
CS 142 Section – October 18, 2010

 ActiveRecord and Models

 Model Associations

 Migrations

ActiveRecord: a Rails library that implements Object

Relational Mapping (ORM)

What this means: you can easily translate information

between Ruby objects and database values

Rails makes it easy to set up a database: instead of using

SQL, you use models and migrations

In a nutshell:

Model class = database table

Individual Model objects = rows in that table

To create a Rails model, use the command

>> ruby script/generate model <my_model>

This creates a bunch of files, but there are two that are

important to us

 The actual model: app/models/my_model.rb

 A migration file in db/migrate/ (more on this later)

Every model is a subclass of the ActiveRecord::Base class

We usually don’t specify model attributes directly in the

model class file

Instead, ActiveRecord inspects the database schema and

comes up with these attributes for us

ActiveRecord reads our schema to configure our models dynamically

If we have the following database table named “students”:

the Student model object will automatically have fields for id, name,
birth, gpa, and grad

The CRUD methods (Create, Read, Update, Delete) allow us to
access database rows as if they were objects

id name birth gpa grad

1 Anderson 1987-10-22 3.9 2009

2 Jones 1990-04-16 2.4 2012

… … … … …

Use CRUD methods on objects to perform operations on

the underlying database

Note: CRUD are names for basic DB operations, they are

not necessarily the names of methods in Active Record

For example, to read a row from the students database,

we call Students.find (…), not Students.read

We can create objects a couple different ways:

Constructor-style, passing parameters to create:
student = Student.create (:name => “Smith” …)

Plain creation, assigning attributes later:
student = Student.create

student.name = “Smith”

student.save # saves student to DB

Note: the create method automatically calls save, but in
the second example, we alter the object after creation,
so we need to call save again

There are actually two versions each of save and create

save – returns true if save was successful, nil otherwise (it might not if
your model does validation)

save! – returns true if save was successful, raises exception otherwise

create – returns Active Record object regardless of whether data was
actually saved

create! – returns Active Record object if data is valid, raises exception
otherwise

Tradeoffs:
 if you don’t use the ! (bang) methods, your saves can fail silently
 uncaught exceptions throw up generic crash pages for users

To read objects, use the find method:

returns student with ID = 2
Student.find(2)

returns first student with name “Lee”
Student.find_by_name(“Lee”)

returns first student with gpa >= 3.0
Student.find(:first, :conditions => “gpa >= 3.0”)

returns all students with gpa >= 3.0, sorted
Student.find(:all, :conditions => “gpa >= 3.0”, :order

=> “gpa DESC”);

There are a ton of optional parameters you can pass to find
(see Section 18.5 of the Rails book)

Updating is nothing special: just find an object, update its
attributes, and save it

Student.find(2)

student.name = “Scott”

student.gpa = 0.4

student.save

update_attributes offers a shorter call to accomplish the same
thing by taking a hash of attributes to update

Student.find(2)

student.update_attributes(:name => “Scott”,

:gpa => 0.4)

update_attributes automatically calls save

There are two forms of deletion: database-level and row-level

Database-level: delete the object in the database that matches
something we’ve specified

deletes student w/ ID = 2
Student.delete(2)

deletes students w/ IDs in the array [1,2,3]
Student.delete([1,2,3])

self-explanatory, deletes all students
Student.delete_all

Row-level: after we’ve found an object, delete it

student = Student.find(2)
student.destroy

Again, section 18.5 describes all of this in greater detail if you need

Model associations allow us to express relationships

between our database tables

They also make many operations more convenient

For example, if we have a students table and an advisors

table, we would prefer to get a student’s advisor by
saying student.advisor, rather than having to manually

join the database tables

One-to-one: has_one and belongs_to
A student has one transcript.
A transcript belongs to one student.

class Student < ActiveRecord::Base

has_one :transcript

end

class Transcript < ActiveRecord::Base

belongs_to :student

end

Now, we can use student.transcript or
transcript.student.

One-to-many: has_many and belongs_to

A student belongs to one advisor.

An advisor has many students.

class Student < ActiveRecord::Base

has_one :transcript

belongs_to :advisor

end

class Advisor < ActiveRecord::Base

has_many :students

end

Many-to-many: has_and_belongs_to_many

A student has many courses, and a course has many students.

class Student < ActiveRecord::Base

has_one :transcript

belongs_to :advisor

has_and_belongs_to_many :courses

end

class Course < ActiveRecord::Base

has_and_belongs_to_many :students

end

Now, student.courses is an array of the courses that the student is

taking, and course.students is an array of the students in a course.

We’ve been talking about how models get their attributes from

database schemas

How do we create these schemas? Migrations!

Migrations are classes containing code for updating database

schemas

They’re reversible, and have timestamps embedded in their file

names upon creation

Migrations are located in db/migrate/, and may be created either

as a part of ruby script/generate model or separately via ruby

script/generate migration

Generally just two methods, self.up and self.down
 up = code for updating the DB
 down = code to undo that update

The Student model links up with the “students” table
So, the Student’s attributes will just be the columns added in this migration

class CreateStudents < ActiveRecord::Migration
def self.up

make table called “students” with columns
create_table :students do |t|

t.column :name, :string # name
t.column :birth, :date # birthdate
t.column :gpa, :float # gpa
t.column :grad, :integer # grad year

end
end

def self.down
delete the table, reversing the changes
drop_table :students

end
end

A data migration allows you to load data into the DB.
The sample migration below loads a couple of students.

class LoadStudents < ActiveRecord::Migration

def self.up

down # calls self.down to remove students first

student1 = Student.create(…)

student2 = Student.create(…)

student2.name = “James”

student2.save

end

def self.down

Student.delete_all # removes all students

end

end

To run all migrations up to the most recent one:

>> rake db:migrate

To run migrations up to a certain one (must know timestamp):

>> rake db:migrate VERSION=20091019141500

Note: if the current version of the schema is newer than the

migration you want to run, this command will undo every

migration newer than the one specified

To undo all migrations (i.e. go back to the start):

>> rake db:migrate VERSION=0

