

Σ

|∇uj|2,

for m ≥ 0, since uj+m minimizes Dirichlet energy for its boundary data. Moreover, the

maximum principle shows that 0 ≤ uj ≤ 1. Thus, we can pass to a subsequence and assume

that uj converges to a harmonic function 0 ≤ u ≤ 1 on Σ with finite Dirichlet energy. It

remains to prove that u is not constant.

First of all, note that the Sobolev inequality with w = uj(1− uj) shows that∫
Σ

(uj(1− uj))
2n
n−2 ≤ C

(
2

∫
Σ

(1− uj)2|∇uj|2 + u2
j |∇uj|2

) n
n−2

= O(1)

as j →∞. Thus, by Fatou’s lemma, we find that∫
Σ

(u(1− u)))
2n
n−2 <∞.

Using |BΣ
r | ≥ ωnr

n, we see that E1, E2 (and thus Σ) have infinite volume. Thus, if u is

constant, we see that u = 0 or u = 1. We can assume that u = 1 (the other case is similar

by swapping ends and considering 1− u).

Choose a cutoff function χ that is 1 on E2 and cuts off in the compact part of Σ. Then,

consider χuj, we have∫
Σ

(χuj)
2n
n−2 ≤ C

(
2

∫
Σ

|∇χ|2u2
j + χ2|∇uj|2

) n
n−2

= O(1)
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(this is applicable since χuj has compact support). Taking j →∞, we find∫
Σ

χ
2n
n−2 <∞,

so E2 has finite volume. This is a contradiction. �

We have been focused on applications of the Bochner formula. We now turn to the Simons

identity and the work of Simons and Schoen–Simon–Yau. The Bochner formula was obtained

by commuting [∆,∇]u for u harmonic. Similarly, if we recall that II = ∇ν (up to raising an

index), one can try to commute derivatives to obtain an equation for | II |. The commutators

will yield Riemann curvature terms, but when Σn → Rn+1 is an immersion, we can then

relate these terms back to II by the (untraced) Gauss equations. This yields

Proposition 8.13 (Simons [Sim68]). Suppose that Σn → Rn+1 is a minimal immersion.

Then, the second fundamental form satisfies

1
2
∆| II |2 + | II |4 = |∇ II |2

along Σ.

First we have the following lemma

Lemma 8.14. For a Riemannian manifold (M, g) with connection ∇, for any (0, 2) tensor

T , we have that

(∇2
X,YT )(Z,W) = (∇2

Y,ZT )(Z,W)− T (R(X,Y)Z,W)− T (Z, R(X,Y)W)

Proof. We can that X,Y,Z,W are parallel at p. Then

(∇2
X,YT )(Z,W) = ∇X((∇YT )(Z,W))

= ∇X(∇Y(T (Z,W))− T (∇YZ,W)− T (Z,∇YW))

= ∇Y(∇X(T (Z,W)))− T (∇2
X,Y,W)− T (Z,∇2

X,YW)

= (∇2
Y,ZT )(Z,W)− T ((∇2

X,YZ−∇2
Y,XZ,W)− T (Z, (∇2

X,YW −∇2
Y,XW)

= (∇2
Y,ZT )(Z,W)− T (R(X,Y)Z,W)− T (Z, R(X,Y)W),

finishing the proof. �

We can now prove Simons identity.

Proof of Proposition 8.13. Recall that

II(X,Y) = 〈∇Xν,Y〉 .

It is convenient to locally extend ν to a vector field on Rn+1. We can do this while assuming

that ∇νν = 0.
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Thus, we find (recalling that for X ∈ TpΣ, ∇Xν ∈ TpΣ (differentiate |ν|2 = 1)

(∇Σ
Z II)(X,Y) = ∇Σ

Z(II(X,Y))− II(∇Σ
ZX,Y)− II(X,∇Σ

ZY)

= 〈∇Z∇Xν,Y〉 −
〈
∇∇Σ

ZX
ν,Y

〉
+
〈
∇Xν,∇ZY −∇Σ

ZY
〉︸ ︷︷ ︸

=0

= 〈∇Z∇Xν,Y〉 −
〈
∇∇Σ

ZX
ν,Y

〉
+
〈
∇Xν,∇ZY −∇Σ

ZY
〉︸ ︷︷ ︸

=0

=
〈
∇2

Z,Xν,Y
〉

+
〈
∇∇ZX−∇Σ

ZX
ν,Y

〉
=
〈
∇2

Z,Xν,Y
〉

In particular, we recover the Codazzi equations: ∇ II(X,Y,Z) is symmetric in all three

indices. We also need the un-traced Gauss equations

R(X,Y,Z,W) = II(X,W) II(Y,Z)− II(X,Y) II(Z,W)

Now, for E1, . . . ,En an orthonormal frame for Σ, with E1, . . . ,En and X,Y parallel with

respect to ∇Σ at p, and so that E1, . . . ,En diagonalizes II at p, we compute

(∇Σ,2
Ei,Ei

II)(X,Y) = ∇Σ
Ei

((∇Σ
Ei

II)(X,Y))

= ∇Σ
Ei

((∇Σ
X II)(Ei,Y))

= (∇Σ,2
Ei,X

) II(Ei,Y)

= (∇Σ,2
X,Ei

II)(Ei,Y) + II(R(X,Ei)Ei,Y) + II(Ei, R(X,Ei)Y)

= (∇Σ,2
X,Y II)(Ei,Ei) +

n∑
j=1

R(X,Ei,Ei,Ej) II(Ej,Y)

+ II(Ei,Ei)R(X,Ei,Y,Ei)

= (∇Σ,2
X,Y II)(Ei,Ei) +

n∑
j=1

R(X,Ei,Ei,Ej) II(Ej,Y)

+ II(Ei,Ei)R(X,Ei,Y,Ei)

= (∇Σ,2
X,Y II)(Ei,Ei) +

n∑
j=1

(II(X,Ej) II(Ei,Ei) II(Ej,Y)− II(X,Ei) II(Ei,Ej) II(Ej,Y))

+ II(Ei,Ei) II(X,Ei) II(Y,Ei) + II(Ei,Ei)
2 II(X,Y)

= (∇Σ,2
X,Y II)(Ei,Ei) +

n∑
j=1

(II(X,Ej) II(Ei,Ei) II(Ej,Y))

− II(Ei,Ei)
2 II(X,Y)
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Tracing with respect to i (and using H = 0) we find

∆ II +| II |2 II = 0.

Thus,
1
2
∆| II |2 = |∇ II |2 − | II |4,

completing the proof. �

The ∇ II term is analogous to the Hessian term in the Bochner formula. Because tr II = 0,

it is natural to ask if there is a (improved) Kato type inequality. Indeed, this holds (using

minimality as well the Codazzi equations) and we obtain

Proposition 8.15 (Schoen–Simon–Yau [SSY75]). Suppose that Σn → Rn+1 is a minimal

immersion. Then

|∇ II |2 ≥ (1 + 2
n
)|∇| II ||2

on the set {| II | 6= 0}.

Proof. Choose an orthornormal frame E1, . . . ,En parallel and diagonalizing II at p. Then,

∇Ei | II |2 = 2
n∑

j,k=1

(∇Ei II)(Ej,Ek) II(Ej,Ek) = 2
n∑
j=1

(∇Ei II)(Ej,Ej) II(Ej,Ej)

so

4| II |2|∇| II ||2 = |∇| II |2|2 = 4
n∑
i=1

(
n∑
j=1

(∇Ei II)(Ej,Ej) II(Ej,Ej)

)2

≤ 4
n∑
i=1

((
n∑
j=1

(∇Ei II)(Ej,Ej)
2

)(
n∑
j=1

II(Ej,Ej)
2

))

= 4| II |2
n∑

i,j=1

(∇Ei II)(Ej,Ej)
2

where we used Cauchy-Schwarz in the second to last step. Now, weh ave

|∇| II ||2 ≤
n∑

i,j=1

(∇Ei II)(Ej,Ej)
2

=
∑
i 6=j

(∇Ei II)(Ej,Ej)
2 +

n∑
i=1

(∇Ei II)(Ei,Ei)
2

=
∑
i 6=j

(∇Ei II)(Ej,Ej)
2 +

n∑
i=1

(∑
j 6=i

(∇Ei II)(Ej,Ej)

)2

≤
∑
i 6=j

(∇Ei II)(Ej,Ej)
2 + (n− 1)

∑
j 6=i

(∇Ei II)(Ej,Ej)
2
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= n
∑
i 6=j

(∇Ei II)(Ej,Ej)
2.

Thus,

(1 + 2
n
)|∇| II ||2

≤
n∑

i,j=1

(∇Ei II)(Ej,Ej)
2 + 2

∑
i 6=j

(∇Ei II)(Ej,Ej)
2

=
∑
i 6=j

(∇Ei II)(Ej,Ej)
2 +

n∑
i=1

(∇Ei II)(Ei,Ei)
2 + 2

∑
i 6=j

(∇Ei II)(Ej,Ej)
2

=
∑
i 6=j

(∇Ei II)(Ej,Ej)
2 +

n∑
i=1

(∇Ei II)(Ei,Ei)
2 +

∑
i 6=j

(∇Ej II)(Ei,Ej)
2 +

∑
i 6=j

(∇Ej II)(Ej,Ei)
2

≤
n∑

i,j,k=1

(∇Ei II)(Ej,Ek)
2

= |∇ II |2.

In the second equality we used the Codazzi equations to permute the indices of the final

term. This completes the proof. �

In particular, we find

(8.2) ∆| II |+ | II |3 ≥ 2
n
| II |−1|∇| II ||2

on the set {| II | 6= 0}. (One should compare this to the following version of the Bochner

formula along Σ: ∆|∇u|+ | II |2|∇u| ≥ 1
n−1
|∇u|−1|∇|∇u||2.)

Theorem 8.16 (Schoen–Simon–Yau [SSY75]). If Σn → Rn+1 is a two-sided complete stable

minimal immersion, then for α ∈ [n−2
n
, 1 +

√
2
n
) there is C = C(n, α) so that∫

Σ

| II |2α+2ϕ2α+2 ≤ C

∫
Σ

|∇ϕ|2α+2.

for any ϕ ∈ C0,1
c (Σ).

Corollary 8.17. If Σn → Rn+1 is a two-sided complete stable minimal immersion with

|BΣ
R| = O(Rµ) for µ < 4 +

√
8
n

then Σ is flat.

Proof. Take a cutoff function ϕ ≡ 1 on BΣ
R and ≡ 0 outside of BΣ

2R (we can use a function

depending on the distance to a point). We can ensure that |∇ϕ| = O(R−1). Thus,∫
BΣ
R

| II |2α+2 ≤ CR−2α−2+µ
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By the assumption on µ, we can take α slightly smaller than 1 +
√

2
n

so that this term is

o(1) as R→∞. This completes the proof. �

Corollary 8.18. For n ≤ 5, if Σn → Rn+1 is stable two-sided minimal with |Σ∩BΣ
R| = O(Rn)

then Σ is flat.

Proof. We can check that 4 +
√

8
n
> n for n ≤ 5. �

Remark 8.19. By work of Schoen–Simon [SS81] an embedded stable minimal two-sided hy-

persurface Σ6 ⊂ R7 with |Σ ∩BR| = O(R6) is flat but it is unknown if the same thing holds

for immersed minimal surfaces. The non-flat stable (area-minimizing) two-sided hypersur-

faces in R8 (and higher) have this O(Rn) area growth, so no such result is possible in higher

dimensions. Schoen–Simon show that such hypersurfaces cannot be “planar” at infinity in

a certain sense.

Corollary 8.20. A minimal graph in Rn+1 is flat, for n+ 1 ≤ 6.

Proof. We just need to know that minimal graphs satisfy |Σ∩BR| = O(Rn). One can prove

this by showing the graph is area-minimizing and then comparing with coordinate balls,

or alternatively, one can give a non-geometric proof, by integrating the minimal surface

equation against a well-chosen test function, cf. [GT01, (16.53)]. �

(Recall that this actually holds up to n+ 1 ≤ 8, but one needs a different argument in the

remaining dimensions.)

We now prove the Schoen–Simon–Yau estimate.

Proof of Theorem 8.16. Take f = | II |αϕ in stability. We find∫
Σ

| II |2α+2ϕ2

≤
∫

Σ

|α| II |α−1ϕ∇| II |+ | II |α∇ϕ|2

=

∫
Σ

α2| II |2α−2|∇| II ||2ϕ2 + 2α| II |2α−1ϕ 〈∇| II |,∇ϕ〉+ | II |2α|∇ϕ|2

=

∫
Σ

α2| II |2α−2|∇| II ||2ϕ2 + α| II |2α−1
〈
∇| II |,∇ϕ2

〉
+ | II |2α|∇ϕ|2

=

∫
Σ

α2| II |2α−2|∇| II ||2ϕ2 − α| II |2α−1∆| II | − α(2α− 1)| II |2α−2|∇| II ||2 + | II |2α|∇ϕ|2

=

∫
Σ

α(1− α)| II |2α−2|∇| II ||2ϕ2 − α| II |2α−1∆| II |+ | II |2α|∇ϕ|2

≤
∫

Σ

α(1− α− 2
n
)| II |2α−2|∇| II ||2ϕ2 + α| II |2α+2ϕ2 + | II |2α|∇ϕ|2.
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If α ∈ [n−2
n
, 1) we can bound∫

Σ

(1− α)| II |2α+2ϕ2 ≤
∫
| II |2α|∇ϕ|2.

If α ≥ 1, then we find∫
Σ

α(α− n−2
n

)| II |2α−2|∇| II ||2ϕ2 ≤
∫

Σ

(α− 1)| II |2α+2ϕ2 + | II |2α|∇ϕ|2

Now, returning to stability, we can use AM-GM on the cross term to write

(8.3)

∫
Σ

| II |2α+2ϕ2 ≤
∫

Σ

α(α + ε)| II |2α−2|∇| II ||2ϕ2 + C| II |2α|∇ϕ|2,

so combining these expressions, we find∫
Σ

α(α− n−2
n

)| II |2α−2|∇| II ||2ϕ2 ≤
∫

Σ

α(α− 1)(α + ε)| II |2α−2|∇| II ||2ϕ2 + C| II |2α|∇ϕ|2

i.e., ∫
Σ

α(α− n−2
n
− (α− 1)(α + ε))| II |2α−2|∇| II ||2ϕ2 ≤ C

∫
Σ

| II |2α|∇ϕ|2

As long as

α− n−2
n
− (α− 1)(α + ε) > 0,

we can use (8.3) again to conclude that∫
Σ

| II |2α+2ϕ2 ≤ C

∫
Σ

| II |2α|∇ϕ|2.

Note that the roots of

0 = α− n−2
n
− (α− 1)α = −α2 + 2α− n−2

n
= −(α− 1)2 + 2

n

are

α± = 1±
√

2
n
.

Putting this all together, we conclude that for α ∈ [n−2
n
, 1 +

√
2
n
), we have∫

Σ

| II |2α+2ϕ2 ≤ C

∫
Σ

| II |2α|∇ϕ|2.

for some C = C(α, n) (where C(α, n)→∞ as α→ 1 +
√

2
n
).

We can now use a nice trick. Replace ϕ by ϕβ for β to be chosen below. Combining this

with Hölder’s inequality, we find∫
Σ

| II |2α+2ϕ2β ≤ C

∫
Σ

| II |2αϕ2β−2|∇ϕ|2 ≤ C

(∫
Σ

| II |2α+2ϕ(2β−2)
α+1
α

) α
α+1
(∫

Σ

|∇ϕ|2α+2

) 1
α+1

Choose β so that

2β = (2β − 2)α+1
α
⇔ αβ = (β − 1)(α + 1) = αβ + β − α− 1⇔ β = α + 1.
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Thus we find ∫
Σ

| II |2α+2ϕ2α+2 ≤ C

∫
Σ

|∇ϕ|2α+2.

This completes the proof. �

8.3. Stable minimal cones. We now consider a stable minimal hypercone Cn ⊂ Rn+1.

More precisely, we assume that C \ {0} is smooth stable minimal hypersurface, invariant

under dilation λC = C. In this case, if we set Γ = C ∩ ∂B1(0), we see that

C = C(Γ) := {tz : z ∈ Γ, t ≥ 0}.

It is not hard to check that IIC |x = |x|−1 IIΓ |x/|x| (for IIΓ the second fundamental form of

Γn−1 ⊂ Sn). In particular, if E1, . . . ,En is a local frame with En radial and E1, . . . ,En−1

tangential to {t} × Γ (for t the radial coordinate), then II(En, ·) = 0, ∇En| II | = t−1 II, and

∇En II = −t−1 II. We now compute the Kato term (we won’t need the full improved Kato

inequality)

|∇ II |2 − |∇| II ||2 =
n∑

i,j,k=1

(∇Ei II)(Ej,Ek)
2 −

n∑
i,j=1

(∇Ei II)(Ej,Ej)
2

=
n∑
i=1

∑
j 6=k

(∇Ei II)(Ej,Ek)
2

≥ 2
n∑
i=1

n−1∑
j=1

(∇Ei II)(Ej,En)2

= 2
n∑
i=1

n−1∑
j=1

(∇En II)(Ei,Ej)
2

= 2t−2| II |2.

Thus, we find the Simons inequality for the cone

| II |∆| II |+ | II |4 ≥ 2t−2| II |2.

For ϕ ∈ C2
c (C \ {0}), multiplying this by ϕ2 and integrate to find

2

∫
C

| II |2ϕ2|x|−2 ≤
∫
C

| II |4f 2 − |∇| II ||2ϕ2 − 2ϕ| II | 〈∇| II |,∇ϕ〉 .

On the other hand, taking | II |ϕ in stability, we find∫
C

| II |4ϕ2 ≤
∫
C

|∇| II ||2ϕ2 + | II |2|∇ϕ|2 + 2ϕ| II | 〈∇| II |,∇ϕ〉 .

Adding the two equations we find

2

∫
C

| II |2ϕ2|x|−2 ≤
∫
C

| II |2|∇ϕ|2.
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Using | II | = |x|−1| IIΓ | and dµC = tn−1dtdµΓ, we find (for ϕ = ϕ(t)),∫ ∞
0

(ϕ′(t)2 − 2ϕ(t)2t−2)tn−3dt

∫
Γ

| IIΓ |2 ≥ 0

If
∫

Γ
| IIΓ |2 = 0, then C is flat. Thus, if C is non-flat, then

(8.4)

∫ ∞
0

(ϕ′(t)2 − 2ϕ(t)2t−2)tn−3dt ≥ 0

for ϕ ∈ C1
c ((0,∞)). Note that this actually holds for any ϕ ∈ C0,1

loc ((0,∞)) with
∫
ϕ(t)2tn−5 <

∞ by multiplying by an appropriate cutoff function. We thus take

ϕ(t) =

tα t ≤ 1

tβ t ≥ 1.

Note that
∫
ϕ(t)2tn−5dt =

∫ 1

0
tn−5+2αdt+

∫∞
1
tn−5+2βdt <∞ for 2α > 4− n and 2β < 4− n.

For t ∈ (0, 1), we find

(ϕ′(t)2 − 2ϕ(t)2t−2) = (α2 − 2)t2α−2

and for t ∈ (1,∞) we find

(ϕ′(t)2 − 2ϕ(t)2t−2) = (β2 − 2)t2α−2

As such, if we can choose α, β ∈ (−
√

2,
√

2) then we find a contradiction unless C is flat

(since the integrand in (8.4) will be pointwise negative). For this to be possible, we want

that

n > 4− 2
√

2 ≈ 1.17, n < 4 + 2
√

2 ≈ 6.83

Thus, we have proven

Theorem 8.21 (Simons [Sim68]). A stable minimal cone Cn ⊂ Rn+1 is flat if n ≤ 6.

Recall that the Simons cone shows that the dimension restriction here is sharp.

It would be interesting to understand if this argument could be improved into a classifi-

cation of stable cones in R8.

8.4. Co-area formula. We pause to recall the co-area formula, to be used several times in

the sequel. For simplicity, we only recall the case of scalar valued functions. See [Sim83b,

§7] for further discussion.

Proposition 8.22 (Co-area formula). For (M, g) a Riemannian manifold and u : M → R
locally Lipschitz, and g a measurable function on M , then∫

M

h|∇u| =
∫
R

(∫
u−1(s)

h

)
ds
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This is basically just a change of variables formula (taking care to account for the crit-

ical points of u). For example, around a point with ∇u 6= 0, we can choose coordi-

nates so that u(x) = xn (shifting u if necessary). Then, for h supported near this point,

we find g(∂xn , ∂xn) = g(du, du) = |∇u|−2 and g(∂xn , ∂xj) = 0 for j < n. Thus dµg =

|∇u|−1dµu−1(s)ds, so ∫
M

w =

∫
R

(∫
Rn−1

w|∇u|−1dµu−1(s)

)
ds.

8.5. Stable Bernstein in R4: statement and setup. Recall that we saw that a com-

plete two-sided stable minimal surface Σ2 → R3 is flat. Our next goal is to explain the

corresponding result for Σ3 → R4.

Theorem 8.23 ([CL21]). A complete two-sided stable minimal immersion Σ3 → R4 is flat.

The proof will require several detours into the study of scalar curvature, so we begin

with several reductions. Suppose that we have a non-flat complete two-sided stable minimal

immersion Σ3 → R4. Then, by the point picking argument, we can assume that Σ3 has

bounded curvature | II | ≤ K. Furthermore, by Barta’s characterization of two-sided stability,

we can lift to the universal cover and thus assume that Σ is simply connected.

The basic idea will be to construct a Green’s function17 u on Σ with pole at some p ∈ Σ.

We will arrange that Γs = {u = s} are compact connected surfaces (for regular values s).

The fundamental quantity considered will be

F (s) :=

∫
Γs

|∇u|2.

Note that u = (1 + o(1))d(x, p)−1 as x → p (since this is the Euclidean Green’s function).

Thus, we can see that F (s) = O(s2) as s → ∞ (this is the behavior near the pole). The

interesting question is how F behaves as s→ 0 (this is the behavior along the end).

Proposition 8.24. If F (s) = O(s2) as s→ 0, then Σ is flat.

Proof. By the Schoen–Simon–Yau improved Lp estimates (Theorem 8.16), we have∫
Σ

| II |3f 3 ≤ C

∫
Σ

|∇f |3

for some C > 0 (take α = 1
2
> n−2

n
= 1

3
). Now, choose f = ϕ(u) for u compactly supported

in (0,∞). We have ∫
Σ

| II |3ϕ(u)3 ≤ C

∫
Σ

|∇u|3ϕ′(u)3.

The co-area formula yields∫
Σ

| II |3ϕ(u)3 ≤ C

∫
Σ

|∇u|3ϕ′(u)3 = C

∫ ∞
0

ϕ′(u)3

∫
Γs

|∇u|2.

17Our convention is that a Green’s function in 3-dimensions satisfies ∆u = 4πδp for p the pole.
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Thus, if F (s) = O(s2), it suffices to find ϕj ∈ C0,1
c ((0,∞)) with ϕj → 1 pointwise and∫∞

0
ϕ′j(s)

3s2ds→ 0. We use the log-cutoff trick at 0 and ∞:

ϕj(s) =



0 s ≤ 1
j2

2 + log s
log j

1
j2
≤ s ≤ 1

j

1 1
j
≤ s ≤ j

2− log s
log j

j ≤ s ≤ j2

0 s ≥ j2.

We find∫ ∞
0

ϕ′j(s)
3s2ds =

∫ 1
j

1
j2

1
s3(log j)3 s

2ds+

∫ j2

j

1
s3(log j)3 s

2ds = O(| log j|−2) = o(1),

as desired. �

Note that this result did not use u harmonic. Instead, we will use this (and stability) to

show that F (s) = O(s2). To do so, we will combine two tools coming from scalar curvature

as explained below.

8.6. Stern’s Bochner formula and applications to the Geroch conjecture. For now,

consider (M3, g) and ∆u = 0 on (M, g). In applications, we will either have u the Green’s

function on Σ3 → R4 or u will be S1-valued harmonic function on a closed 3-manifold (locally,

this is the same thing as a harmonic function, but it is only globally well-defined modulo

2πZ). We have seen that

1
2
∆|∇u|2 = |D2u|2 + Ric(∇u,∇u).

The idea of Stern [Ste19] is to consider a regular level set Γs = u−1(s) and observe that a

unit normal is ν = ∇u
|∇u| . Thus, up to a factor of |∇u|2, Ric(∇u,∇u) is precisely the normal

Ricci curvature term that Schoen–Yau handled with their rearrangement trick.

Lemma 8.25. For X,Y tangent to Γs, we have

IIΓs(X,Y) = D2u(X,Y)
|∇u|

Thus,

| IIΓs |2 = |∇u|−2(|D2u|2 − 2|∇|∇u||2 +D2u(ν, ν)2)

and

H2
Γs = |∇u|−2D2u(ν, ν)2

Proof. We have

IIΓs(X,Y) = 〈∇Xν,Y〉 =
〈
∇X

∇u
|∇u| ,Y

〉
= D2u(X,Y)

|∇u|
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since ∇u is orthogonal to Y. This proves the first formula.

For the second formula, choose an orthonormal basis with En = ν we find

|∇u|2| IIΓs |2 = |∇u|2
n−1∑
i,j=1

IIΓs(Ei,Ej)
2

= |∇u|2
n∑

i,j=1

IIΓs(Ei,Ej)
2 − 2|∇u|2

n∑
i=1

IIΓs(Ei,En)2 + |∇u|2 IIΓs(En,En)2

= |D2u|2 − 2|D2u(·, ν)|2 +D2u(ν, ν).

Finally, we note that (as we computed for the Kato inequality) s

2|∇u|∇|∇u| = ∇|∇u|2 = 2D2u(·,∇u)

so

|∇|∇u||2 = |D2u(·, ν)|2.

This yields the asserted form of | IIΓs |2. Finally, we note that

|∇u|HΓs = trTΓs D
2u(·, ·) = ∆u−D2u(ν, ν) = −D2u(ν, ν).

This yields the final expression. �

We now can use the (doubly traced) Gauss equations for Γs ⊂ (M, g) to write

Rg = 2KΓs + 2 Ricg(ν, ν) + | IIΓs |2 −H2
Γs

i.e.,

2 Ricg(ν, ν) = Rg − 2KΓs + |∇u|−2(2|∇|∇u||2 − |D2u|2).

Hence,

Ricg(∇u,∇u) = |∇u|2(1
2
Rg −KΓs) + |∇|∇u||2 − 1

2
|D2u|2.

Using this to rewrite the Ricci curvature term in the Bochner formula, we find (for ∆u = 0)

1
2
∆|∇u|2 = 1

2
|D2u|2 + |∇|∇u||2 + |∇u|2(1

2
Rg −KΓs)

Using the product rule, we thus find

(8.5) |∇u|∆|∇u| = 1
2
|D2u|2 + |∇u|2(1

2
Rg −KΓs)

Strictly speaking, this only holds at {|∇u| 6= 0}, but we will not be careful about this issue

here (see [Ste19, CL21] for the careful proofs).

We can now give Stern’s proof of the n+ 1 = 3 Geroch conjecture.

Theorem 8.26. There is no PSC metric on T 3.

Proof. Suppose that (T 3, g) has R > 0. Find a harmonic representative α of [dx3] ∈ H1
dR(T 3).

Note that
∫
S1×{∗}×{∗} α =

∫
{∗}×S1×{∗} α = 0, so this says that α = du for u a S1-valued
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function on T 3 (just like x3 is not a R-valued function on T 3 but we can consider it as a well

defined function to R/Z). Because α is harmonic, we find that u is harmonic. Thus, we can

consider (8.5), finding

0 =

∫
T 3

∆|∇u| =
∫
T 3

1
2
|∇u|−1|D2u|2 + |∇u|(1

2
Rg −KΓs) > −

∫
T 3

|∇u|KΓs = −
∫
S1

∫
Γs

KΓs .

Now, suppose that Γs has a component Γ′s that is an embedded sphere. Lift everything to

the universal cover (R3, g̃), Γ̃′s, ũ : R3 → S1 g̃-harmonic. Note that ũ is constant (= s) on

Γ̃′s. By Alexander’s theorem (cf. [Hat07, Theorem 1.1]) Γ̃′s bounds a ball Ω ⊂ R3. Since Ω

is simply connected, we can thus lift ũ to a R-valued harmonic function on Ω with constant

(= s) boundary values. The maximum principle then implies this function is constant (= s)

on the interior of Ω as well. From this, we find that ũ (and thus u) is constant everwhere, a

contradiction.

Thus, no component of Γs is a sphere, so χ(Γs) ≤ 0. This contradicts the above integral

expression, when combined with Gauss–Bonnet. �

8.7. Munteanu–Wang’s montonicity for F (s). Consider (M3, g) non-parabolic, mean-

ing that there exists a positive Green’s function u > 0 on M based on some fixed point p,

with u = (1 + o(1))d(x, p)−1 as p → x, along with derivatives. We will make the following

assumption

(A) Γs := {u = s} is compact and connected for all regular values s.

In particular, this will imply that
∫

Γs
KΓs ≤ 2. Note that we can always consider u− inf u,

and thus assume that u→ 0 at ∞. Our goal is to estimate F (s) :=
∫

Γs
|∇u|2 as s→ 0 (this

is the asymptotic behavior of F (s) along the end).

Recall that we saw that when (M, g) is a stable minimal hypersurface in R4 with the

induced metric, then F (s) = O(s2) would imply flatness. We will return to this later.

Example 8.27. On R3, we can take u = r−1, so |∇u|2 = r−4 = s4 and Γs = ∂Bs−1 . Thus

F (s) = 4πs−2s4 = 4πs2.

Theorem 8.28 (Munteanu–Wang [MW21]). Assume that (M3, g) has Rg ≥ 0 and admits a

Green’s function u satisfying Assumption A. Then,

(t−1F (t)− 4πt)′ ≤ 0.

Note that if we had that F (t) = o(t) as t → 0, then we could integrate this expression

from 0 to t to get F (t) ≤ 4πt2. For later applications it will be crucial that we only assume

F (t) = O(t) as t → 0. This is the consequence of the next generalization (also allowing for

negative scalar curvature).
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Theorem 8.29 ([CL21]). Suppose that (M3, g) admits a Green’s function satisfying As-

sumption A, and so that F (s) = O(s) as s→ 0. Then,

t−1F (t)− 4πt ≤
∫ t

0

(∫
Γs

(−1
4
R−g )

)
ds+ t2

∫ ∞
t

s−2

(∫
Γs

(−1
4
R−g )

)
ds

where R−g = min{Rg, 0} is the negative part of the scalar curvature.

Proof. As before, we will not worry about the set {|∇u| = 0}, see [CL21] for the regulariza-

tion argument.

We compute F ′(t). We choose the unit normal ν = ∇u
|∇u| . Suppose that we parametrize Γt

normally by some Ft. Then, u(Ft(x)) = s, so〈
∇u, Ḟt

〉
= 1

Since Ḟt is perpendicular to ∇u, we thus find that

Ḟt =
∇u
|∇u|2

= |∇u|−1ν.

One should be careful to note that Γt bounds a compact region (containing the pole p) and

∇u points inside of this region, rather than outside. Recall that we found that

HΓt = −|∇u|−1D2u(ν, ν).

Note that 〈
∇|∇u|2, ν

〉
= 2|∇u|D2u(ν, ν),

so

〈∇|∇u|, ν〉 = D2u(ν, ν).

This yields

HΓs = −|∇u|−1 〈∇|∇u|, ν〉 .

Now, by the first variation of area, we have

F ′(t) =

∫
Γt

|∇u|−1
〈
∇|∇u|2, ν

〉
+ |∇u|2|∇u|−1H

=

∫
Γt

2 〈∇|∇u|, ν〉 − 〈∇|∇u|, ν〉

=

∫
Γt

〈∇|∇u|, ν〉 .

Thus,

t−αF ′(t) =

∫
Γt

u−α 〈∇|∇u|, ν〉 .
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We want to integrate by parts to the inside of Γt = ∂Ωt. To that end, we note that∫
Γt

|∇u|
〈
∇u−α, ν

〉
= −αs−α−1

∫
Γs

|∇u|2 = −αt−α−1F (t),

so

t−αF ′(t) + αt−α−1F (t) =

∫
Γt

〈
u−α∇|∇u| − |∇u|∇u−α, ν

〉
=

∫
Ωt\{p}

|∇u|∆u−α − u−α∆|∇u|+ lim
s→∞

(s−αF ′(s) + αs−α−1F (s)),

where the second term comes from the fact that we should take care with the pole at p. Note

that as s → ∞, we have F (s) = (1 + o(1))4πs2 (since u approaches its Euclidean value).

Thus,

s−αF ′(s) + αs−α−1F (s) = O(s1−α).

We now declare that α ∈ (1, 2], so this term is o(1) as s → ∞. (Eventually, we will take a

limit as α↗ 2, so you should think of α ≈ 2.) We also note that

∆u−α = −α div(u−α−1∇u) = α(α + 1)u−α−2|∇u|2

since u is harmonic. Thus, we find

t−αF ′(t) + αt−α−1F (t) =

∫
Ωt\{p}

α(α + 1)u−α−2|∇u|3 − u−α∆|∇u|.

We now return to Stern’s Bochner formula (8.5) to handle the second term

∆|∇u| = 1
2
|∇u|−1|D2u|2 + |∇u|(1

2
Rg −KΓs)

We can use the improved Kato inequality (Lemma 8.6) to write

|D2u|2 ≥ 3
2
|∇|∇u||2

to write

∆|∇u| ≥ 3
4
|∇u|−1|∇|∇u||2 + |∇u|(1

2
Rg −KΓs).

Thus,

t−αF ′(t) + αt−α−1F (t) ≤
∫

Ωt\{p}
α(α + 1)u−α−2|∇u|3 −

∫
Ωt\{p}

3
4
u−α|∇u|−1|∇|∇u||2

+

∫
Ωt\{p}

u−α|∇u|KΓs −
∫

Ωt\{p}

1
2
u−α|∇u|Rg

=

∫ ∞
t

α(α + 1)s−α−2F (s)ds−
∫ ∞
t

3
4
s−α

(∫
Γs

|∇u|−2|∇|∇u||2
)
ds

+

∫ ∞
t

s−α
(∫

Γs

KΓs

)
ds−

∫ ∞
t

1
2
s−α

(∫
Γs

Rg

)
ds.
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We now consider the second and third terms. The third term is controlled by Gauss–Bonnet

(thanks to assumption (A)):∫ ∞
t

s−α
(∫

Γs

KΓs

)
ds ≤

∫ ∞
t

4πs−α = 4π
α−1

t1−α

(recalling that α ∈ (1, 2]). For the second term, we note that Hölder’s inequality implies

F ′(s)2 =

(∫
Γs

〈∇|∇u|, ν〉
)2

≤
(∫

Γs

|∇|∇u||
)2

≤
∫

Γs

|∇u|−2|∇|∇u||2
∫

Γs

|∇u|2,

so ∫
Γs

|∇u|−2|∇|∇u||2 ≥ F (s)−1F ′(s)2.

Thus, we find

t−αF ′(t) + αt−α−1F (t) ≤
∫ ∞
t

(−3
4
s−αF (s)−1F ′(s)2 + α(α + 1)s−α−2F (s))ds

+ 4π
α−1

t1−α −
∫ ∞
t

1
2
s−α

(∫
Γs

Rg

)
ds.

We now “complete the square” on the first integrand. We have

2s−1F (s)F ′(s) ≤ λ−1F ′(s)2 + λs−2F (s)2

where λ will be chosen later. This becomes

−3
4
s−αF (s)−1F ′(s)2 ≤ −3

2
λs−1−αF ′(s) + 3

4
λ2s−α−2F (s),

Hence,

− 3
4
s−αF (s)−1F ′(s)2 + α(α + 1)s−α−2F (s)

≤ −3
2
λs−1−αF ′(s) + (3

4
λ2 + α(α + 1))s−α−2F (s)

= −3
2
λ(s−1−αF (s))′ + (3

4
λ2 − 3

2
λ(α + 1) + α(α + 1))s−α−2F (s).

We now choose λ = λ(α) so that the second term vanishes. The roots of the polynomial are

λ± =

3
2
(α + 1)±

√
9
4
(α + 1)2 − 3α(α + 1)

3
2

= (α + 1)±
√

(α + 1)2 − 4
3
α(α + 1)

= (α + 1)±
√

(α + 1)(1− 1
3
α)

It will be better to choose λ−. To this end, we fix

λ = λ(α) = (α + 1)−
√

(α + 1)(1− 1
3
α)
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Note that this is real valued for α ∈ [−1, 3] and we have assumed α ∈ (1, 2]. Note also that

λ(2) = 3− 1 = 2. Finally, it is useful to Taylor expand around α = 2:

λ(2 + a) = 3 + a−
√

(1 + a
3
)(1− a) = 2 + a+ a

3
+O(a2) = 2 + 4

3
a+O(a2).

In particular, for α = 2 + a,

α− 3
2
λ(α) + 1 = 3 + a− 3− 2a+O(a2) = −a+O(a2).

In particular, there is α0 ∈ (1, 2) so that for α ∈ (α0, 2) (corresponding to a < 0), we have

α− 3
2
λ(α) + 1 > 0

We return to the previous calculation. The choice of λ ensures that

− 3
4
s−αF (s)−1F ′(s)2 + α(α + 1)s−α−2F (s)

≤ −3
2
λ(s−1−αF (s))′,

so

t−αF ′(t) + αt−α−1F (t) ≤
∫ ∞
t

−3
2
λ(s−1−αF (s))′ds

+ 4π
α−1

t1−α −
∫ ∞
t

1
2
s−α

(∫
Γs

Rg

)
ds

≤ 3
2
λt−1−αF (t) + 4π

α−1
t1−α −

∫ ∞
t

1
2
s−α

(∫
Γs

Rg

)
ds.

Rearranging this we find

F ′(t) + (α− 3
2
λ)t−1F (t)− 4π

α−1
t ≤ −tα

∫ ∞
t

1
2
s−α

(∫
Γs

Rg

)
ds

We now use an integrating factor to write

(tα−
3
2
λF (t)− 4π

(α−1)(α−3
2
λ+2)

tα−
3
2
λ+2)′

= tα−
3
2
λ(F ′(t) + (α− 3

2
λ)t−1F (t)− 4π

α−1
t)

≤ t2α−
3
2
λ

∫ ∞
t

s−α
(∫

Γs

(−1
2
Rg)

)
ds

≤ t2α−
3
2
λ

∫ ∞
t

s−α
(∫

Γs

(−1
2
R−g )

)
ds,

where R−g = min{Rg, 0}. In particular, taking α = 2, and recalling that λ(2) = 2, we find

that if Rg ≥ 0, then

(t−1F (t)− 4πt)′ ≤ 0.

This was the first assertion.
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We now assume that F (t) = O(t) as t → 0, but do not assume that Rg ≥ 0. Recall

that we saw that α − 3
2
λ + 1 > 0 for α ∈ (α0, 2). Thus, because we have assumed that

F (t) = O(t), we find that tα−
3
2
λF (t) = O(tα−

3
2
λ+1) = o(1) as t → 0 (this was the reason

for taking α ∈ (α0, 2)). Thus, we can integrate the previous expression from 0 to t (the

boundary terms at 0 vanish) to find

tα−
3
2
λF (t)− 4π

(α−1)(α−3
2
λ+2)

tα−
3
2
λ+2 ≤

∫ t

0

τ 2α−3
2
λ

∫ ∞
τ

s−α
(∫

Γs

(−1
2
R−g )

)
dsdτ.

We want to send α↗ 2. Note that the left side limits to t−1F (t)−4πt. We need to take some

care justifying the limiting process on the right side, since we have not assumed anything

about the behavior of
∫

Γs
R−g as s→ 0.

Using Fubini, we write the second integral as∫ t

0

∫ ∞
τ

τ 2α−3
2
λs−α

(∫
Γs

(−1
2
R−g )

)
dsdτ

=

∫ t

0

∫ s

0

τ 2α−3
2
λs−α

(∫
Γs

(−1
2
R−g )

)
dτds+

∫ ∞
t

∫ t

0

τ 2α−3
2
λs−α

(∫
Γs

(−1
2
R−g )

)
dτds

=

∫ t

0

1

2α−3
2
λ+1

sα−
3
2
λ+1

(∫
Γs

(−1
2
R−g )

)
ds+ 1

2α−3
2
λ+1

t2α−
3
2
λ+1

∫ ∞
t

s−α
(∫

Γs

(−1
2
R−g )

)
ds.

Now we take the limit α↗ 2. Recall that α 7→ λ(α) is continuous at 2 and λ(2) = 2. Fatou’s

lemma thus implies that

lim
α↗2

1

2α−3
2
λ+1

t2α−
3
2
λ+1

∫ ∞
t

s−α
(∫

Γs

(−1
2
R−g )

)
ds ≤ t2

∫ ∞
t

s−2

(∫
Γs

(−1
4
R−g )

)
ds

(note that the integrand is non-negative). Furthermore, since α− 3
2
λ+ 1 > 0 for α ∈ (α0, 2),

we find that for s ∈ (0, t], it holds that

sα−
3
2
λ+1 ≤ tα−

3
2
λ+1,

so ∫ t

0

1

2α−3
2
λ+1

sα−
3
2
λ+1

(∫
Γs

(−1
2
R−g )

)
ds ≤ 1

2α−3
2
λ+1

tα−
3
2
λ+1

∫ t

0

(∫
Γs

(−1
2
R−g )

)
ds.

Thus,

lim sup
α↗2

∫ t

0

1

2α−3
2
λ+1

sα−
3
2
λ+1

(∫
Γs

(−1
2
R−g )

)
ds ≤

∫ t

0

(∫
Γs

(−1
4
R−g )

)
ds.

Putting this all together, we have shown

t−1F (t)− 4πt ≤
∫ t

0

(∫
Γs

(−1
4
R−g )

)
ds+ t2

∫ ∞
t

s−2

(∫
Γs

(−1
4
R−g )

)
ds

as claimed. �
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A natural question is when F (s) = O(s) holds as s → 0. We need Yau’s differential

Harnack inequality.

Lemma 8.30 ([Yau75a] cf. [SY94]). If (Mn, g) has Ric ≥ −K and u > 0 solves ∆u = 0 on

B1(x) then there is C = C(K,n) so that

|∇u| ≤ Cu

at x.

We thus have

Lemma 8.31. Assume that (M3, g) admits a positive Green’s function satisfying Assumption

A. If Ric ≥ −K on (M3, g), then F (s) = O(s) as s→ 0.

Proof. Thus,

F (s) ≤ C

∫
Γs

u|∇u| = Cs

∫
Γs

|∇u|.

Now, we note that ∫
Γs

|∇u| =
∫

Γs

〈∇u, ν〉 .

As such, we can integrate to the inside using ∆u = 4πδp to see that
∫

Γs
|∇u| = O(1). This

completes the proof. �

8.8. Stable Bernstein in R4: proof. We are now prepared to prove the stable Bernstein

theorem in R4 (Theorem 8.23).

We begin with several reductions. Recall that (see Remark 8.4) it suffices to show that

Σ3 → R4 a complete two-sided stable minimal immersion with | IIΣ | ≤ 1 is flat. In particular,

such an immersion has RicΣ ≥ −1. Moreover, by passing to the universal cover, we can

assume that Σ is simply connected. We will assume below that Σ is non-flat.

Lemma 8.32. For p ∈ Σ there is a positive Green’s function u based at p so that u→ 0 at

infinity.

Proof. Choose an exhaustion p ∈ Ω1 ⊂ Ω2 ⊂ · · · ⊂ Σ by precompact regions with smooth

boundary. By standard elliptic theory, there is a Green’s function ui on Ωi with a pole

at p and Dirichlet boundary conditions. Note that (1 + δ)ui+1 > ui near the pole and

(1 + δ)ui+1 > ui = 0 on ∂Ωi. The maximum principle (sending δ → 0) implies ui ≤ ui+1.

Thus, i 7→ ui(x) is increasing, so by the Harnack inequality, either ui(x)→∞ for some (and

thus every) x ∈ Σ \ {p} or ui → u, a Green’s function on Σ.

We claim the first case does not occur. If µi := sup∂Ω1
ui → ∞, then the maximum

principle implies that ui ≤ µi on Ωi \ Ω1. Moreover, the argument used above yields u1 ≤
ui ≤ u1 + µi. Thus, wi := µ−1

i ui converges to a harmonic function w on Σ \ {p} with w ≤ 1
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(and = 1 somewhere). Thus w = 1 on all of Σ. Define w̃i to be wi smoothed out near the

pole p, so that w̃i → 1 everywhere, and w̃i = wi on Ωi \ Ω1. Take f = w̃i in the stability

inequality and integrate by parts to find∫
Σ

| IIΣ |2w̃2
i ≤

∫
Σ

|∇w̃i|2 = −
∫

Σ

w̃i∆wi → 0

so IIΣ ≡ 0, a contradiction.

Thus, we find that ui → u, a Green’s function on Σ. It remains to show that u → 0 at

infinity. Since harmonic functions minimize Dirichlet energy, we find∫
Ωi\Ω1

|∇ui|2 ≤ C.

Thus, we can use the Michael–Simon Sobolev inequality (cf. Theorem 8.11) to find∫
Σ\Ω2

u
2n
n−2

i ≤ C,

which passes to the limit (Fatou’s lemma) to yield∫
Σ\Ω2

u
2n
n−2 ≤ C.

Yau’s Harnack inequality (since RicΣ ≥ −1) implies that

u(y) ≥ C−1u(x)

for y ∈ B1(x). Moreover, we have seen (Lemma 8.9) that B1(x) ⊂ Σ contains a definite

amount of volume. Thus, if there are xj → ∞ with u(xj) ≥ ε, then this would contradict

u ∈ L
2n
n−2 (Σ \ Ω2). This completes the proof. �

Lemma 8.33. The Green’s function u satisfies Assumption A, i.e.,

Γs = {u = s}

is compact and connected for regular values s.

Proof. Compactness follows from the fact that u → 0 at infinity. Suppose that Γs has two

(or more) components. Write Γs = ∂{u > s} and note that {u > s} is bounded. Thus,

its complement (adding in the pole) {u < s} must have exactly one unbounded component.

Because Γs has at least two components, either: (i) the components will be connected in

{u < s} or (ii) one component of Γs bounds a pre-compact set B in {u < s}. The second

case is a contradiction since u = s on ∂B, so we can consider the minimum of u (necessarily

attained in the interior of B).

For the first case, connect the two components of Γs by a path in {u < s}. Note that {u >
s} is connected (by the same reasoning as above: if there were more than one components,

then one of them would not contain the pole, and we could consider the maximum of u on
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that component). Thus, we can connect the ends of the path in {u < s}. This yields a loop

γ and we can arrange that the loop intersects one component of Γs transversely in exactly

one point. This means that [γ] 6= 0 ∈ H1(Σ;Z), a contradiction (since we assumed that Σ

was simply connected). �

Now, we have shown that we can apply the (regularized) Munteanu–Wang monotonicity

on Σ (Theorem 8.29). Note that Rg = −| IIΣ |2 ≤ 0, so we find

t−1F (t) ≤ 4πt+
1

4

(∫ t

0

(∫
Γs

| IIΣ |2
)
ds+

∫ ∞
t

t2s−2

(∫
Γs

| IIΣ |2
)
ds

)
It is convenient to set

A(s) =

∫
Γs

| IIΣ |2,

so

t−1F (t) ≤ 4πt+
1

4

(∫ t

0

A(s)ds+

∫ ∞
t

t2s−2A(s)ds

)
.

Recall that our eventual goal is to show that F (t) = O(t2) as t → 0. Thus, we need to

estimate the A terms. We will do this using stability.

Proposition 8.34. For ϕ ∈ C0,1
c ((0,∞)), it holds that

1

4

∫ ∞
0

ϕ(s)2A(s)ds ≤ 2π

3

∫ ∞
0

ϕ(s)2ds+
1

3

∫ ∞
0

ϕ′(s)2F (s)ds.

Proof. We consider f = |∇u| 12ψ in stability for ψ ∈ C∞c (Σ \ {p}) and will try to mimic the

Schoen–Yau Bochner formula argument (Theorem 8.7) but with the Stern Bochner formula

in place of the usual Bochner formula (we will see that this power of |∇u| is forced on us, if

we want to use co-area and Gauss–Bonnet). We find∫
Σ

| IIΣ |2|∇u|ψ2

≤
∫

Σ

|1
2
|∇u|−

1
2ψ∇|∇u|+ |∇u|

1
2∇ψ|2

=

∫
Σ

1
4
|∇u|−1|∇|∇u||2ψ2 + 1

2

〈
∇|∇u|,∇ψ2

〉
+ |∇u||∇ψ|2

=

∫
Σ

1
4
|∇u|−1|∇|∇u||2ψ2 − 1

2
(∆|∇u|)ψ2 + |∇u||∇ψ|2.

We now use the Stern Bocher formula (8.5) (and the improved Kato inequality)

∆|∇u| ≥ 3
4
|∇u|−1|∇|∇u||2 + |∇u|(1

2
Rg −KΓs)

and Rg = −| IIΣ |2. Thus, we find∫
Σ

| IIΣ |2|∇u|ψ2
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≤
∫

Σ

1
4
|∇u|−1|∇|∇u||2ψ2 − 3

8
|∇u|−1|∇|∇u||2ψ2 + |∇u|(1

4
| IIΣ |2 + 1

2
KΓs)ψ

2 + |∇u||∇ψ|2

≤
∫

Σ

|∇u|(1
4
| IIΣ |2 + 1

2
KΓs)ψ

2 + |∇u||∇ψ|2.

Rearranging we find ∫
Σ

3
4
| IIΣ |2|∇u|ψ2 ≤

∫
Σ

|∇u|(1
2
KΓsψ

2 + |∇ψ|2).

For ϕ ∈ C0,1
c ((0,∞)) we can take ψ = ϕ(u) to find∫

Σ

3
4
| IIΣ |2|∇u|ϕ(u)2 ≤

∫
Σ

|∇u|(1
2
KΓsϕ(u)2 + ϕ′(u)2|∇u|2).

Finally, using the co-area formula we find∫ ∞
0

3
4
ϕ(s)2A(s)ds ≤

∫ ∞
0

ϕ(s)2

(∫
Γs

1
2
KΓs

)
ds+

∫ ∞
0

ϕ′(s)2F (s)ds.

Since Γs is connected (and compact) we have
∫

Γs
KΓs ≤ 4π. Thus, we find

1

4

∫ ∞
0

ϕ(s)2A(s)ds ≤ 2π

3

∫ ∞
0

ϕ(s)2ds+
1

3

∫ ∞
0

ϕ′(s)2F (s)ds.

This completes the proof. �

We can now finish the proof of the stable Bernstein problem in R4.

Proof. We have seen that it suffices to consider Σ3 → R4 admitting a Green’s function u so

that F (t) =
∫

Γs
|∇u|2 satisfies F (s) = O(s) as s→ 0 and

t−1F (t) ≤ 4πt+
1

4

(∫ t

0

A(s)ds+

∫ ∞
t

t2s−2A(s)ds

)
1

4

∫ ∞
0

ϕ(s)2A(s)ds ≤ 2π

3

∫ ∞
0

ϕ(s)2ds+
1

3

∫ ∞
0

ϕ′(s)2F (s)ds,

where A(s) =
∫

Γs
| IIΣ |2 (but this won’t matter) and ϕ ∈ C0,1

c ((0,∞)). This looks very good,

since these inequalities are opposing each other. We need to make a good choice of ϕ. The

basic idea is to choose ϕ so that the second line then bounds the first. More precisely, for

t ∈ (0, 1) fixed, we choose, for ε ∈ (0, 1), ` < t (we will send ε→ 0 then `→ 0)

ϕε,`,t(s) =



0 s ∈ (0, ε`)

1− log s−log `
log ε

s ∈ [ε`, `)

1 s ∈ [`, t)

ts−1 s ∈ [t, 1)

t(2− s) s ∈ [1, 2)

0 s ∈ [2,∞).
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Note that ∫ ∞
0

ϕε,`,t(s)
2ds =

∫ t

0

O(1)ds+

∫ 1

t

O(t2)s−2ds+

∫ 2

1

O(t2)ds = O(t)

Furthermore,∫ ∞
0

ϕ′ε,`,t(s)
2F (s)ds =

∫ `

ε`

1
s2(log ε)2F (s)ds+

∫ 1

t

t2s−4F (s)ds+O(t2)

Using F (s) = O(s) the first integrand is O(| log ε|−1), so we can send ε→ 0 to find

1

4

(∫ t

0

A(s) +

∫ 1

t

t2s−2A(s)ds

)
≤ O(t) +

1

3

∫ 1

t

t2s−4F (s)ds.

Note that A(s) = O(s−2) as s→∞ (since Γs approach a s−1-coordinate sphere). Thus,∫ ∞
1

s−2A(s)ds <∞,

so we can extend the previous expression to

1

4

(∫ t

0

A(s) +

∫ ∞
t

t2s−2A(s)ds

)
≤ O(t) +

1

3

∫ 1

t

t2s−4F (s)ds.

We can now combine this with the Munteanu–Wang monotonicity expression

t−1F (t) ≤ O(t) +
1

3

∫ 1

t

t2s−4F (s)ds.

Define F̃ (t) = t−2F (t), so that

F̃ (t) ≤ O(1) +
1

3

∫ 1

t

ts−2F̃ (s)ds.

To finish the proof, we want to show that F̃ (t) = O(1) as t → 0. Basically, we want to

absorb the integral expression into the right-hand side. Assume otherwise. Then, we can

choose tj → 0 so that

F̃ (tj) = max
s∈[tj ,1]

F̃ (s)→∞.

We have

F̃ (tj) ≤ O(1) +
1

3

∫ 1

tj

tjs
−2F̃ (s)ds

≤ O(1) +
1

3
F̃ (tj)

∫ 1

tj

tjs
−2ds

= O(1) +
1

3
F̃ (tj)

This implies that F̃ (tj) = O(1), a contradiction. This finishes the proof. �
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