
CS 142 Section – October 11, 2010

 Rails Basics

Controllers and Views

View Helpers

 Layouts

 Partials

>> rails <dirname>
where <dirname> is your desired project folder

Note: if you are using Rails 3.0, you’ll need to use
>> rails new <dirname>

Creates many directories -- for Proj. 3, we’re only really concerned w/:

app/ public/

|-- app/models/ |-- public/images/

|-- app/controllers/ |-- public/stylesheets/

|-- app/views/

|-- app/views/layouts

Models are Ruby classes that manage data
(used very sparingly in project 3)

Views are what the user sees: they contain your
HTML, CSS, JavaScript.

Controllers generally do “browser stuff”
- parsing your URLs into actions and parameters
- assembling data to be displayed in a view

http://localhost:3000/one/two?query=hello

app hostname controller action params

Rails convention:
look up the controller called OneController
call the method named “two” in OneController,

passing in a params hash { :query => “hello” }
find the view corresponding to “two” and display it

http://localhost:3000/one/two

1) look up the controller called OneController
- this will be app/controllers/one_controller.rb

2) call the method named “two” in OneController

3) find the view corresponding to the “two” method of
OneController and display it
- this will be app/views/one/two.html.erb

To create a controller, go to the root directory of your Rails
project and type:

>> rails script/generate controller <name>
where <name> is the desired controller name

Note: if you are using Rails 3.0, you’ll need to use
>> rails generate controller <name>

If we use <name> = one, this creates a controller named
OneController, with path app/controllers/one_controller.rb

It also creates an empty folder called app/views/one

Here, calling “two” sets the instance variable @string

Views (also known as templates) in Rails are HTML documents
that can be made dynamic through the use of embedded Ruby

They are located in app/views, and always have the extension
.html.erb (you may see .rhtml in books or online – that was the
pre-Rails 2.0 standard)

The default behavior of the “two” action of OneController is to
render whatever is in the file app/views/one/two.html.erb

We can reference OneController’s instance variables (e.g.
@string) because they are automatically passed into this view

<%= link_to “ABC”, “http://www.abc.com” %>

Generates ABC

<%= link_to “ABC”, :action => “my_action” %>

Creates a link with text ABC that references the my_action
action in the current controller.

<%= link_to “ABC”, :controller => “Bcd”,
:action => “my_action” %>

As above, but routes to the action in Bcd Controller.

<%= stylesheet_link_tag “my_stylesheet” %>

Creates a <link> tag with a reference to the stylesheet
public/stylesheets/my_stylesheet.css.

More on helpers in the Rails book, 23.2 and 23.3

Layouts are essentially views that wrap other views

Layouts allow you to extract common code between multiple
views into a single template; this decreases code repetition and
maintenance

Layouts generally reduce boilerplate in your views (e.g. we
should use a layout instead of putting the doctype or stylesheet
info in every one of our views)

Layouts are located in app/views/layouts

Sections 7.2 and 22.9 in the Rails book

Adapt our previous two.html.erb view to use a layout
(Take all the previous boilerplate and extract it into a re-usable form)

app/views/layouts/application.html.erb
(this is the global layout used by all views, unless overridden – see a few slides later)

app/views/two.html.erb

two.html.erb will be
inserted here when
http://HOST/one/two
is visited

http://host/one/two

In app/views/layouts/

application.html.erb will be used for all views (if it is defined)

abc.html.erb will be used for views related to AbcController

abc/xyz.html.erb will be used for the view corresponding to
action xyz in AbcController

You can override these layout conventions in your controllers:

use two_layout.html.erb for
the “two” view

use one_layout.html.erb for
all views corresponding to
actions in OneController
(instead of one.html.erb or the
global application.html.erb)

End result: two_layout.html.erb for the “two” view,
one_layout.html.erb for everything else in one controller

Partials (short for partial templates) provide another way to extract
components from a page without code repetition

Think of partials like subroutines – they simplify views via decomposition
If you’re writing a Facebook-like news feed, you might want every news
item to be a partial.

Partials are like any other view, except that their filenames always begin
with an underscore (e.g. _three.html.erb)

Partials are invoked from within another view using render (:partial =>)

inserts _three.html.erb into the page

You can pass a hash of local variables to a partial by passing a
:locals parameter to the render method

Partials can then use these locals:

A partial can use a layout file, just like any other view can.

Note: layouts for partials are expected to be in the same folder
as the partial (not in the app/views/layout folder!), and also
must follow the underscore naming convention.

So, this code will render a partial named _three.html.erb with
the layout _some_layout.html.erb.

