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Abstract

Many large-scale key-value storage systems sacrifice features like secondary indexing and/or

strong consistency in favor of scalability or performance. This limits the ease and efficiency

of application development on such systems. Implementing secondary indexing in a large-

scale memory based system is challenging because the goals for low latency, high scalability,

strong consistency and high availability often conflict with each other.

This dissertation shows how a large-scale key-value storage system can be extended to

provide secondary indexes while meeting those goals. The resulting architecture is called

Scalable Low-Latency Indexes for a Key-Value Store, or SLIK. It extends a standard key-

value store to enable multiple secondary keys for each object and allows lookups and range

queries on these keys via secondary indexes. SLIK allows indexes to be partitioned and

distributed independently of the data in tables in order to ensure scalability. Locating

objects and corresponding index entries on different servers can lead to potential consistency

issues. However, SLIK provides strong consistency guarantees using a lightweight ordered

write approach. While SLIK stores indexes in DRAM to enable low latency, it ensures that

the index information is durable and quickly recovered using backups in case of crashes.

This design was implemented in RAMCloud, a distributed in-memory key-value stor-

age system. This implementation performs indexed reads in 11–13 µs and writes in 30–

37 µs, which is approximately twice the latency of basic non-indexed reads and writes in

RAMCloud. It supports indexes spanning thousands of nodes, and yields linear scalability

for throughput.
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Chapter 1

Introduction

Over the last decade, main-memory-based data storage systems arose to meet the needs

of large-scale web applications. These systems have scaled to span hundreds or thousands

of servers, with unprecedented overall performance. Some examples include Aerospike [1],

H-Store [24], RAMCloud [34] and Redis [13]. However, in order to achieve their scalabil-

ity, most large-scale storage systems have accepted compromises in their feature sets and

consistency models. In particular, many of these systems are simple key-value stores with

no secondary indexes. The lack of secondary indexes makes it difficult to implement appli-

cations that need to make range queries or retrieve data by keys other than the primary

key.

Indexing has been studied extensively in the context of traditional databases. However,

its design for a low-latency large-scale main-memory storage system presents several unique

design issues (given below). These are further challenging due to the inherent tension

between some of them.

• Low Latency: The latency for indexed operations should be as low as possible. This

requirement means that the system should harness low latency networks and store

index data in DRAM. Further, the system should leave out complex mechanisms

wherever possible in favor of lightweight methods that minimize overhead.

• Scalability: A large-scale data store must support tables so large that their objects

and indexes need to span many servers. The total throughput of an index should

increase linearly with the number of servers it spans. This objective is at odds with

low latency, as contacting more servers (even if done in parallel) increases latency.

1
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Ideally, a system should offer nearly constant latency irrespective of the number of

servers an index spans.

• Consistency: The system should provide clients with strong consistency guarantees,

similar to what a centralized system might provide. For instance, when an indexed

object is written, the update to that object and all of its indexes must appear atomic,

even in the face of concurrent accesses and server crashes. However, providing consis-

tency when information is distributed, traditionally requires locks or algorithms that

impact latency or scalability. Further, as data and indexes become sharded over more

and more nodes, it becomes increasingly complex and expensive to manage metadata

and maintain consistency between data and the corresponding indexes.

• Durability and Availability: Even though all the data (including indexes) is stored

in DRAM to enable low latency, it should be durable (i.e., it must survive server

crashes). Further, the system must also be continuously available. This requirement

means that after crashes, the indexing system should recover indexes as quickly as the

underlying storage system recovers objects.

• Dealing With Large Scale Operations: To maximize scalability, large-scale long-

running operations must not block other operations. For example, large range lookups

should not block other lookups or writes on that table. Schema changes such as

adding or removing indexes, and splitting or migrating index partitions should be

accomplished without taking the system offline.

In this dissertation, I show how to overcome these challenges and how a large-scale

key-value store can be extended to provide secondary indexes. The resulting architecture,

SLIK (Scalable, Low-latency Indexes for a Key-value store), combines several attractive

features. First, it stores all data in DRAM and employs simple mechanisms to enable ultra

low latency, while recovering quickly from crashes to ensure durability and high availability.

Second, it scales to support high performance even with indexes that span hundreds of

servers, while providing strong consistency guarantees. Third, it enables live index split

and migration, background index creation and deletion, and non-blocking range lookups

to ensure that large scale operations do no impact other operations. Finally, it uses main

memory efficiently when storing secondary index structures.
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To demonstrate the practicality of the design, SLIK was implemented in RAMCloud [34,

11], a low-latency distributed key-value store. This implementation of SLIK supports ex-

tremely low latency indexing and is highly scalable:

• SLIK performs index lookups in 11–13 µs, which is only 2× the latency of non-indexed

reads in RAMCloud.

• SLIK performs durably replicated writes of indexed objects in 30–36 µs, which is also

about 2× the latency of non-indexed durable writes in RAMCloud.

• The latency provided by SLIK is 5–90× faster than H-Store, a state-of-the-art in-

memory database.

• As an index is partitioned among more and more servers, the throughput of index

lookup in SLIK grows linearly while the latency remains nearly constant.

Overall, SLIK demonstrates that large-scale storage systems need not forgo the benefits

of secondary indexes.

1.1 Contributions

The main contribution of this dissertation is the design and implementation of SLIK, which

provides low-latency, scalable, consistent, durable and available secondary indexing in a

memory-based key-value store. The implementation of SLIK in RAMCloud is available

freely and open source [11]. Here is a summary of some of the interesting design contribu-

tions:

• SLIK uses a multi-key-value data model where each object can have multiple secondary

keys in addition to the primary key and an uninterpreted data blob. This approach

reduces parsing overheads for both clients and servers to improve latency.

• It achieves high scalability by partitioning indexes such that the index entries can

be distributed independently from the corresponding objects, rather than colocating

them (which is the more commonly used approach today).

• As a result of the partitioning scheme above, indexed operations are distributed, which

creates potential consistency problems between indexes and objects. SLIK provides
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clients with consistent behavior using a novel lightweight mechanism that avoids the

complexity and overhead imposed by most distributed transaction implementations.

It utilizes an ordered-write approach for updating indexed objects and uses objects

as ground truth to determine liveness of index entries.

• SLIK performs long-running large-scale operations without blocking normal opera-

tions. For example, SLIK uses a logging approach for index migration, which allows

updates to an index as it is being migrated.

• Finally, it implements secondary indexes using an efficient B+ Tree algorithm. Each

tree node is kept compact by mapping secondary keys to the primary key hashes

of the corresponding objects. SLIK further uses objects of the underlying key-value

store to represent these nodes, and leverages the existing recovery mechanisms of the

key-value store to recover indexes.

This dissertation also aims to explain the various design issues that have to be tackled

while building an indexing system, and the approaches that can be taken to achieve the

desired properties.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 introduces the evolution

and current landscape of data storage systems and positions SLIK with respect to other

systems. Additionally, it provides an overview of RAMCloud, the underlying key-value

store for my implementation of SLIK. It also motivates the need for secondary indexing.

Chapter 3 describes the interface provided by SLIK to application developers. The next few

chapters explain the various design issues encountered while building an indexing system,

some possible approaches to tackle each issue, and the details of the approach chosen in

SLIK: Chapter 4 explores various ways to partition indexes and how they impact scalability;

Chapter 5 dives into the details for providing strong consistency even in the face of failures;

Chapter 6 describes the logical structure of the indexes; and Chapter 7 explains how an

in-memory indexing system can achieve durability and availability as well as how this affects

the physical layout of the indexes. These design decisions come together to provide indexing,

as summarized in Chapter 8 with the help of internal Remote Procedure Calls (RPCs)

involved in implementing the index API. Chapter 9 benchmarks SLIK’s implementation in
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RAMCloud to evaluate how well SLIK meets its latency and scalability goals. While the

discussion of related work is woven throughout the dissertation, Chapter 10 summarizes the

related work. Finally, Chapter 11 concludes the dissertation.



Chapter 2

Background

Traditionally, relational databases, like MySQL, ruled the data storage world. While they

operated at small scale (often on single machines or servers), they offered data models that

made it easy for developers to build meaningful, complex applications. Their data mod-

els include features like secondary indexing, aggregation, and sort, which enable powerful

queries. They also include features to support updates beyond simple writes and removes,

such as transactions, foreign key checks, and triggers.

With the advent of very large web applications, the SQL based databases were no

longer sufficient. These databases could not provide the needed scalability as they had

been originally designed to operate at much smaller scale. Most of their features (like the

ones mentioned above) require access to many objects, often in different tables, making it

important for these accesses to be efficient. Given that they were designed to operate on data

that fit on a single server, they weren’t optimized for large-scale data that spanned hundreds

or thousands of servers. As a result, some applications later started using these databases

by partitioning their data across multiple database instances. However, this meant that the

applications could take advantage of the database features (like transactions) only within a

partition and not across partitions.

Thus, many NoSQL systems emerged to support the massive scale of web applications.

However, in order to achieve this, many sacrificed higher level data models and strong

consistency guarantees offered by relational databases (Figure 2.1 illustrates this trend).

Datastores missing these features impose significant challenges on the application developer

and the type of applications she can develop. The lack of consistency places the burden on

the application developer to ensure correct behavior at the application level. The lack of

6
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Figure 2.1: Evolution of storage systems from traditional databases to the current landscape.
The blue star illustrates an unsolved problem: SLIK is a step towards filling that void.

secondary indexes forces the application developer to find creative ways to store and query

data, which may limit the kinds of queries that can be done efficiently.

The community is now trying to add back some of the higher-level features. Figure 2.1

shows a few examples (the space is populated with many systems and the figure shows only

a few of them).

Some systems offer stronger consistency but support only simple data models. For

example, COPS [29] provides Causal+ consistency but has a simple key-value data model.

RAMCloud [34] provides linearizability (the strongest consistency level) but has a key-value

data model which supports writes, reads, scans, conditional operations and multi operations.

BigTable [17] also provides strong consistency but stores data in a multi-dimensional sorted

map which supports writes, reads and scans.

Some other systems provide weaker consistency guarantees but have richer data models.

For example, Tao [16] is eventually consistent (weakest consistency level) and provides a

graph database API (with nodes and associations between the nodes). PNUTS [18] has

relaxed consistency but offers a basic relational data model.

Most current systems offer stronger consistency guarantees to some extent and one

or more features of higher level data models. For example, HyperDex [21] is linearizable

(the strongest consistency level) and supports a key-value data model with rich data types.
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MongoDB [7] is also linearizable and offers document oriented storage with JSON-style docs.

Megastore [15], Spanner [19] and H-Store [24] have different levels of strong consistency and

their data models share characteristics with relational databases. Megastore allows the

client to pick the level of consistency desired, and offers fully serializable ACID semantics

within fine-grained partitions of data (in contrast, relational databases provide the same

semantics across the entire data). Spanner is externally consistent, and offers semi-relational

tables with general purpose transactions and a richer query language (this move towards

higher level data models was in part motivated by the wide adoption of Megastore within

Google). H-Store is strictly consistent and supports a row based relational model.

However, providing this feature set at scale often comes at the cost of latency. The oper-

ations in most of these systems require fairly high latency, often in the order of milliseconds

or even seconds within a single datacenter. Some systems have been designed to provide

low-latency access to data. For example, Memcached [6] is a distributed in-memory cache

with a key-value data model. Applications often use it in conjunction with many MySQL

instances: this improves the overall performance of the system by providing faster access to

most recent data. RAMCloud (described earlier) is a distributed in-memory storage system

(which durably stores data) and provides remote access to objects in 5 to 15 microseconds.

I wanted to see if it is possible to get the best of all worlds - scalability, low latency, and

a rich data model - and to identify the limits if it is not possible. No current datastore offers

all of these features, which left this an important unsolved problem (the star in Figure 2.1).

I suspect that filling this void will enable a new class of applications or enable an easier way

of programming the current applications. I decided to approach the problem by taking an

existing scalable system with a weak data model and implementing a better data model.

This led me to design SLIK: Scalable Low-Latency Indexes for a Key-Value Store. I

implemented SLIK using RAMCloud as the underlying storage system. RAMCloud is a

distributed in-memory key-value storage system. It is designed for large-scale applications,

operates at ultra low latency, and provides strong consistency. While SLIK was designed

in the context of RAMCloud, I have attempted to make the design decisions that would

be appropriate for any key-value-store developer trying to introduce secondary indexing to

their system. Over the rest of this dissertation, I discuss the design decisions independently

of RAMCloud where possible. I also explicitly point out how RAMCloud influenced some

of our decisions and implementation details.
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Next, this chapter provides an overview of RAMCloud, which will be helpful in un-

derstanding the implementation-specific details in the later chapters. More details about

RAMCloud can be found in the paper that covers all the basics [34], its wiki [12], and its

source code [11]. Then it presents a short historical context for the design and development

of RAMCloud and SLIK. It ends with some additional background on the key-value data

model and a general motivation for secondary indexing.

2.1 RAMCloud Overview

RAMCloud is a datacenter storage system with two main properties: low latency and large

scale. In order to get the lowest possible latency, RAMCloud uses DRAM as the primary

storage medium: all data is present in DRAM at all times. Further, we carefully designed

the RAMCloud software to be efficient enough to exploit DRAM’s latency advantage. In

order to support large scale data (beyond the capacity of a single machine), RAMCloud

aggregates the memories of thousands of servers into a single coherent key-value store.

RAMCloud uses secondary storage (like disks or flash) only to hold redundant copies for

durability. When a server crashes, the data that was present in the DRAM of that server

is recovered in the DRAM of other servers using a fast crash recovery mechanism.

The RAMCloud implementation is open-source and available freely [11]. The current

implementation achieves end-to-end times of 4.7 µs for reading small objects and 13.5 µs

for writing small objects in our test cluster of 80 nodes.

2.1.1 Data Model

The original data model of RAMCloud was a simple key-value store consisting of any number

of objects. Each object has a variable-length key and a variable-length uninterpreted value

blob. Objects are grouped into tables, which act as namespaces for sets of keys. A table

may span more than one server: each partition of the table, stored on a separate server, is

called a tablet.

In order to approximate even distribution of data across tablets, RAMCloud relies on

hashing the keys of the objects. A table is represented as objects within a 64-bit hash

space. To partition a table, its objects are divided into tablets that form contiguous, non-

overlapping subsets of the hash space. The key hash of an object, along with the identifier

for the table, determines which tablet (and thus, which master) the object belongs to.
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createTable(tableName) −→ tableId

Create a new table named tableName if it does not exist and return the identifier
for the table.

dropTable(tableName) −→ status

Delete the specified table. All the objects in the table are also deleted.

getTableId(tableName) −→ tableId

Return the identifier for a table given its name.

write(tableId, key, value) −→ status

Create or overwrite the object identified by tableId and key.

remove(tableId, key) −→ status

Remove the specified object.

read(tableId, key) −→ value, status

Get the value of the specified object.

Table 2.1: Summary of the core API provided by RAMCloud to client applications.

Table 2.1 shows the basic operations supported by the original version of RAMCloud.

Additionally, RAMCloud also supports enumeration (scan all objects within a given table),

multiWrite/multiRemove/multiRead (batched versions of the corresponding operations

without any atomicity guarantees), and conditional versions of write/remove/read.

2.1.2 System Structure

Figure 2.2 shows the building blocks of a RAMCloud system. Each storage server is com-

posed of two components. A master module handles read and write requests from the

clients. It manages the main memory of the server in a log-structured fashion to store one
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Figure 2.2: RAMCloud cluster architecture.

copy of all the objects in tables. A backup module uses local disk or flash memory to store

multiple backup copies of log information. A backup is read only during the recovery of a

crashed master or when restarting a cluster.

The masters and backups are managed by a central coordinator. The coordinator handles

configuration-related issues, like server membership and information about which storage

servers handle which table partitions. It is not normally involved in operations other than

those querying or modifying configuration information.

The coordinator is a highly reliable and available system (with active and standby

instances). While it appears as a single service to the rest of the cluster, in reality it is

composed of multiple servers to avoid a single point of failure for the entire system. At any

given time, only one of these servers is active: it acts as the coordinator and interacts with

the rest of the cluster. The rest of the servers are standbys that actively follow the active

coordinator’s state. In case the active coordinator fails, one of the standbys is ready to take

its place. A separate highly available configuration storage server is used to store consistent

replicas of the active coordinator’s state. It also determines a new active coordinator in case

the current active coordinator fails. RAMCloud’s coordinator is designed to support various

external services. While the default is Zookeeper [23], the LogCabin [5] implementation of

Raft [32] can also be used.
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Figure 2.3: A master primarily consists of a hash table and an in-memory log. When it
receives a write request, it updates its hash table and in-memory log. It then forwards the
new data to multiple backups so that they can store it in secondary storage (disk or flash)
for durability. The backups write that data in their non-volatile staging memory buffers and
respond back to the master, which in turn responds back to the client. The data buffered
by the backups is eventually written to secondary storage in large batches.

2.1.3 Log Structured Storage

RAMCloud uses a unified log-structured approach to manage objects in the main memory

of masters as well as secondary storage on backups [37]. The log-structured approach allows

in-memory storage to achieve a high (80–90%) memory utilization while still offering high

performance.

With a log-structured approach, each master’s memory is organized into a log and a hash

table. The log is divided into small segments that store log entries containing objects. Log

entries may also contain additional metadata and tombstones which indicate the removal of

corresponding objects. The hash table is used to locate the objects in memory. It contains

one entry for each live object stored on the master and allows objects to be located quickly

given a table identifier and key.

When a master receives a write request (Figure 2.3), it appends the new object to its in-

memory log and adds an entry to the hash table. It then forwards that log entry to several
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Figure 2.4: Illustration of the basic idea behind RAMCloud’s log cleaning mechanism.

backup servers. The backups buffer this information in memory and return to the master.

The master completes its request and returns to the client once all of the backups have

acknowledged receipt of the log data. In the background, backups write the accumulated

buffered data to disk or flash then delete the buffer from memory. The buffers are kept small

and flushed regularly to disks (even if they do not fill up). This minimizes the amount of

data lost in case of power failures. The loss can be prevented all together in a couple of

ways. Many existing data centers already provide per-server or per-rack battery backups

that extend power briefly after outages. The extended time with power can be utilized

to flush any buffered data. Alternatively, the backups can buffer data in small NVRAM

modules, which persist information even in case of power failures.

In order to avoid losing the buffered data in case of power failures, the buffers are

kept small and flushed regularly to disks (even if they do not fill up). Additionally, many

existing data centers already provide per-server or per-rack battery backups that extend

power briefly after outages. Alternatively, the backups can buffer data in small NVRAM

modules, which persist information even in case of power failures.

Given that the data in RAMCloud is organized using an append-only log, it needs a

mechanism to reclaim the free space that accumulates in segments when objects are deleted

or overwritten. Further this free space may be fragmented (as objects created at different
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Figure 2.5: RAMCloud utilizes the scale of the cluster to enable fast crash recovery. Each
master’s data is scattered across many available backups to remove the disk bottleneck
during recovery. A crashed master’s data is recovered by multiple recovery masters to
remove network and CPU bottlenecks. When a master crashes, the relevant data from all
the backups is read by multiple recovery masters to recover the lost data.

times get deleted or overwritten). This fragmented space needs to be coalesced in memory

and on backups so that new segments can be created to store more data. RAMCloud

accomplishes this with a log cleaner [37]. The basic idea behind the log cleaner is shown

in Figure 2.4: the cleaner selects segments to clean; reads the live data from the segments

and rewrites them at the head of the log; it then deletes the cleaned segments along with

their backup copies. The cleaner runs concurrently with normal operations and the cleaning

barely affects the normal operations.

2.1.4 Crash Recovery

When a master crashes, the objects that had been present in its DRAM must be recovered.

RAMCloud achieves this using a fast crash recovery mechanism [33]. The objects are

recovered by one or more other servers, called recovery masters. At its core, the recovery

happens by reading the log segment replicas from backups back into DRAM of the recovery

master(s) and replaying the log to identify the current version of each live object and

reconstruct the hash table.

The key to fast recovery is to take advantage of the massive resources of the cluster by

combining the disk bandwidth, network bandwidth, and CPU cycles of many of machines in

a highly parallel and tightly pipelined fashion (Figure 2.5). If each master’s data had been

replicated to a small number of backups, then disk bandwidth would become a bottleneck
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during recovery. Hence, the master scatters segment replicas across all the available backups

during writes. If all the data is recovered on one recovery master, then the network and

the CPU of that machine become the bottleneck. Hence, the data of the crashed master is

partitioned and each partition is recovered on a separate recovery master.

2.2 Towards Higher Level Data Models in RAMCloud

Our group started developing RAMCloud in 2009. We wanted to see how far we can push the

boundary: what is the lowest latency we can provide in a highly scalable, strongly consistent

storage system? In a few years we built RAMCloud and it achieved our goals. However,

it only supported a key-value data model and simple operations like reads and writes. I

wanted to ask: can I enable higher level data models while retaining the low latency and

scalability properties of RAMCloud? After investigating other databases, I determined that

if we added multi-object transactions and secondary indexing to RAMCloud, we could offer

most of the features of traditional databases. Introducing these features is an important

step to help us determine the extent to which we can recreate the high level features typical

of traditional databases while maintaining the performance and scalability of a key-value

stores. Over the next few years, we added linearizability and multi object transactions via

RIFL [27] as well as secondary indexing via SLIK [25]. This dissertation is dedicated to a

detailed discussion of SLIK.

2.3 The Need for Secondary Indexing

Secondary indexing is important because it allows application developers to query the data

in the storage system in more meaningful ways. It allows data to be queried based on

its various attributes, rather than just the primary key, as is the case with most standard

key-value stores.

Figure 2.6 shows a toy example for a table of data that might be stored in a key-value

store. It contains the records of books in a library as objects. The primary key of this table

is the ISBN: this is the key that uniquely identifies the objects in the table. Key-value stores

allow objects to be accessed via their primary key. So, using a standard read (supported by

all key-value stores), a client can query for a book with a given ISBN to retrieve information

about that book. However, the client might want to find “The Little Prince”, or all books
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038533348X  Cat’s Cradle Kurt Vonnegut 3409.102 1963 

0486284727 The Time Machine H. G. Wells 8948.389 1895 

0156012197 The Little Prince Antoine de Saint-Exupéry 5699.212 1943 

081297736X A Man Without a Country Kurt Vonnegut 3409.121 2005 

ISBN (Primary Key) Title Author Location Year 

Figure 2.6: A simplified example of a table that stores records of books in a library. Each
row is an object, uniquely identified by the ISBN.

by the author “Kurt Vonnegut”. The client might even want to find all books published

between the years 1940 and 1970. To get the answers to these queries, the client could

simply scan the table to read in all the objects and parse them to find the relevant objects.

But this is not efficient with real tables (as opposed to our toy example) which can have

millions of records.

To enable access to an object via attributes other than its primary key (as in the example

queries above), we treat these attributes as secondary keys for that object. Further, we need

additional data structures that organize information in a way that allows efficient lookups

via these keys. These additional data structures are indexes on the secondary keys, and can

be simply referred to as secondary indexes.



Chapter 3

SLIK Application Interface

This chapter discusses the indexing interface viewed by an application using SLIK. The goal

of indexing is to enable the application to find relevant objects based on their secondary

keys. An application may want to perform range lookups (for example, find objects

where ‘‘p’’ < given secondary key < ‘‘t’’) as well as point lookups (for example,

find objects where given secondary key = ‘‘lily’’).

In order to enable such lookups, SLIK needs to maintain index structures that map from

secondary keys to corresponding objects. This means the clients and servers must agree

on where the secondary keys are located in the object. Section 3.1 discusses how this is

achieved and the resulting data model.

While later chapters are dedicated to the system-side design for various components

required to provide indexing, Section 3.2 in this chapter shows the top-level Application

Programming Interface (API) exposed by SLIK. Some of the operations described in this

section can be large-scale long-running operations. These are discussed in further detail in

the next section.

3.1 Object Format and Data Model

In order to have secondary indexes, clients and servers must agree on where the secondary

keys are located in the object. In traditional databases, the server knows the schema for the

table, and the exact structure of each record. Hence, a database server understands where

the keys are located and finding them is not a problem. However, typically a key-value store

treats the objects mostly as uninterpreted blob of data; only the clients understand a more

17
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Value	Blob	Primary	Key	

Figure 3.1: Schematic of a traditional key-value object format.

{KeyName0:Val0,	KeyName1:Val1,	KeyName2:{KeyName3:Val3,	KeyName4:Val4}}	

Figure 3.2: Schematic of an example for a JSON object format.

detailed structure of the objects. Specifically, as shown in Figure 3.1, each key-value object

consists of a single primary key (to identify the object) and an uninterpreted value blob.

This is because key-value stores are designed to favor simplicity and to provide flexibility

in case of evolving schemas (as is the case with many web applications).

A commonly used approach is to store the secondary keys (to be indexed) as part of

the object’s value. The value blob is no longer uninterpreted as the server parses the entire

object to find the secondary keys. To enable this, the servers and clients have to agree on a

specific format for object values. For example, an application might store objects in a JSON

format, as shown in Figure 3.2. Here, each index is associated with a particular named field.

Several storage systems use this approach, including CouchDB [2] and MongoDB [7]. How-

ever, this introduces overheads: when a client writes an object, the server has to parse the

entire object to find the secondary keys to be indexed before it can complete the operation.

Thus, systems that use formats like JSON do not provide the lowest possible latency.

Given our objective of lowest possible latency in SLIK, I chose an object structure that

directly identifies all the secondary keys as shown in Figure 3.3. Consequently, there is no

parsing required to carry out index operations. I call this a multi-key-value format: an

object consists of one or more variable-length keys, plus a variable-length uninterpreted

value blob. The first key is the primary key: along with the table identifier, this uniquely

identifies an object. The rest of the keys are for secondary indexes. These need not be

Key0	 Value	Blob	Key2	Key1	#	Keys	 …	

Primary	Key	

Figure 3.3: Schematic of multi-key-value object format.
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Checksum	Timestamp	Version	TableId	KeyLength	PrimaryKey	Value	
Object	Header 

Figure 3.4: Detailed representation of RAMCloud’s key-value object format before the
introduction of secondary keys and indexing with SLIK.

Checksum	Timestamp	Version	TableId	#Keys	CKL0	CKL1	…	Key0	Key1	…	Value	
Primary	Key Object	Header 

CKL:	Cumulative	Key	Length 

Figure 3.5: Detailed representation of RAMCloud’s multi-key-value object format after
implementing secondary keys and indexing with SLIK.

unique within the table. As with a key-value store, the value is an uninterpreted blob of

data: a server never parses the value, it just stores and returns it as-is.

Each of the secondary keys is identified by its position in the object and can have

an index corresponding to it. Each key can be of a different type. The type of the key

specifies the ordering function for the corresponding index (for example, an integer key

can be numerically ordered, or a string key can lexicographically ordered). An index is

uniquely identified by the combination of the table identifier (tableId) and index identifier

(indexId). For example, an index identified by tableId t and indexId n indexes the nth

key in all the objects of table with tableId t.

SLIK’s data model also offers flexibility as the objects in a table do not have to follow

a strict schema. For example: different objects can have different numbers of secondary

keys; an object can have secondary keys that are not indexed; an object can be missing a

secondary key corresponding to an index on the table.

An actual object contains more information than the simplified object formats shown

earlier. Figure 3.4 shows a more detailed view of the basic key-value format of objects

in RAMCloud. The object header includes various pieces of metadata, such as tableId

(which identifies the table the object belongs to), version (which is used to disambiguate

different incarnations of objects with the same key), timestamp (which is the creation time

of the object, primarily used by the cleaner to order live objects in order to improve cleaning

performance), and a CRC32C checksum (which covers everything but this field, including



CHAPTER 3. SLIK APPLICATION INTERFACE 20

the keys and the value in order to detect corrupt data). The key length specifies the length

of the variable length primary key. The rest of the bytes form the primary key (up to the

length specified earlier) and the value blob.

The multi-key-value object must additionally specify secondary keys. Figure 3.5 shows a

detailed view of the multi-key-value format from the implementation of SLIK in RAMCloud.

It retains the object header from the basic key-value object (Figure 3.4). The number of

keys (including the primary) is identified explicitly in the object. Since each object is

required to have a primary key, this number is never less than one. Each object contains a

blob of data which is composed of one or more variable-length keys and a variable-length

value. To find a given key within this blob, we need its offset within this blob as well as its

length: these are calculated using the cumulative key lengths (shown as CKL in the figure)

specified in the object.

A cumulative key length is the total length of all keys up to and including the key

corresponding to the given indexId. The length of each key can be calculated using the

cumulative lengths: Lengthkey[i] = CumulativeLength[i] − CumulativeLength[i − 1]. If

an object doesn’t contain a key corresponding to a certain id, then the length of that key

should be 0. This means if key i is absent from an object, then CumulativeLength[i] =

CumulativeLength[i− 1]. Using cumulative lengths means that the offset for a key can be

determined directly by the cumulative length of the previous key, and the length can be

determined by a simple subtraction of two cumulative lengths. If an alternative implemen-

tation instead stored the length of the keys in the object, then computing the length would

be trivial, but computing the offset would require adding the lengths of all the previous

keys. Hence, the SLIK implementation saves a little bit of latency every time an object is

parsed.

3.2 API

Table 3.1 summarizes the Application Programming Interface (API) of SLIK visible to client

applications. A client invokes createIndex and dropIndex to create or delete an index

(with indexId) on an existing data table (identified by tableId). Each index corresponds

to a single table and a single secondary key within that table. The next subsection covers

index creation and deletion in detail. Further, as an index gets large or highly loaded, it

can be split into multiple partitions, each stored on a separate server. The final metadata
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related operation, splitAndMigrateIndexlet enables this by splitting an index partition

and migrating one of the resulting partitions to a different server. I will revisit this operation

while discussing partitioning and configuration management in Chapter 4.

To write or overwrite an indexed object, a client sends write request to the data server

that stores the tablet containing the object. Similarly, to remove an indexed object, a client

sends remove request to the data server that stores the tablet containing the object. The

server then updates (writes or overwrites or removes) the object as well as any secondary

indexes associated with this object.

To find objects that fall within a given index key range, the client uses a streaming

approach. It fetches objects one at a time in sorted index order. This mechanism is imple-

mented with an IndexLookup class. Constructing an object of this class starts the query

and getNext allows the client to iterate over the results. Using this streaming approach

helps scalability. An alternative would have been to collect and return all the objects at

once. However, this requires the client application to have enough space to store all the

objects that will be returned in response to a lookup. As the number of objects returned

increases, the client needs to have more and more space freely available for this purpose.

For a very large query, the amount of data returned might exceed the storage capacity of

the client. Hence, this alternative would not have been scalable.

3.3 Index Creation and Deletion

Creating an index typically requires modifying all objects in the table. This may happen

for two reasons. First, the information to be indexed might be absent from the objects if

new attributes or metrics are added. For example, a social networking site with a table

for all the users (with one object corresponding to each user) might want to add a new

metric to determine user influence: the number of times their profile is viewed. Second, the

information to be indexed might be present in the value portion of the objects. The value

of an object is often used to store all the information that is unlikely to be used for finding

objects. Later if it appears that some attribute is useful for querying, then the application

developer might want to move this information to an indexed secondary key. In both of

these cases, the objects need to be reformatted to include the corresponding secondary keys

– this process requires rewriting the objects. Rewriting all the objects in a a table can take

a considerable amount of time, during which normal operations cannot be serviced.
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createIndex(tableId, indexId, indexType) −→ status

Create a new index for an existing table.

dropIndex(tableId, indexId) −→ status

Delete the specified index. Secondary keys in existing objects are not affected.

splitAndMigrateIndexlet( tableId, indexId, splitKey, newServerId)

−→ status

For the index identified by (tableId, indexId), split the index partition contain-
ing the key splitKey at that key. Migrate the second of the two resulting partitions
to server identified by newServerId.

write(tableId, keys, value) −→ status

Create or overwrite the object. Update secondary indexes both to insert new
secondary keys and to remove old ones (if this was an overwrite).

remove(tableId, primaryKey) −→ status

Remove the specified object. Update secondary indexes to remove the correspond-
ing secondary keys.

IndexLookup(tableId, indexId, firstKey, lastKey, flags)

Initiate the process of fetching objects whose keys (for index indexId) fall in
the given range. flags provide additional parameters (for example, whether the
end points of the range should be included in the search). This constructs an
IndexLookup object.

IndexLookup::getNext() −→ object

Return the next object in index order as per parameters specified earlier in
IndexLookup.

Table 3.1: Summary of the core API provided by SLIK to client applications for managing
indexes and secondary keys.
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In order to allow the system to function normally during index creation, SLIK allows

indexes to be inconsistent with objects (in a way that is temporary and invisible to clients).

This makes it possible to have an index and yet have objects that do not have keys for that

index. With SLIK, an empty new index is created: it is then populated in the background

while other operations on the table can continue to be serviced normally. For example,

reads (based on the primary key) or lookups based on other indexes can be serviced as

before. Additionally, objects can be written into the table. These writes update the new

index as well as the previously existing ones.

The index is populated by client-level code: it scans the table, reading each object and

then rewriting it. Rewriting an object populates the indexes, including the newly created

one, with entries corresponding to that object. Before rewriting the object, the client can

restructure the object if the schema has changed. So, once all of the objects have been read

and rewritten, the index is complete.

The index population operation is idempotent: if it is interrupted by a crash, it can

be restarted from the beginning. When the client-level code scans the table next time, it

will read and rewrite some objects that had already been rewritten earlier – this process

does not change the objects in the table or the entries in the indexes. The code will also

rewrite the rest of the objects (that had not been rewritten earlier), which will complete

the population of the new index.

Index deletion behaves similarly to index creation. The index itself can be deleted while

leaving all the objects untouched. Then, a follow-on step can scan the objects and rewrite

them after restructuring them. The object can be restructured to remove the secondary

key altogether (if that information is no longer needed) or move it to the value (if that

information is needed but doesn’t have to be indexed).

A recurring feature in SLIK is that it permits temporary inconsistencies in its implemen-

tation, while maintaining consistent behavior for applications. Index creation and deletion

share this feature (as described above).



Chapter 4

Index Partitioning

To be usable in any large-scale storage system, a secondary indexing system must support

tables so large that neither their objects nor their indexes fit on a single server. In an extreme

case, an application might have a single table whose data and indexes span thousands of

servers. Thus, it must be possible to split indexes into multiple index partitions, or indexlets,

each of which can be stored on a different server.

An index should perform well even if it spans many servers: it should provide nearly

constant and low latency irrespective of the number of servers it spans. Additionally, the

total throughput of an index should increase linearly with the number of partitions.

To design an indexing architecture that achieves these scalability goals, I considered

three alternative approaches to index partitioning.

4.1 Colocation Approach

One approach is to colocate index entries and objects, so that all of the indexing information

for a given object is stored on the same server as that object. In this approach, one of the

keys is used to partition the table’s objects (and corresponding index entries) among servers.

The partitioning key can be either the primary key or a given secondary key. As a result,

each server stores a table partition (tablet), plus one index partition (indexlet), for each

of that table’s indexes. The indexlet stores only index entries for the tablet on the same

server. Figure 4.1 illustrates this approach with an example. This approach is used widely

by many modern storage systems, including Cassandra [26] and H-Store [24], and the local

indexes in Espresso [36] and Megastore [15].

24
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Figure 4.1: Colocation Approach: In this approach, indexes for a table are partitioned
so that the index entries for each object are on the same server as the object. This example
assumes that the table is partitioned by the primary key. Colors are used to distinguish
objects (and secondary index keys) that belong to different tablets.

Tablet & Indexlet Master

For objects with primary key < 4 Server 1
For objects with 4 ≤ primary key < 7 Server 2
For objects with 7 ≤ primary key Server 3

Figure 4.2: Colocation Approach: Example of metadata for table and index partitions
showing their placement in the cluster. This metadata corresponds to the example in
Figure 4.1.
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With this approach, only the server holding the relevant partition has to be involved in

a write even if the object contains indexed secondary keys. To write an indexed object, the

client issues a write RPC to the server that owns this object. The server then writes the

object in its tablet as well as all the corresponding index entries in the indexlets located on

the same server.

To perform an index lookup on a key other than the primary key, the client has to issue

RPCs to all the servers holding partitions for this table and its indexes. Each server scans

its indexlet, then returns the matching objects from its local tablet.

This approach enables low latency for lookups at small scale as it requires only a single

set of parallel RPCs. For example, in the limit of a single partition (for the table and

index), colocation requires a single RPC. However, as the scale gets larger, the performance

for lookups with this approach degrades: the latency for lookup increases linearly with the

number of servers across which a table (along with its indexes) is sharded. The latency

increases because there is no particular association between index ranges and partitions,

causing each index lookup operation to contact every server storing an indexlet for the

table. Moreover, the total lookup throughput of an index does not scale with the number

of partitions, as each server must be involved in every index lookup.

4.2 Independent Partitioning

The second approach is to partition each index and table independently, so that index

entries are not necessarily located on the same servers as the corresponding objects. This

allows each index to be partitioned according to the sort order for that index. Each resulting

indexlet and tablet can be placed on any server in the cluster. Figure 4.3 illustrates this

with an example.

With this approach, an indexed object write involves multiple servers: the object itself is

written by the server that hosts the relevant tablet, and the index entry for each secondary

key is written by the server that hosts the relevant indexlet. It is possible for a client

to issue parallel RPCs to the data server and the relevant index servers to complete the

write/insertion. There are two different ways in which a write could proceed. The first way

is for the client to coordinate the operation by issuing parallel RPCs to data server and the

index servers. The other way is for the client to issue the write RPC to the data server

which then coordinates the operation by writing the object and issuing RPCs to the index
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Figure 4.3: Independent Partitioning: In this approach, indexes are partitioned so
that each indexlet contains all the keys in a particular range. This example assumes that
the table is partitioned by the primary key. Colors are used to distinguish objects (and
secondary index keys) that belong to different tablets.

Tablet Master

For objects with primary key < 4 Server 1
For objects with 4 ≤ primary key < 7 Server 2
For objects with 7 ≤ primary key Server 3

Indexlet Master

For objects with secondary key < h Server 4
For objects with h ≤ secondary key Server 5

Figure 4.4: Independent Partitioning: Example of metadata for table and index partitions
showing their placement in the cluster. This metadata corresponds to the example in
Figure 4.3.
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servers. The exact mechanism can affect consistency, and is discussed in further detail in

the next chapter.

To perform an index lookup, the client has to issue two sequential RPCs. First, it

issues an RPC to the server holding the relevant indexlet. A small index range query can

be processed entirely by a single index server. The server returns information to identify

objects. The client then issues parallel RPCs to the data servers to retrieve these objects.

At small scale, independent partitioning results in higher lookup latency than the colo-

cation approach due to the need for two sequential RPCs. For example, in the limit of

a single partition (for the table and index), independent partitioning results in twice the

latency of the colocation approach. However, as the scale gets larger, independent parti-

tioning offers dramatically better performance than colocation. Performing two sequential

RPCs results in a constant latency even as number of partitions is increased, and this la-

tency is lower than doing a large number of parallel RPCs. Moreover, the total lookup

throughput scales linearly with the addition of servers because different indexlets process

different queries independently.

4.3 Global Secondary Indexing

The third approach partitions data as in independent partitioning (discussed in the previous

section), but fully or partially replicates table data in each index. Any data that may be

accessed via an index needs to be duplicated in that index. Figure 4.5 illustrates this with

an example. This approach is used by the global indexes in DynamoDB [3] and Phoenix [10]

on HBase [4].

The mechanism to write an object with this approach is similar to the mechanism with

independent partitioning. However, because the index entries store a copy of the data, it is

possible that the consistency mechanisms required for this approach may not be the same

as the previous approach (this will be further clarified in the next chapter).

To perform a lookup, a client issues an RPC to the server storing the relevant index

partition. The server then finds the matching entries and returns the attributes stored in

those entires (i.e., the projected attributes).

Global indexing enables better lookup latency than the independent partitioning ap-

proach while still providing the same scalability benefit. Global indexes do not require

a two-step mechanism for lookups because the table data is replicated with the indexes.
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Figure 4.5: Global Indexing: In this approach, each index entry contains a full or partial
copy of the corresponding object. Further, indexes can be partitioned independently of each
other and the table. Thus, each indexlet can hold a contiguous range of keys. Colors are
used to distinguish objects (and secondary index keys) that belong to different tablets.

Tablet Master

For objects with primary key < 4 Server 1
For objects with 4 ≤ primary key < 7 Server 2
For objects with 7 ≤ primary key Server 3

Indexlet Master

For objects with secondary key < h Server 4
For objects with h ≤ secondary key Server 5

Figure 4.6: Global Indexing: Example of metadata for table and index partitions showing
their placement in the cluster. This metadata corresponds to the example in Figure 4.5.
The metadata in this example is the same as that for independent partitioning approach
(as shown by the metadata in Figure 4.4 for the example in Figure 4.3). This is because
global indexing allows indexes to be partitioned independently of each other and the table,
just like the independent partitioning approach.
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This allows global indexes to achieve lower latency than the independent partitioning ap-

proach. Additionally, global indexes are scalable because they are partitioned using the

same mechanism as independent partitioning.

These benefits come at the cost of increased memory footprint. As an index lookup can

return only those attributes of the object that are projected and stored with that index,

a substantial amount of data might be duplicated to enable meaningful lookups. While

this might be acceptable for disk or flash based systems, it may not be for memory-based

systems because the storage medium is more expensive.

4.3.1 Usage in Other Systems

Some systems that use global secondary indexing, use it in addition to the colocation ap-

proach: they have two sets of indexes, which are used for different purposes. The first set

is colocated with the objects and provides strong consistency. The second set is global and

provides weak consistency in favor of lower latency.

Further, some systems organize the global indexes using the hash of the index key rather

than the key itself. However, this makes it inefficient to perform range queries on the index

as querying a range would require a scan over the entire index.

4.4 The Right Approach for SLIK

To yield scalable performance, SLIK uses the independent partitioning approach and par-

titions each index based on its key ranges, even though many modern datastores use the

colocation approach and global indexes. This chapter explained why the independent par-

titioning scheme should lead to better scalability than the colocation approach. The ex-

periments in Chapter 9 validate this reasoning. Additionally, while global indexing allows

good scalability, it substantially increases the memory footprint which makes it not viable

for a memory-based system like SLIK.

4.5 Identifying Objects With Our Approach

Index entries need a way to identify the objects they refer to while providing the mapping

from secondary keys to the objects that contain those keys. If the objects were located on

the same server as the indexlet, then the index entries could have mapped the indexed keys



CHAPTER 4. INDEX PARTITIONING 31

directly to the location of the objects (using memory addresses for example). However,

because SLIK uses an independent partitioning approach, objects and the corresponding

index entries are likely to be located on separate servers. Hence, index entries need a

different way to identify the objects they refer to. A straightforward way is to use the

primary key of the corresponding object. However, primary keys are variable length byte

arrays, which can potentially be large (many KBs). So instead SLIK identifies an object

with a 64-bit hash value computed from its primary key. Primary key hashes have the

advantage of being shorter and fixed in size. A compressed form of the key, such as a hash,

works just as well as using the entire key, as it finds the right server and does not miss

any objects. It may occasionally select extra objects due to hash collisions, but these extra

objects get pruned out as a by-product of the consistency algorithm (Chapter 5).

4.6 Metadata and Coordination

Clients and servers need a way to identify destination servers for the RPCs used to imple-

ment various index operations. Specifically, they need metadata that lists the boundaries

of tablets that compose each table and the mapping from these tablets to their host servers.

Similarly, they need metadata that lists the boundaries of indexlets that compose each index

for each table and the mapping from these indexlets to their host servers. This metadata is

updated when a new table or index is created or dropped, a server crashes or recovers data

from another crashed server, and when a tablet or indexlet is split or migrated to another

node. Any underlying key-value store already manages and disseminates the metadata for

tables. If an indexing system used the colocation approach, no additional work would be

needed because index entries are colocated with the objects they refer to. However, given

that SLIK partitions indexes independently from the tables, it needs to additionally manage

the metadata for indexes and disseminate that information to clients.

RAMCloud has a coordinator that manages and disseminates the metadata related to

cluster configuration, including the mapping from tablets to host servers [34]. SLIK uses the

same coordination service for indexing metadata like the mapping from indexlets to host

servers: the RAMCloud coordinator was modified to additionally store and disseminate this

information. When a client or server accesses a table or an index corresponding to a table

for the first time, it queries the coordinator for the configuration of the table and all the

indexes for that table. It also caches this configuration locally to identify the destination
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servers for RPCs in the future. If the cached configuration becomes stale, the client library

detects this when it sends a query to a server that no longer stores the desired tablet or

indexlet. The client then flushes the local configuration for the corresponding table or index

from its cache and fetches up-to-date information from the coordinator. The coordinator

only stores and disseminates the metadata: it does not take part in any lookup or write

operations.

4.7 Indexlet Reconfiguration

Indexlets need to be reconfigurable, that is, we should be able to migrate an indexlet from

one server to another, or split an indexlet if it gets too large and migrate one of the resulting

partitions. This requires moving an entire indexlet or a large chunk of an indexlet from one

server to another. Moving such a large amount data between servers can take a significant

amount of time.

A straightforward approach to ensure consistency during reconfiguration is to lock the

indexlet, copy the relevant part to another server, and then unlock. However, as a result, any

other operations accessing the indexlet are blocked for the entire duration of this operation.

The blocked operations include index lookups that would involve the locked indexlet and

any object updates (writes/overwrites/deletes) where either the old or the new object value

contains a secondary key indexed by the locked indexlet. As indexlets get larger, so does the

amount of data blocked. This means that a concurrent operation has a higher probability

of trying to access the locked data and hence being stalled until the reconfiguration is

complete. This degrades performance at large scale.

SLIK uses a different approach (see Figure 4.7): it copies the relevant portion of the

indexlet to another server while allowing other operations on it to proceed concurrently.

SLIK uses a log to keep track of the mutations that have occurred since it started the copying

process. Since RAMCloud uses a log structure to organize the objects in its memory, we

can simply use that log for migration in our implementation of SLIK in RAMCloud. Once

the migration process has copied over all the data including the mutations from the log, it

acquires a lock for a short duration, while copying over the last mutation(s) at the head

of the log (if any). This is similar to approaches used in the past for applications such as

virtual machine migration [31] and process migration [39].



CHAPTER 4. INDEX PARTITIONING 33

T
im

e 

1 A - Z Yes 

2 none Yes 

1 A - Z Yes 

2 P - Z No 

1 A - Z Yes 

2 P - Z No 

1 A - Z Yes 

2 P - Z No 

1 A - Z Yes 

2 P - Z No 

1 A - O Yes 

2 P - Z Yes 

1 A - O Yes 

2 P - Z Yes 

SplitAndMigrate on Server 1 Other 
Processes 

Lock acquired; 
Complete the log scan 

Begin scanning the log 
(includes copying relevant 

objects to server 2) 

Log scan 
continues 

Write: 

Write: 

Log scan 
continues 

Write: 

Migration complete; 
Release lock 

Write: 

Not allowed 
right now; 
deferred 

Write: 

Try to lock 

Complete the 
deferred write 

Write: 

X

Server Keyspace Servicing 
requests? 

Figure 4.7: Timeline for splitting an indexlet and migrating one of the resulting partitions
to a different server. In this example, server 1 hosts an indexlet for a given secondary
key in the range A to Z. This indexlet is to be split such that the indexlet for range P
to Z is migrated to server 2. The leftmost panel shows the top-level metadata; the central
panel shows the log on server 1 and the splitAndMigrate process; the rightmost panel shows
concurrent writes to this log by clients or other servers. Within the log, the information
corresponding to the indexlet to be migrated is shown in red and the rest is shown in grey.
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Consistency

As discussed in the previous chapter, indexed object writes and index lookups are distributed

operations because objects and corresponding index entries may be stored on different

servers. This creates potential consistency problems between the indexes and objects.

The consistency problems could temporarily affect client requests or permanently cor-

rupt data. For example, it might be possible for a client to read an object using its primary

key but be unable to find the same object using a secondary key. This could happen if the

object is written successfully but the index entry insertion is delayed (due to lost network

packets or slow servers), or if a server crashed after writing the object but before inserting

the index entry. This inconsistency could be temporary if the index entry is eventually

written or permanent if it never gets written. Another example is that it might be possible

for a client to lookup objects with a particular value for a secondary key, but to find an

object that contains a different value for that secondary key. This could happen in many

different ways as well. One possibility is that two clients were concurrently writing objects

with the same primary key and different secondary keys and values; certain interleaving of

the steps could result in one version of the object on the data server but the index entries

for the other version on the index servers.

Many large scale storage systems permit inconsistencies in order to simplify their im-

plementations or improve performance. For example, CouchDB [2], PNUTS [18], the global

indexes for Espresso [36] and Megastore [15], and Tao [16] use various levels of relaxed

consistency. For example, Espresso is timeline-consistent, CouchDB and Tao are eventually

consistent. This forces application programmers to build their own mechanisms to ensure

higher levels of consistency.
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Our goal is to provide strong consistency, similar to the consistency expected from a

centralized system, while still ensuring scalability of the distributed system. In the rest of

this chapter, I first discuss the properties required for strong consistency and how SLIK

ensures these properties. Then I describe one situation under which SLIK accepts more

relaxed consistency in favor of scalability and offer alternatives that can be implemented if

this relaxation is unacceptable for a system. Finally, I discuss additional consistency issues

that can arise if servers crash during operations and how SLIK ensures consistency in the

face of crashes.

5.1 Basic Consistency

SLIK provides clients with the same behavior as if indexes and objects were on the same

server with locks to control access. More concretely, SLIK guarantees the following consis-

tency properties:

1. If an object contains a given secondary key, then an index lookup with that key will

return the object.

2. If an object is returned by an index lookup, then the object contains a secondary key

for that index within the range specified in the query.

Figure 5.1 illustrates these properties with an example. There is a caveat to these properties

when performing range queries: this is discussed further in Section 5.1.3.

These consistency properties guarantee that indexed object writes, overwrites and deletes

as well as point lookups are linearizable. Linearizability is a safety property concerning the

behavior of operations in a concurrent system. A collection of operations is linearizable if,

to a client, each operation appears to occur instantaneously and exactly once at some point

in time between its invocation and its completion. This means it must not be possible for

any client of the system, either the one initiating an operation or other clients operating

concurrently, to observe contradictory behavior.

5.1.1 Using Transactions

A straightforward approach is to wrap indexed object updates in transactions. Transactions

are primitives supported by many storage systems that allow operations within a transaction

to appear to have completed atomically. This means that a client can write the object and
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Figure 5.1: Consistency Properties: The first property ensures that the client does not
miss an object, and the second ensures that the client does not get an extraneous object.
Together these properties guarantee that the client views a consistent state of data.

the index entries within a transaction to ensure that the object and its index entries are

updated atomically.

If transactions are used to implement indexed operations, the performance and scala-

bility of indexed operations is directly dependent on that of the transactions it uses. For

example, if the transactions implement an optimistic concurrency control (OCC) algorithm,

the latency is comparatively low in an unloaded system but degrades quickly in a loaded

system as the number of conflicts increase causing the transactions to abort. I observed

this when we experimented with implementing indexed operations using the transactions

in RAMCloud (which use an OCC protocol similar to Sinfonia [14] built on linearizability

enabled by RIFL [27]).

SLIK does not use transactions for a few reasons. First, many large scale storage

systems don’t support transactions, so an algorithm that doesn’t use transactions is likely

to be more widely applicable. Second, I was concerned that distributed transactions can

be fairly complex to implement, and can result in scalability or performance bottlenecks

if not designed and implemented well. However, it is entirely possible for another system

to provide consistency for indexed operations using transactions and still use all the other

design elements of SLIK. If this approach is used, I recommend using low latency and

scalable transactions (for example, protocols described in Sinfonia [14] and SNOW [30]

amongst others).
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Figure 5.2: Step by step illustration of the
mechanism to ensure consistency when a
new indexed object is written. The rectan-
gular box shows an object, and the rounded
box shows its index entry.
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Figure 5.3: Step by step illustration of the
mechanism to ensure consistency during an
indexed object remove. The rectangular
box shows an object, and the rounded box
shows its index entry. The index entry and
object that has been removed are shown in
a lighter color to indicate their absence.
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Figure 5.4: Step by step illustration of the mechanism to ensure consistency during an
indexed object overwrite. In each step, the box at the bottom shows an object as it is
modified from a version shown in blue to a different version shown in red. The rounded
boxes above show the index entry (or entries) that exist at each step.
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Figure 5.5: The mechanism to ensure consistency: The ordered write approach ensures
that if an object exists, then the corresponding index entries exist. Index entries serve as
hints; each object serves as the ground truth to determine the liveness of its index entires.
Writing an object serves as the commit point. The box at the bottom shows an object
as it is created, modified and removed (Foo is the object’s primary key; the secondary
key is changed from Bob to Sam when the object is modified). The boxes above show
corresponding index entries, where the solid portion indicates a live entry. At point x, there
are two index entries pointing to the object, but the stale entry (for Bob) will be filtered
out during lookups.

5.1.2 A Lightweight Mechanism

I designed a simple lightweight mechanism that ensures the consistency properties stated

earlier. It guarantees the first property by using an ordered write approach. It guarantees

the second property by treating index entries as hints and using objects as ground truth to

determine the liveness of index entries. This mechanism is explained in detail below and

by Figures 5.2, 5.3, 5.4 and 5.5. Figure 5.2 shows, step by step, how an indexed object is

written; Figure 5.3 shows how it is removed; and Figure 5.4 shows how it is overwritten.

Figure 5.5 summarizes the algorithm for all indexed operations.

SLIK uses an ordered write approach to ensure that the lifespan of each index entry

spans that of the corresponding object. Specifically, when a data server receives a write

request, it first issues requests (to the server(s) with relevant indexlets) for creating index

entries corresponding to each of the secondary keys in the new object’s data. Then it

writes the object and replicates it durably. At this point, it can respond back to the client

(which acknowledges that the operation has completed). If this was an overwrite, it issues

requests (again, to the server(s) with relevant indexlets) for removal of old index entries.
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Finally, it releases the lock on the object being overwritten. When a data server receives a

remove request, it acquires the same lock as above, removes the object and replicates this

removal durably, and responds back to the client. Then it issues requests to the relevant

index servers to remove old index entires and finally releases the lock. This means that if

an object exists, then the index entries corresponding to it are guaranteed to exist – thus

ensuring the first of the two consistency properties.

However, now it is possible for a client to find index entries that refer to objects that

have not yet been written or no longer exist – this would violate the second consistency

property. To solve this, I observe that the information in an object is the truth and index

entries pointing to it can be viewed as hints. If an index lookup finds inappropriate objects,

they can be filtered out by checking the actual index key in the objects. Specifically, to

perform an index lookup, the client library first queries the index server(s) responsible for

the requested secondary key or key range. These servers identify the matching objects by

returning a hash of the primary key for each matching object (Section 4.5 discusses the

use of primary key hashes in detail). The client library then uses these primary key hashes

to fetch the corresponding objects from relevant data servers. Some of these objects may

not exist, or they may be inconsistent with the index (see Figure 5.2 step 1, or Figure 5.3

step 1, or Figure 5.4 steps 1 and 2, or Figure 5.5 point x ). The SLIK client library detects

these inappropriate objects by rechecking the actual index key present in each object. Only

objects with keys in the desired range are returned to the application.

Modifying an object effectively serves as a commit point – any index entries correspond-

ing to the current data are now live, and any old entries pointing to it are now dead.

Figure 5.5 illustrates the implicit commit points during write, overwrite and delete.

The SLIK approach permits temporary inconsistencies in internal data structures but

masks them to provide the client applications with a consistent view of data. This results

in a relatively simple and efficient implementation, while giving client applications the

consistent behavior defined by the two properties above.

5.1.3 Caveat With Large Range Queries

There is a caveat to the consistency properties guaranteed by SLIK (discussed earlier)

during range queries. If an object is overwritten concurrently during a range query, such

that the secondary keys for both the versions fall within the lookup range, then either the

old or new or both or neither version(s) of the object may be returned. Returning either
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the old or the new version of the object is strongly consistent behavior because the update

can be considered to have completed either before or after the lookup. However, returning

both or neither versions results in non-linearizable behavior.

These discrepancies arise with certain interleaving of range queries with object updates.

Let us consider an example. Say we have a table with one index corresponding to that

table. The indexlet for range A to K is located on server 1 and for range L to Z is located

on server 2. Now, a client (say, client X) performs a lookup on the index for range “A to

U”. Concurrently, another client (say, client Y) modifies an object such that its secondary

key changes from Bob to Sam, as shown earlier in Figure 5.4. Client X first finds the

primary key hashes from the indexlet on server 1, and reads the corresponding objects. If

this happens during or before step 1 of the update, then client X finds the old version of

the object. Then client X finds the primary key hashes from the indexlet on server 2, and

reads the corresponding objects. If this happens during or after step 2 of the update, then

client X also finds the new version of the object. By the end of this operation, this client

has received the same object twice, with different secondary key values. If the update had

been done such that Sam changed to Bob, then it is possible that client X would miss the

index entry for Bob while getting the primary key hashes from server 1 (if this happened

before step 1 of the update) and miss the index entry for Sam while getting the primary

key hashes from server 2 (if this happened after step 2 of the update). In this case, the

client performing the index lookup could miss the object altogether.

I considered a few approaches to remove this caveat to enforce strong consistency under

all situations. One possibility is to lock the entire range being queried. However, this

would block other write operations on this index, and by extension, on the table associated

with this index. As this approach stalls other concurrent operations for a long period,

it impacts scalability. Another possibility is to use Multi Version Concurrency Control

(MVCC) to return a consistent snapshot of data (which may include older versions of some

objects). With MVCC, multiple versions of each object are stored (only one of which is the

latest version). It allows queries to be performed at a particular timestamp such that the

objects returned form a consistent snapshot of the data at the given timestamp. However,

MVCC is a fairly complex mechanism and adds overheads to normal operations. Given

that RAMCloud (the underlying storage system for my implementation of SLIK) does not

provide MVCC, my implementation of SLIK leaves out MVCC and accepts the caveat in

consistency. However, if SLIK was to be implemented on another storage system that
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provided MVCC, it could be beneficial to leverage that mechanism and close the caveat.

With this caveat, the consistency properties stated earlier in this chapter can be revised

by adding the following exceptions:

1. During an range lookup, if an object is concurrently overwritten such that its sec-

ondary key changes from x to y where both x and y are within the range queried and

y < x, then either one version of this object may be returned by the lookup or the

object may not be returned at all.

2. During an range lookup, if an object is concurrently overwritten such that its sec-

ondary key changes from x to y where both x and y are within the range queried and

y > x, then either one version of this object may be returned by the lookup or both

the versions may be returned.

5.2 Consistency after Crashes

SLIK must ensure strong consistency even if servers or clients crash in the middle of an

operation. The algorithm described earlier in this chapter ensures strong consistency when

data is accessed concurrently. It also provides consistent behavior in case of crashes to a

large extent. However, crashes can lead to additional complications related to consistency.

This section describes the potential problems caused by the crash of each component and

describes how they are handled.

5.2.1 Data Server Crash

Writing or overwriting an indexed object requires two or three separate updates: first to

the index entries, then to the object, and again to the index entries in case of overwrite (as

discussed earlier in Section 5.1.2). If one update completes but not the other, the system

will be inconsistent.

These inconsistencies can arise in two different ways. First, a data server could crash

after sending an RPC to insert the new index entry but before updating the object. If

this index entry gets written, then it is extraneous as it does not refer to an object with

that secondary key. This is illustrated by the state after step 1 in Figure 5.2 for writes

and Figure 5.4 for overwrites. Such an extraneous index entry indicates the presence of

an object with a given secondary key even though such an object does not exist. While
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this does not lead to incorrect responses to the client (due to the consistency mechanism

discussed in Section 5.1.2), it does cause the system to be internally inconsistent. When

the client retries (because it never received a response that the operation was completed),

the entire operation will be retried. The index entry written previously stays unnecessary.

Second, the data server could crash after updating an object but before the old index entry

has been removed. In this case, the old entry no longer refers to an object. This is illustrated

by the state after step 1 in Figure 5.3 for removes and by the state after step 2 in Figure 5.4

for overwrites. If the server crashes before sending a response, the client will retry the

operation and the old index entry will get removed. However, if the server crashed after

sending a response, the client will not retry and the old entry will stay extraneous.

However, these inconsistencies are benign. The orphan entries do not affect correctness

as they get filtered out during lookups by the consistency algorithm in the previous section.

The only problem is that these entries waste memory. Let us assume (as a reasonable

upper bound) that the mean time to failure for a server is about 4 months [22]. If 10

objects owned by this server are being written (or overwritten) at the time of its crash, and

each object has a 100 B indexed key, then the total amount of garbage accumulated by this

server will be less than 3 KB per year. I did not consider this to be an important drawback

because it doesn’t affect correctness and the wasted space is negligible as the garbage entries

accumulate slowly.

Another system implementing SLIK’s basic consistency mechanism might care about

removing these inconsistent entries. If so, they can be garbage collected by a background

process. Occasionally, this process scans the indexes and sends the entries to relevant data

servers. For each index entry, the data server acquires a lock that prevents concurrent

accesses to the corresponding object. It then checks whether the object exists. If the object

does not exist, the data server sends a request for removing the index entry to the index

server. If the tablet corresponding to an entry is being recovered, the collector skips that

entry as it can be removed during the next scan.

5.2.2 Index Server Crash

Another consistency issue arises if an index server crashes while updating an indexlet. This

can cause inconsistencies in the internal B+ tree structure corresponding to that indexlet.

Inserting or removing an entry in the B+ tree can cause nodes of the B+ tree to be split

or joined. Further, changes can propagate up the B+ tree to maintain its balance. This
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requires updates to multiple objects that encapsulate the nodes being modified. By default,

the multi-object updates are not atomic. This means if a server crashes in the middle of

updating a set of nodes then the resulting B+ Tree will be in an inconsistent state.

In order to maintain consistency within the B+ tree across crashes, the changes to all

the affected nodes need to occur atomically. SLIK uses a multi-object update mechanism

implemented using the log-structured memory or transaction log of the underlying key-value

store. This ensures that after a crash, either all or none of the updates will be visible.

This imposes an additional requirement on the underlying key-value store to allow

atomic multi-object updates. If a system does not already support this feature, it will

have to be implemented in order to support indexing with SLIK. For example, while im-

plementing SLIK in RAMCloud, this mechanism had to be implemented in RAMCloud

because it was not already provided by RAMCloud.

5.2.3 Client Crash

SLIK has been designed such that a client crash does not affect consistency. This is because

SLIK does not rely on clients for correctness: any operations that have consistency issues

(like write) are managed by servers. Consequently, a client crash does not require any

recovery actions other than closing network connections between the servers and the crashed

client. This is typically handled by low-level networking protocols and the underlying key-

value store.



Chapter 6

Index Structure

The way indexing information is organized within each indexlet affects the types of requests

that can be efficiently supported by that indexlet. In order to service a client’s index lookup

request, the relevant index server(s) have to find the index entries corresponding to a given

secondary key or key range. Our goal is to support point lookups (for example, find

entries with key = ‘‘pam’’) as well as range lookups (for example, find entries with

‘‘p’’ < key < ‘‘t’’). Further, when a client writes or removes an object containing one

or more indexed secondary keys, the relevant index server(s) have to insert or delete the

index entries corresponding to the keys in the object. The structure of the indexlet affects

the time required to find an entry and the time to insert an entry, thus affecting the end-

to-end latency for lookups and writes respectively.

One way to structure the index information is to use a hash table. Each entry in the

hash table could map from the hash of the indexed key to the corresponding object. This

results in a simple implementation and provides fast access times (O(1) for lookups and

insertions if there are no collisions). However, a hash table can only support point lookups,

not range lookups.

Hence, SLIK uses a tree structure to logically organize the information in an indexlet.

This enables range queries apart from point lookups (with access times in O(log n) for

lookups and insertions, where n is the total number of entries in the indexlet). In particular,

SLIK uses a specific kind of tree, called a B+ tree, where the data is stored only in leaf

nodes and the leaf nodes are linked in a list. This enables more efficient range searches:

once we find the first key in the range, we can simply do a linear scan via the linked leaf

nodes until we hit the end of the range.
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It is possible that other structures might also be well suited to storing the indexlets,

and this can be of interest to investigate further. SLIK is designed such that the structure

of the tree can be changed without changing other design decisions; and its implementation

is modular to allow the tree structure to be modified in the future without impacting any

other implementation.
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Durability and Availability

While SLIK stores indexes in DRAM to service requests with lowest possible latency, our

goal is that the indexes must be as durable and available as the object data in the underlying

key-value store. This means that if a server crashes, the indexing system should recover lost

index data in about the same amount of time that the underlying storage system recovers

lost table data.

7.1 Possible Approaches

There are two reasonable approaches to ensure durability and availability after crashes.

I call these the rebuild approach and the backup approach. With the rebuild approach,

a crashed indexlet is reconstructed using object data from the corresponding table. This

approach has the advantage of not imposing any overheads during normal write operations.

However, it does not meet our crash recovery goal as the time to recover the indexlets is

longer than the amount of time it takes the underlying key-value store to recover tablets.

On the other hand, with the backup approach, a crashed indexlet is reconstructed from

the backup copies of that indexlet. This approach increases the latency for normal write

operations, but meets our goal for fast crash recovery.

7.1.1 Rebuild Approach

The first approach originates from the observation that the information in indexes is redun-

dant: all the information stored in index entries is also present in the corresponding objects.
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Thus, indexes don’t need to be persistent as they can be reconstructed from objects in the

tables. With the rebuild approach, indexes exist only in DRAM and are volatile.

When a server crashes, each indexlet that was present on that server is recovered on

another server (recovery master) by using object data from the corresponding table. Each

server storing objects for the table parses all the objects in its memory to find objects with

secondary keys that belong to the crashed indexlet. Then it sends the relevant data to the

recovery master. Finally, the recovery master reconstructs the indexlet structure using all

data received from various servers.

This approach is attractive for two reasons. First, it is simple: indexlets can be managed

without worrying about durability. Second, it offers high write performance: there is no

need to replicate index entries or copy them to nonvolatile storage such as disk or flash.

However, the rebuild approach does not allow fast crash recovery. In the first step,

data servers scan their memories in parallel (to find the pertinent objects). Assuming the

servers have 250 GB memory with a memory bandwidth of 50 GB/s, this requires at least

5 s. As the memory sizes increase, this time will also increase. In the second step, the new

owner of the indexlet reconstructs the indexlet. For a relatively small 500 MB indexlet with

50 B index entries, this step requires 20 s as the time to insert each entry is about 2 µs

(verified by our tests). This time for crash recovery is very long. For our implementation

with RAMCloud as the underlying key-value store, the index recovery time would be much

slower than the recovery time for objects (RAMCloud’s goal is to recover in 1–2 seconds).

7.1.2 Backup Approach

A different approach is to store copies of the index entries in nonvolatile storage on backups

and use those copies for recovery on crashes. When an index server crashes, the indexlets

on that server can be recovered by reading in the appropriate backup copies.

However, ensuring durability with this approach impacts the performance of normal

operations like updating indexed objects. Whenever an object is updated, in addition to

updating its index entries in DRAM on index servers, each of these entries must be replicated

to secondary storage on backups. This additional step makes the index updates slower, thus

increasing the end-to-end latency of indexed object (over)writes by about 10 µs.

Further, implementing a mechanism for backup and recovery of indexes can add a lot

of complexity. Instead, we can leverage the persistence and replication mechanisms already
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implemented by the underlying store for its object data. Each indexlet B+ tree is repre-

sented as a backing table in the underlying store. The backing table is just like any other

table, except that it is not visible to clients and has a single tablet. This is discussed further

in Section 7.2. With this mechanism, index crash recovery consists primarily of recovering

the corresponding backing table. This is handled by the underlying key-value store. In

RAMCloud, this recovery takes about 4–8 seconds for a 500 MB partition. Once the back-

ing table becomes available, the indexlet is fully functional; there is no need to reconstruct

a B+ tree or to scan objects to extract index keys. Thus, this approach allows indexes to

be recovered just as quickly as objects in the underlying key-value store.

7.1.3 The Right Approach for SLIK

SLIK uses the backup approach because it achieves our crash recovery goal. As the backup

approach uses the persistence mechanisms employed by the underlying key-value store and

does not require any additional work to reconstruct the B+ tree, it allows lost index data to

be recovered in about the same amount of time required by the underlying store to recover

table data. This means that if any given server crashes, the time to recover the data that

was on that server doesn’t take any longer just because the system offers indexing.

7.1.4 A Case for Choosing the Other Approach

For a system that can tolerate longer recovery times, the rebuild approach might be a

better choice. The main drawback of the rebuild approach is that crash recovery takes

25 s as opposed to 4–8 s. However, as a tradeoff, the write throughput and latency are

much better. The throughput is higher because, compared to the backup approach, the

rebuild approach requires lesser backup I/O, which is ultimately the limiting factor for

throughput. The latency is lower because the index entries don’t have to be replicated. I

estimate writes would require about 20 µs with rebuild as opposed to about 30 µs with

backup. This is particularly useful for systems with write-heavy workloads, or in systems

where a lower write latency is more critical than lower crash recovery time. There could

be different reasons that might make higher recovery times tolerable for a system. For

example, a system that has online replicas (multiple copies in DRAM which are all used to

respond to client requests) can continue servicing requests even during crash recovery, so

crash recovery time does not affect availability.
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Given that one of the goals of SLIK is to ensure index recovery that is no slower than

object recovery, the backup approach remains the best option for SLIK. If a server crashes,

it will not take any longer to recover because it served indexes apart from objects. For other

systems it would be important to weigh the benefits of shorter recovery time versus lower

write latency and select the best approach based on the systems’ requirements.

7.2 Storing Indexes With Backing Tables

SLIK represents indexlet B+ trees as backing tables in the underlying key-value store in

order to simplify the backup and recovery for index (as discussed earlier in this chapter).

Each node of the B+ tree is represented with one object in the backing table. Pointers

between nodes of the B+ tree are represented as keys in the key-value store. Traversing

to a child node requires a lookup in the key-value store since each node in the B+ tree is

encapsulated by a separate object in the backing table in the key-value store.

The use of backing tables has two additional advantages. First, it easily permits variable

size nodes in index B+ trees. Many B+ tree implementations (such as MySQL/InnoDB [8])

allocate fixed size B+ tree nodes. This results in internal fragmentation when the index

keys are of variable length (for example, strings, which are used commonly). This internal

fragmentation increases memory footprint and replication overheads because the entire node

must be replicated (including the unused bytes). Since key-value stores naturally permit

variable-size objects, the nodes in SLIK’s B+ trees can also be of variable size, which elim-

inates internal fragmentation and simplifies allocation. An earlier implementation of SLIK

B+ trees used the Panthema STX B+ Tree open source package [9] which allocates fixed

size nodes. The current implementation uses objects in the underlying store (RAMCloud)

to allocate variable size nodes.

The second advantage of using the backing tables is simpler memory management. Since

a single server may store both indexlets and tablets, the server’s DRAM must be shared by

these different purposes. If indexes were stored using an independent mechanism (e.g. by

using malloc) there would need to be an additional mechanism to divide memory between

the tables and indexes. Furthermore, the mechanism would need to allow for the division to

adjust over time. For example, the table on a server might get dropped and it might recover

indexlets from crashed servers, thus increasing the amount of memory allocated to index

information. Using tables for indexlets means that the underlying storage system essentially
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views indexes as tables and its memory management mechanism handles the memory for

both indexes and tables. This also allows memory to move back and forth between various

table and index partitions on a server automatically as needs change.

RAMCloud uses a log-structured approach to memory management [37], described in

Section 2.1.3. With the implementation of SLIK, RAMCloud uses the same log for tablets

and indexlets on a given server. The log-structured-memory allows the system to achieve

high memory utilization (80–90%) while still offering high performance. This is not the

case with most memory allocators [37]. Further, the log can be leveraged to simplify im-

plementation of a few operations. For example, SLIK uses this log to implement atomicity

for multi-node updates as discussed in Section 5.2. SLIK also uses the log to keep track of

the mutations during an index split and/or migration as discussed in Section 4.7.

7.3 Implementation Details for Recovery With Our Approach

Our implementation of SLIK leverages RAMCloud’s crash recovery mechanism [33] to

ensure durability and availability of indexes. Index crash recovery first uses the existing

table recovery mechanisms to recover the backing table for an indexlet. The underlying crash

recovery mechanism coordinates how and when recovery occurs. This includes: handling

detection of crashed servers; selecting servers that will recover data; initiating recovery; and

retrying the recovery if a recovery master crashes during recovery. Once the backing table

is recovered, SLIK needs to be able to interpret the table as indexlet. The only information

SLIK needs in order to do so is the primary key for the object encapsulating the root node

of the indexlet B+ Tree. In order to eliminate the need for this step, SLIK always assigns

a fixed string (which is hard-coded in the system) as the primary key for the object that

encapsulates the root of any indexlet B+ tree. So once a backing table has recovered,

it knows exactly where to find the root node for the B+ tree. After all the index data

has been recovered, SLIK updates the relevant metadata: the top-level index metadata on

the coordinator is updated to specify the new owner for the recovered indexlet, and the

metadata on the recovery master is updated to indicate that the recovery is complete and

it can now handle requests for the recovered indexlet.

While RAMCloud can recover crashed tablets of any size within 4–8 seconds, indexlets

should be no larger than 500 MB in size to ensure fast indexlet recovery. This is because

when a tablet is larger 500 MB, RAMCloud splits the tablet during recovery and assigns
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each sub-tablet to a different recovery master, so that all of the data can be recovered

quickly (Section 2.1.4). Such splitting cannot be used for indexlet backing tables because

the B+ tree structure requires all of the objects in the backing table to be present on a

single server. A split during recovery is determined by diving the primary key hash space

in half: this translates to the hash of the node ids for the indexlet B+ tree, which would

essentially lead to random distribution of nodes in one split or another, thus rendering

the B+ tree useless. While the implementation of RAMCloud’s crash recovery has been

modified to ensure that a backing table is not split during recovery, having a large backing

table will increase the amount of time needed to recover it. So if an indexlet starts getting

larger than 500 MB, it can be split using the algorithm described in Section 4.7 to split the

indexlet based on the B+ tree structure.

If a client issues another operation while data is being recovered, this operation is

deferred during recovery and handled internally once recovery completes via RAMCloud’s

retry mechanism. The client’s request is processed as soon as the recovery is complete and

then the client receives a response.

7.4 Summary

To ensure durability and availability, SLIK replicates copies of index entries to backups

and uses them to recover from crashes. Although this incurs a cost in write latency, the

improved availability makes this trade-off worthwhile. Further, SLIK uses the underlying

key-value store to represent the indexlet B+ Trees. This allows SLIK to leverage the existing

mechanisms of crash recovery and memory management.



Chapter 8

Implementation of Index

Operations

The core design decisions together inform the system-side implementation of the SLIK API

(Table 3.1 in Chapter 3). This chapter walks through the basic index operations (lookups

and writes) to summarize the various steps involved. I use the internal RPCs (shown in

Table 8.1) to make this description precise.

For an IndexLookup operation (from the API shown in Table 3.1), the SLIK client library

acts as overall manager. Figure 8.1 illustrates the basic algorithm. A lookup requires a

two-step approach because the index entries and objects are located on independent servers

due to the partitioning scheme chosen to enable scalability (Chapter 4). First, the client

issues lookupKeys to the appropriate index servers. The client identifies the appropriate

index servers using the configuration information about index structures which includes a

mapping from indexlets to their host servers (Section 4.6). Each index server finds the

relevant entries in the B+ Tree corresponding to that indexlet (Chapter 6 and Section 7.2)

and returns the matching primary key hashes (Section 4.5) to the client. Then the client

issues readHashes in parallel to the relevant data servers to fetch the actual objects using

the primary key hashes.

In order to make IndexLookup efficient in cases where the range queried is large, SLIK

uses a concurrent and pipelined approach with multiple RPCs in flight simultaneously. If

the number of hashes that match on a single server is very large, then returning all those

hashes in a single response may not be a good idea for multiple reasons: first, it does not

maximize the amount of work that can be parallelized, and second, the client could run
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out of memory. So the client library code specifies the maximum number of hashes that

can be returned in a single RPC (the current implementation sets this to 1000). If an

index server has more matching hashes than can be returned in one RPC, then its response

indicates that not all hashes have been returned and provides the next secondary key and

primary key hash to be returned. This gives the client the information necessary to issue

the next lookupKeys request to that server for the remaining hashes. Thus, the client

may have to send multiple rounds of lookupKeys RPCs to get all the matching hashes.

However, the client starts by sending only the first lookupKeys RPC. As soon as it receives

a response to that RPC, it sends parallel readHashes RPCs to the relevant data servers

to fetch objects. Each readHashes RPC requests many objects rather than one object

at a time in order to increase the efficiency of the overall lookup. However, all objects

to be returned by each data server may not fit in a single RPC; so the client may send

multiple rounds of RPCs to each server until it receives all the objects from that server. As

it receives the objects from various data servers, it prunes extraneous entries (as per the

consistency algorithm in Chapter 5) and merges the rest such that the objects are sorted

in index order to return to the client. The next round of lookupKeys RPC is pipelined

with current round of readHashes; and the next round of readHashes starts as this round

completes. Having many parallel and pipelined RPCs in flight can lead to complicated code

and failure scenarios that might be hard to reason about: to keep this manageable, SLIK

implements this code using a rules-based approach [38].

The write operation (from the API shown in Table 3.1) is managed by the data server

that stores the tablet containing the object (also referred to as the master for this object).

While the lookups can be managed by clients, writes are managed by servers because crashes

during writes can affect consistency and it is more feasible to manage recovery for servers

than it is for clients (Section 5.2). Figure 8.2 illustrates the basic algorithm. As with

lookups, writes also require separate RPCs to update the object and its index entries due

to the partitioning scheme chosen for scalability (Chapter 4). These RPCs are sent in a

particular order to ensure consistency (Chapter 5). A client initiates the write or overwrite

of an indexed object by sending a write request to the master. The master synchronously

issues entryInsert RPCs to relevant index servers to add new index entries. The index

servers insert the entries in the corresponding indexlet B+ Trees (Chapter 6, Section 7.2)

and replicate them to backups (Chapter 7). Once all the index servers have completed this

step, the master then modifies the object locally and replicates it to backups. At this point,
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the master returns a response to the client, then asynchronously issues entryRemove RPCs

to relevant index servers to remove old index entries. If the object is a new one that did

not previously exist, then the index removal step is skipped.
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Figure 8.1: Simplified summary of the steps required to complete an index lookup operation.

Index 

Log 

Hash Table 

Log 

Backups 

Backups 

Secondary Key, 
Primary Key Hash 

Index Server 

Data Server 

C
lie

nt
 L

ib
ra

ry
 

Object 

Figure 8.2: Simplified summary of the steps required to complete a write operation.
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lookupKeys(tableId, indexId, firstKey, lastKey, maxNumHashes)

−→ pKHashes, nextKey, nextHash

Returns primary key hashes (pKHashes) from the index entries corresponding
to the given key range (firstKey to lastKey). In the case of a point lookup,
firstKey and lastKey are the same. The primary key hashes are returned in
the index sort order. That is, if the secondary key of object x is greater than the
secondary key of object y, then the primary key hash for object x appears before
that for object y in the pKHashes returned. maxNumHashes limits the number of
hashes that can be returned. nextKey and nextHash specify the starting point for
next lookupKeys to be issued by the client to this server.

readHashes(tableId, pKHashes) −→ objects, numHashes, numObjects

Returns objects in table (identified by tableId) whose primary key hashes match
one of the hashes in pKHashes. The objects are returned in the same order as the
corresponding primary key hashes in pKHashes. numHashes indicates the number
of hashes corresponding to which objects have been returned. This allows the client
to send follow up readHashes RPC to this server if not all hashes were handled by
this response. numObjects indicates the actual number of objects returned, which
helps the client parse the response.

entryInsert(tableId, indexId, key, pKHash) −→ status

Adds a new entry to the given index. This entry maps the secondary key (key) to
a primary key hash (pKHash). Replicates the update durably before returning.

entryRemove(tableId, indexId, key, pKHash) −→ status

Removes the given entry in the given index. Replicates the update durably before
returning.

Table 8.1: Summary of the core RPCs used internally by SLIK to implement the basic
index operations: lookup, write and remove from Table 3.1. The RPCs for creating and
deleting an index and reconfiguring index partitions are omitted here.



Chapter 9

Evaluation

This chapter evaluates the implementation of SLIK in RAMCloud to answer the following

questions:

• Does SLIK provide low latency?

Is it efficient enough to perform index operations at low latencies? Are the latencies

comparable to other RAMCloud operations? How does the latency compare to other

state-of-the-art systems?

• Is SLIK scalable?

Does the choice of independent partitioning enable better scalability than the colo-

cation approach? Does SLIK’s performance scale as the number of servers increases?

How does its scalability fare compared to other systems?

• How does SLIK impact tail latency of operations?

How does the tail latency for indexed operations with SLIK compare to the tail latency

for non-indexed operations in RAMCloud?

• How does the throughput increase with the size of range queried?

How does the throughput for range queries increase as the number of objects returned

by the query increases?

I chose H-Store [24] as the system for comparison with SLIK. I made this choice be-

cause H-Store and VoltDB (which is H-Store’s commercial sibling) are in-memory database

systems that are widely adopted.
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In the early evaluations, I also benchmarked HyperDex [21], but eventually decided

to drop HyperDex from the benchmarks. I had chosen HyperDex because it appeared

to be one of the fastest existing large-scale storage systems with indexing based on the

reported benchmarks [21] (which shows it achieves 12–13× lower latency and 2–3× higher

throughput than popular systems like MongoDB and Cassandra). However, it turned out

to be so much slower than SLIK that the comparisons were not interesting. HyperDex

was designed to use disk for storage, which could explain its high latency. In order to

improve its performance, we switched HyperDex to use RAM disk (with RAM disk, the

software treats a block of DRAM as if it were a disk drive). This allowed HyperDex to take

advantage of the lower latencies offered by DRAM even though the system’s code is written

to access disk. However, SLIK still significantly outperformed HyperDex in a variety of

performance measures. Since H-Store performed more comparably to SLIK, I elected to

retain H-Store and remove HyperDex from subsequent analysis. This allowed us to simplify

the benchmarking process.

9.1 Summary of Results

Here are the key results from the evaluation:

• SLIK provides low latency indexing:

– It performs index lookup operations in 11–13 µs (depending on the index size).

– It performs indexed write and overwrite operations in 30–37 µs (depending on

the index size).

– Its performance degrades slightly with additional secondary indexes: writing an

object with 10 secondary keys takes only 50% longer than writing an object with

one secondary key.

– SLIK is 15–91× faster than H-Store for lookups and 5–31× faster for overwrites

(depending on H-Store’s configuration).

• SLIK indexes are highly scalable:

– As the number of index partitions increases, independent partitioning achieves

lower latency and higher throughput than colocation.

– The throughput of index lookup in SLIK increases linearly with the number of

indexlets.
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– Lookup latency in SLIK remains nearly constant even with increasing number of

indexlets.

– Throughput of index lookup in H-Store increases sub-linearly with the number

of partitions, while its latency does not remain constant.

9.2 Common Experimental Setup

We ran all experiments on an 80-node cluster of identical commodity servers. Table 9.1

shows the hardware configuration.

It was difficult to evaluate H-Store fairly because its behavior is controlled by a large

number of tunable parameters, which result in significant variations in performance for dif-

ferent workloads. We were not able to identify a single setting of parameters that produced

optimal performance across all workloads. In some cases, parameter settings that pro-

duced good performance for some workloads resulted in crashes for other workloads. With

assistance from the H-Store developers [35], H-Store was tuned for each test to achieve

optimum performance. For example, one of the parameters, txn incoming delay, controls

the amount of time (in ms) the Transaction Queue Manager will wait before letting a dis-

tributed transaction acquire a lock on a partition. The default value is 5 ms. We reduced

it to 0 ms for experiments where the servers were not loaded (to get the best latency), and

1 ms for the experiments where they were loaded (any lower resulted in many aborts and

crashes). Further, H-Store uses the indexlet/tablet colocation approach to partitioning:

the user must choose one column to use for partitioning, and the ideal choice varies from

workload to workload. We benchmarked H-Store with multiple data partitioning schemes

where applicable. These measures help ensure that H-Store is set up for its optimum per-

formance for all benchmarks. As a result, however, the results probably overstate H-Store’s

performance, since in practice it may not be feasible to change the parameters for each type

of query.

SLIK does not have tuning parameters like the ones mentioned for H-Store, so it is

simply run as-is for all the experiments. RAMCloud allows the user to specify the number

of replicas for each object, i.e., the number of backup servers which store copies for each

object on secondary storage. For these experiments we use the default value of three, which

means that each object (and thus each index entry) is stored in the flash drives of three

different servers, apart from its primary copy in DRAM of the master.
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CPU Xeon X3470 (4×2.93 GHz cores, 3.6 GHz Turbo)

RAM 24 GB DDR3 at 800 MHz

Flash Disks 2× Crucial M4 SSDs CT128M4SSD2 (128 GB)

NIC Mellanox ConnectX-2 InfiniBand HCA

Switches Mellanox MSX6036 (4× FDR) and InfiniScale IV (4× QDR)

Note: All nodes ran Linux 2.6.32 and were connected to a two-level
InfiniBand fabric with full bisection bandwidth. The InfiniBand fab-
ric supports 32 Gbps bandwidth, but PCI Express limits the nodes
to about 24 Gbps.

Table 9.1: Hardware configuration of the 80 node cluster used for benchmarking.

9.3 Does SLIK Provide Low Latency?

We first evaluate the latency of basic index operations (lookups, writes, and overwrites) us-

ing a table with a single secondary index. We then evaluate the latency of object overwrites

as the number of secondary indexes increases. We don’t evaluate the latency of lookups in

this case as it is independent of the number of indexes (lookups only access a single index

at a time). In both of these cases, we ensure that the table and each index have a single

partition. The behavior with increasing number of partitions is measured separately, in

Section 9.4.

For these benchmarks, we used the default configuration of SLIK, and configured H-

Store to achieve the lowest possible latency for the particular benchmark. By default, SLIK

provides 3-way distributed replication of objects and index entries to durable backups.

However, H-Store does not support replication. We also disabled the feature that enables

durability in H-Store so that the cost of syncing to disk on every write does not impact

our estimate of H-Store operation latency. This ensures fairness because RAMCloud’s

durability mechanism masks the latency of flushing data to disk on every write (as described

in Section 2.1). Further, for SLIK, the table, the index and the backups are located on

separate servers. In contrast, H-Store is run on a single server to prevent it from partitioning

its data and index. If we allocated the same number of total servers as SLIK, H-Store would

create that many partitions for all data, with one partition (for both table and index) on

each server. Running H-Store on a single server is the only way we could find to ensure a

single partition. In summary, in these benchmarks, H-Store executes all reads and writes
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locally and no data needs to be transferred to other servers. Finally, as mentioned earlier, H-

Store’s parameter txn incoming delay is set to 0 ms to optimize for latency in an unloaded

system.

9.3.1 Basic Latency

Figures 9.1, 9.2, and 9.3 graph the latency for single-object index operations. For this

experiment, we have a single table (with a single tablet) which contains a varying number

of objects. Each object in the table has a 30 B primary key, 30 B secondary key and a

100 B value. The secondary key has an index (with a single indexlet) corresponding to it.

A single client sends a single request at a time to ensure an unloaded system for measuring

latency.

SLIK Lookup:

The median time for an index lookup that returns a single object is about 11 µs for a

small index and 13.1 µs for an index with one million entries. Of this time, about 9.2 µs is

accounted for by basic RPC times. An index lookup issues RPCs in two sequential steps as

discussed in Chapters 4 and 8. The first RPC is sent to the appropriate index server to find

the primary key hashes for the objects that fall within the queried range. The second set

of RPCs is sent to the appropriate data servers to read the objects based on the primary

key hashes. Given that the time for a single read in RAMCloud (for example when reading

an object based on its primary key) is about 4.6 µs, the minimum time required for an

index lookup should be about 9.2 µs. The remaining 1.8–3.9 µs is the actual time to query

the indexlet on the index server. This includes traversing the indexlet B+ tree to find the

correct entry, which takes longer as the number of entries in the indexlet increases. If SLIK

stored the B+ trees directly in memory such that links between nodes are represented by

memory addresses, this time would be slightly lower (Section 7.2).

SLIK Write:

The median time for writes ranges from 29.6 µs to 36.3 µs depending on index size. Of

this time, about 28 µs is accounted for by basic RPC times. Writing an indexed object

requires two sequential writes as discussed in Chapters 5 and 8. The first RPC is sent to

the appropriate data master, which in turn sends an RPC to the appropriate index server
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Figure 9.1: Latency of lookups as index size increases.
Setup: Graphs the latency to read a single object using a secondary key as the number of
objects in the table and correspondingly the number of entries in the index increases. A
single table is used, where each object has a 30 B primary key, a 30 B secondary key, and
a 100 B value. The secondary key has an index (with a single partition) corresponding to
it. Each data point displays the 10th percentile, median, and 90th percentile latencies over
1000 measurements.
Observations: The lookup latency in SLIK is about 2× the read latency in RAMCloud
without indexes (which is about 4.6 µs). The latency increases slightly as the number of
objects in the index increases. SLIK is about 10× faster than H-Store. Even when SLIK
is run with TCP over InfiniBand (without kernel bypass), it still outperforms H-Store by
2–3×.



CHAPTER 9. EVALUATION 64

0

50

100

150

200

250

10
0

10
1

10
2

10
3

10
4

10
5

10
6

W
ri
te

 L
a
te

n
c
y
 (

µ
s
)

Size of Index (# entries)

H-Store

150.98 153.12

140.03
149.16

137.77

SLIK TCP

121.6

133.4
124.1 122.9 120.9 120.5

128.7

SLIK

29.6 32.1 33.7 33.8 34.5 34.9 36.3

Figure 9.2: Latency of write as index size increases.
Setup: Graphs the latency to write a new indexed object as the number of objects in the
table increases and correspondingly the number of entries in the index increases. A single
table is used, where each object has a 30 B primary key, a 30 B secondary key, and a 100 B
value. The secondary key has an index (with a single partition) corresponding to it. Each
data point displays the 10th percentile, median, and 90th percentile latencies over 1000
measurements.
Observations: The write latency in SLIK is about 2× the write latency in RAMCloud for
unindexed objects (which is about 14 µs). The latency increases slightly along the x axis (a
difference of 6.5 µs between latency for an index with one entry vs a million entries). SLIK
writes are about 5× faster than H-Store. When SLIK is run with TCP over InfiniBand
(without kernel bypass), it achieves only slightly faster latency than H-Store, but unlike
H-Store, it does so while providing three-way replication to backups.
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Figure 9.3: Latency of overwrite as index size increases.
Setup: Graphs the latency to overwrite an existing indexed object as the number of objects
in the table increases and correspondingly the number of entries in the index increases. The
setup is the same as that in the previous figure that evaluates basic write latency (Fig-
ure 9.2).
Observations: The overwrite latency in SLIK is about 2× the overwrite latency in
RAMCloud for unindexed objects (which is about 14 µs). The overwrite latency is compa-
rable to write latency, and the observations are similar to that in Figure 9.2.
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(for each indexed secondary key in that object). Once the master receives acknowledgement

that the index servers have inserted the index entries, it writes the object. Each of these

writes includes replication to secondary storage on backups to ensure durability and provide

fast crash recovery as discussed in Chapter 7. Given that the time for a single durable write

(i.e., write of a non-indexed object) is about 14 µs, the minimum time required for an

indexed object write should be about 28 µs.

This latency would have been lower if SLIK accepted higher crash recovery times and

used the rebuild approach for recovering from crashes (refer Chapter 7). In that case, the

indexed object write would still require two sequential writes, but one of these writes (i.e.,

write of the index entry) would not require replication to backups. This would reduce the

28 µs lower bound on indexed write latency by about 10 µs.

The rest of the time (beyond the minimum of 28 µs) is required to traverse the index

B+ Tree to find the the location for insertion, and this time increases with the size of the

B+ Tree. Further, modifications can sometimes trigger a rebalancing in the B+ Tree which

requires the objects corresponding to all the affected nodes to be modified and rewritten.

As mentioned earlier with lookups, if SLIK stored the B+ Trees directly in memory, this

time would be lower than our current implementation, which stores nodes in RAMCloud

objects.

SLIK Overwrite:

The median time for overwrites ranges from 31.4 µs to 37.0 µs, depending on index size.

This is still the cost for doing two sequential durable writes (the first to the index and the

second to the object). While overwrites have to perform the extra step of removing old

index entries, this is handled asynchronously in the background after the overwrite RPC

returns to the client, as discussed in Chapter 5.

Comparison:

Figures 9.1, 9.2, and 9.3 also compare SLIK’s performance to H-Store. They show that

SLIK is more than 10× faster than H-Store for lookups and about 5× faster for writes and

overwrites.

However, SLIK is designed to minimize overheads so that it can harness the benefits of

low-latency networks and kernel bypass (via InfiniBand). This brings up the question: is

SLIK’s superior performance solely due to the use of kernel bypass? To answer this question,
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we intentionally crippled SLIK and ran it with TCP over InfiniBand, which is similar to the

configuration we used for H-Store. Even in this configuration, SLIK outperforms H-Store,

making it likely that SLIK’s overall design and implementation, rather than kernel bypass,

leads to faster operations. Lookups in SLIK remain more than twice as fast as H-Store.

Writes and overwrites are only slightly faster. However, unlike H-Store, SLIK achieves

this latency while providing 3-way replication of all index data: H-Store’s latency would

probably increase significantly if it also provided replication.

Although implementing kernel bypass in H-Store was beyond the scope of our work, we

can use the difference between the latencies of SLIK implementation with and without TCP

to estimate the overhead of using TCP rather than using kernel bypass (via InfiniBand).

For instance, Figure 9.1 shows that the difference in latency for SLIK with and without

TCP is about 35 µs. That is, the overhead for using TCP rather than kernel bypass is

35 µs. If we adjust the lookup latency for H-Store to theoretically give it the benefit of

using kernel bypass, its lookup latency for the smallest possible table is about 150 µs - 35 µs

= 115 µs. This is still 10× slower than the 11 µs latency for SLIK. This shows H-Store has

additional latency that is unrelated to the network, so it is unlikely that it would approach

SLIK’s performance even with faster networks.

9.3.2 Impact of Multiple Secondary Indexes on Overwrite Latency

Figure 9.4 graphs the latency for overwriting an object as the number of indexed secondary

keys in that object increases. The measurements were done with a single client accessing

a single table with a million objects, where each object has a 30 B primary key, a varying

number of 30 B secondary keys, and a 100 B value. Each secondary key has an index

corresponding to it. For this experiment, each secondary index in SLIK has a single partition

and is located on a different server.

SLIK:

As the number of indexed secondary keys in an object increases, we expect the latency for

(over)writes to increase because each additional key adds an extra durable write operation

to update the corresponding index. However, SLIK parallelizes the updates to different

indexes so the total latency should not be significantly higher than the time required to

(over)write an object with a single indexed key.
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Figure 9.4: Latency of overwrites as the number of secondary indexes increases.
Setup: A single table is used, where each object has a 30 B primary key, x 30 B secondary
keys, and a 100 B value. Each secondary key has an index corresponding to it. For SLIK,
each index has a single indexlet, and all the indexlets are located on separate servers. For
H-Store’s line via Pk, the table was partitioned by the primary key and for the line via SK,
it was partitioned by the first secondary key. In both the cases, overwrites were done by
querying via the primary key. Each data point displays the 10th percentile, median, and
90th percentile latencies over 1000 measurements. The y axis uses a log scale.
Observations: SLIK’s latency increases slightly along the x axis as more indexes are added.
H-Store’s latency is significantly affected depending on whether the data is partitioned
by the same key that is used for querying (via Pk) or by a different key (via SK ). H-
Store’s latency does not increase significantly along the x axis. SLIK outperforms H-Store
irrespective of way H-Store is configured.
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The latency increases slowly for tables with more secondary indexes: overwrites take

33.0 µs with 1 secondary index and 51.2 µs with 10 secondary indexes (about a 50% in-

crease). This increase is due to the cost of initiating additional RPCs to insert index entries:

the RPCs execute in parallel, but they are initiated sequentially by a single thread.

Comparison:

SLIK performs performs better with no tuning than a tuned version of H-store. Additionally,

unlike H-Store, it does so while providing durability and replication.

For each data point, SLIK and H-Store are both allocated the same number of servers

as the number of indexes. H-Store partitions all the data and indexes across these servers

and the key that is used for partitioning can be specified while setting up the table. We

tried two different configurations:

1. partitioning based on the primary key (shown in the graph by the line via PK ), and

2. partitioning based on the first secondary key (shown in the graph by the line via SK ).

In both cases, updates are performed by querying via the primary key (i.e., the primary

key is used to locate the object to be updated, as is the case by default in SLIK).

In the first case, given a query, H-Store knows exactly which server to contact in order to

find the object being overwritten. In the second case, H-Store has to contact all the servers

to find the object. Therefore, the latency for overwrites performed using the same key that

is used to partition all data (via PK ) is lower than the latency for overwrites performed

using a key that was not used for partitioning (via SK ). In both cases, once H-Store finds

the correct object, it can complete the overwrite on a single server. This is because all

the index entries corresponding to an object are stored on the same server as that object.

Consequently, the latency for both the H-Store lines does not increase significantly along

the x-axis.

If an application developer knows a priori the types of queries that will be most critical,

she can partition the tables accordingly to get comparatively better performance than what

other configurations would yield. However, even with this additional tuning for H-Store and

in spite of the latency increase for increasing indexes in SLIK, SLIK’s worst performance is

better than that of H-Store.
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9.4 Is SLIK Scalable?

Next, we evaluate whether the design and implementation of SLIK offer scalable perfor-

mance as the number of servers increases. First, to evaluate the design, we compare the

scalability of the colocation and independent partitioning approaches while keeping every-

thing else the same (Section 9.4.1). Second, to evaluate the implementation, we compare

the scalability of SLIK with H-Store (Section 9.4.2). Given our choice of independent parti-

tioning, we expect a linear increase in throughput as the number of servers increases, since

there are no interactions or dependencies between indexlet servers. We also expect minimal

impact on latencies as the number of indexlets increases.

9.4.1 Independent Partitioning vs Colocation

We evaluate our design choice of independent partitioning by comparing its scalability to the

colocation approach. For independent partitioning, we used our implementation of SLIK

in RAMCloud. For the colocation approach, we just changed the partitioning code (in the

SLIK implementation) to use colocation instead.

We use two experiments to determine scalability. One experiment measures the end-

to-end throughput of index lookup as the number of indexlets increases. The throughput

is measured using multiple clients, each issuing multiple lookups in parallel. The number

of clients performing lookups and the number of concurrent lookups per client is varied to

achieve the highest throughput for each system; the highest value is shown in the graph.

This experiment uses a single table where each object has a 30 B primary key, a 30 B

secondary key and a 100 B value. The index corresponding to the secondary key is divided

into a varying number of indexlets, and the table is divided into the same number of tablets.

Each indexlet and tablet is stored on a different server. Each request chooses a random key

uniformly distributed across indexlets and returns a matching object. The colocation setup

is partitioned based on the key used for lookups, which is its best configuration for this use

case.

Another experiment measures the end-to-end latency of index lookup as the number of

indexlets increases. The setup for this experiment is the same as the previous one, except

that a single client is used (instead of many), which issues one request at a time in order

to expose the latency for each operation.

The results of these experiments, shown in Figures 9.5 and 9.6 respectively, confirm
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that independent partitioning outperforms colocation at large scale. Figure 9.5 shows that

with independent partitioning, the total lookup throughput increases with the addition

of servers, whereas with colocation it does not. Figure 9.6 shows that as the scale gets

larger, the latency for independent partitioning remains almost constant while that for the

colocation approach increases.

While independent partitioning performs well for large numbers of indexlets and servers,

the colocation approach performs better at small scale. In the limit of one partition, the

colocation approach would only have to send one RPC to one server, while independent

partitioning would have to send two sequential RPCs (first to the index then the object

in table). If we have a small system (where all objects and indexes are located on a small

number of servers) and most clients are querying for large ranges that return large numbers

of objects, colocation offers better performance. As the scale gets larger, the cost of doing

these two sequential RPCs becomes less than the cost of doing a large number of parallel

RPCs with the colocation approach.

9.4.2 System Scalability

In order to determine whether SLIK’s independent partitioning performs better than the

approach employed in current systems, we evaluate how SLIK performs at large scale com-

pared to H-Store. We use two experiments, one to evaluate the throughput and another to

evaluate the latency, with the setup described in the previous subsection. Figure 9.7 shows

that the end-to-end throughput of index lookup in SLIK increases linearly as the number of

indexlets is increased, while the throughput for H-Store increases sub-linearly. Figure 9.8

shows that increasing the number of indexlets has minimum impact on SLIK’s index lookup

latency, while the latency for H-Store increases.

Given that H-Store uses the colocation approach, we would expect the scalability num-

bers to be different depending on whether the queries are based on the same key that is

used for partitioning or any other key. In the first case, we expect H-Store to essentially

demonstrate scalable behavior because the lookup can contact a single index server (similar

to independent partitioning from the previous set of experiments). In the second case, we

expect it to demonstrate non-scalable behavior because each index lookup must contact all

index servers (similar to colocation approach from the previous set of experiments). Given

that in this experiment we configured H-Store to query based on the same attribute used

for partitioning, it is unclear why the performance isn’t similar to that of SLIK.
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Figure 9.5: Total index lookup throughput with increasing partitions.
Setup: Graphs the total index lookup throughput for the two partitioning approaches when
a single index is divided into multiple indexlets on different servers and queried via multiple
clients. The number of clients and the number of concurrent lookups per client is varied to
achieve the maximum throughput for each point on the graph.
Observations: The colocation approach provides higher throughput than independent par-
titioning in the limit of one index partition (by about 30%). Independent partitioning
provides higher throughput with two or more partitions, and this advantage increases with
the number of partitions.
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Figure 9.6: Index lookup latency with increasing partitions.
Setup: Graphs the latency for index lookup in the two partitioning approaches when a
single index is divided into multiple indexlets on different servers and queried by a single
client issuing a single request at a time. The size refers to the number of objects returned
by a lookup.
Observations: For a small number of servers, independent partitioning has higher latency
than colocation. However, as the number of servers increases, the latency for the colocation
approach increases in proportion to the number of servers, while latency for the independent
approach is nearly constant. As query size increases, the latency does not increase for
colocation but it does for independent partitioning.
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Figure 9.7: Total index lookup throughput with increasing partitions.
Setup: Graphs the total index lookup throughput for SLIK and H-Store when a single index
is divided into multiple indexlets on different servers and queried via multiple clients. The
number of clients and the number of concurrent lookups per client is varied to achieve the
maximum throughput for each point on the graph.
Observations: Total throughput is much higher for SLIK than H-Store and it scales with
the number of servers. With H-Store, additional servers provide diminishing returns.
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Figure 9.8: Index lookup latency with increasing partitions.
Setup: Graphs the latency in SLIK and H-Store for index lookup when a single index is
divided into multiple indexlets on different servers and queried by a single client issuing a
single request at a time.
Observations: Latency per lookup is nearly independent of the number of indexlets for
SLIK but degrades somewhat with increasing index partitioning when implemented with
TCP. H-Store has latency that rapidly increases with higher number of partitions before
eventually plateauing.
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9.5 How Does SLIK Impact Tail Latency of Operations?

For some applications, the tail latency is more important than median latency. To inves-

tigate how the slowest operations in SLIK are distributed, Figure 9.9a graphs the reverse

CDFs of latencies for looking up an object based on its secondary key and for writing an

object with an indexed secondary key. A single client performs 100 million lookups and

overwrites on a table with a million objects. Each object has a 30 B primary key, 30 B

secondary key and 100 B value. The secondary key has an index corresponding to it (with

a single partition).

Figure 9.9b graphs the reverse CDFs of latencies in RAMCloud for reading an object

based on its primary key and writing an object (such that indexes are not involved). As

before, a single client performs 100 million reads and overwrites on a table with a million

objects. Each object has a 30 B primary key and 100 B value.

The index lookup operations have a median latency of about 13 µs, and write operations

have a median latency of about 36 µs. Further, the tail latency for indexed operations

in SLIK follow the same pattern as the tail latency for the corresponding operations in

RAMCloud. This indicates that indexing does not modify the behavior of the operations

at tail. Therefore, applications that are impacted by a high tail latency are unlikely to

be affected due to the addition of secondary indexing any more than they already were in

RAMCloud without indexes.

9.6 How Does Throughput Increase With the Size of Range

Queried?

Figure 9.10 graphs the throughput for index lookup as a function of the total number of

objects returned in that lookup. The setup is the same as in the previous experiment. The

figure shows that the total throughput increases as the size of lookup is increased and peaks

at about 2 M objects/s. The increase in throughput is expected, because SLIK tightly

pipelines the requests to the index servers and data servers, and parallelizes the requests to

data servers (Chapter 8). Further, the throughput stabilizes at around 1.7 M objects/s. We

are not sure why the throughput drops before stabilizing, but we do expect the throughput

to saturate because at some point the size gets large enough that waiting for RPCs to be

sent and received is no longer a bottleneck.



CHAPTER 9. EVALUATION 77

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

10 100 1000

Fr
ac

ti
o
n
 o

f 
O

p
er

at
io

n
s

Operation Latency (µs)

Writes
Lookups

Median 

99% 

99.99% 

(a) Setup: A single client performs 100 million index lookup and indexed object write operations in
SLIK. A single table (with one partition) is used, where each object has a 30 B primary key, 30 B
secondary key and 100 B value. The secondary key has an index (with one partition) corresponding
to it. The index lookup fetches an object based on that secondary key and the write updates an
indexed object.
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(b) Setup: A single client performs 100 million read and write operations in RAMCloud. A single
table (with one partition) is used, where each object has a 30 B primary key and 100 B value. The
read fetches an object based on its primary key and the write updates an object.

Figure 9.9: Tail latency distribution for basic single-object operations. The graphs
are shown as reverse CDFs on a log scale. A point (x, y) indicates that a fraction y of the
100 M operations took at least xµs to complete.
Observations: Very few operations take more than 10× the median time and the addition
of secondary indexes does not drastically change the proportion of slow operations.
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Figure 9.10: Index lookup throughput with increasing size of lookup.
Setup: Graphs the throughput of index lookup measured by a single client as a function of
the total number of objects returned for that lookup. A single table is used, where each
object has a 30 B primary key, 30 B secondary key and 100 B value.
Observations: The throughout increases with the size of the lookup up to about 8000 objects
and then declines slightly and saturates.



Chapter 10

Related Work

With the advent of web applications, data storage systems have evolved to support massive

data sets (Chapter 2). Modern data storage systems are improving every day and there is

a lot of interesting work in the area of providing higher level data models at large scale.

Much of the discussion about these systems and their design is interwoven throughout this

dissertation. This chapter summarizes some of that discussion.

While most data stores used today support large amounts of data, they still make trade-

offs between various desirable features: higher level data models (like indexing), strong con-

sistency, scalability, low latency and even durability. For example, MICA [28] is a scalable

in-memory key-value store optimized for high throughput; however it does not ensure data

durability and doesn’t support indexes. FaRM [20] is a main memory distributed computing

platform that offers low latency and high throughput by exploiting RDMA; however it does

not support secondary indexing. Many other systems provide higher level data models but

have weak consistency guarantees: PNUTS [18] has relaxed consistency; CouchDB [2] and

Tao [16] are eventually consistent.

Of the systems that support secondary indexes, it is interesting to note that many

provide two types of indexes: local indexes (i.e., separate indexes for data on each server,

which is essentially indexes partitioned using the colocation approach) and global indexes.

Examples include DynamoDB [3], Phoenix [10] on HBase [4] and Cassandra [26] (Cassandra

does not have explicit global indexes, but provides materialized views to achieve the same

effect). The local indexes in these systems offer high consistency, but require higher latency

at large scale as each request needs to contact all the servers (as described in Section 4).

The global secondary indexes in these systems are only eventually consistent. Moreover,
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they can return only those attributes of the object data that have been projected onto that

index by the developer and stored with it.

No widely known systems provide secondary indexing at very low latency, irrespective

of the consistency guarantees. SLIK pushes the boundary to provide better latency while

still providing strong consistency. Figure 10.1 shows some examples of large scale data

stores to illustrate current landscape in this area. All of these systems have different high

level data models. Of them, HBase and Espresso have the simplest data models, but both

provide secondary indexes. The latency numbers for most systems are for operations within

a datacenter, except Megastore and Spanner which provide cross-datacenter replication.

Additionally, the latency numbers are based on published benchmarks, except H-Store and

HyperDex, for which I used my own measurements. The systems closest to the x-axis

have the weakest consistency while the ones farthest from the x-axis have the strongest

consistency. Cassandra and Megastore span a large area along the y-axis because they

allow the client to specify the consistency level.

SLIK’s most unique aspect is its combination of low latency and consistency at large

scale.
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Figure 10.1: The landscape for large scale datacenter storage systems. The systems that
provide stronger consistency guarantees are shown higher along the y-axis, and the systems
with lower average latencies are shown to the right along the x-axis.



Chapter 11

Conclusion

This dissertation started with the hypothesis that key-value stores can provide scalable, low-

latency, strongly consistent indexes. I conclude that this is indeed possible, as demonstrated

by our implementation of SLIK in RAMCloud. Over the course of this dissertation, I

introduced various aspects of an indexing system and the approaches that can be taken to

achieve the desired properties.

In this chapter, I summarize the key aspects of SLIK’s design by describing how they

achieve the goals stated at the beginning of this thesis. I also share some of the lessons I

learnt while building SLIK and other components of RAMCloud. Finally, I end with some

possible directions in which this work can be extended in the future.

11.1 Summary

SLIK demonstrates that large-scale storage systems can offer secondary indexes with several

desirable properties:

• Low Latency: SLIK harnesses low latency networks and stores index data in DRAM.

SLIK makes various design decisions that allow it to utilize the network’s and DRAM’s

latency advantage by leaving out complex mechanisms wherever possible in favor of

lightweight methods that minimize overhead. These design decisions range from major

choices like ensuring consistency via an ordered write approach using objects as ground

truth (Section 5.1.2) to the smallest details like using cumulative lengths for keys in

the object format to reduce computation while parsing an object (Section 3.1).
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• Scalability: The total throughput of SLIK indexes increases linearly with the number

of servers it spans, while the latency remains nearly constant. It achieves this by

partitioning indexes such that the index entries can be distributed independently

from the corresponding objects (Section 4.2).

• Dealing With Large Scale Operations: To maximize scalability, large-scale long-

running operations such as adding / removing indexes (Section 3.3), splitting / mi-

grating index partitions (Section 4.7), and range lookups (Section 5.1.3) are performed

such that they do not block other operations.

• Consistency: SLIK provides strong consistency guarantees, similar to the consis-

tency properties in a centralized system (Section 5.1). It does so by using a novel

lightweight mechanism (Section 5.1.2) that avoids the complexity and overhead im-

posed by most distributed transaction implementations. This mechanism utilizes an

ordered-write approach for updating indexed objects and uses objects as ground truth

to determine liveness of index entries. One area where SLIK fails to meet its goal of

strong consistency is during large range lookups: if an object is modified concur-

rently during a range lookup such both the old and the new versions of the object

fall within the queried range, then either or neither or both versions of this object

may be returned. SLIK accepts this caveat to strong consistency to ensure scalability

(Section 5.1.3).

• Durability and Availability: While SLIK stores data in DRAM to allow low la-

tency, it ensures that data is durable and survives server crashes. SLIK uses objects

of the underlying key-value store to represent the index B+ Tree nodes, and leverages

the existing recovery mechanisms of the key-value store to quickly recover indexes

(Section 7.1.2).

11.2 Lessons Learned

Achieving low latency in systems software requires leaving out complex mechanisms in favor

of lightweight approaches and reducing overheads where possible. I have found that it is

often convenient and sometimes even necessary to add layers or levels of indirection. This

includes layering to enable cleaner software abstractions; or even using an index structure

to enable access to objects based on a given key. However, that comes at the cost of latency.
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While many features can be added in, providing low latency requires leaving things out.

Latency has to factor in while making various design and implementation choices. In SLIK,

this is visible from bigger design decisions, like the consistency mechanism (Section 5.1.2),

to small implementation details, like the choice of using cumulative lengths in the object

format (Section 3.1).

In order to achieve scalability, the number of servers that need to be contacted in order

to complete a request should scale with the size of request rather than the size of data (or

the number of servers spanned by the data). In retrospect, this is obvious. It is similar to

the principle we learn while designing simple algorithms in introductory Computer Science

classes: the amount of work done should scale with the size of the request rather than the

amount of data. In SLIK, this idea manifests itself in the scheme used to partition indexes

(Section 4.2).

Further, to maximize scalability, other operations should not be blocked by a few long-

running operations. If an operation requires exclusive access to some data set, it might lock

that data set for the duration of its execution. This blocks other operations from accessing

any subset of this data. As the size of the locked data set increases, the likelihood that

another operation wants to access some subset of that data also increases. Similarly, as a

data set is locked for a longer period of time, it becomes more likely that another operation

will be executed on the some subset of that data within that period. Thus, the number of

other operations blocked (ob) by a given operation is likely proportional to the size of the

data set (s) and the amount of time this data is blocked (t). This means we must minimize

ob ∝ s∗ t in order to ensure scalability. Hence, SLIK performs long-running bulk operations

such as index creation/deletion (Section 3.3), migration (Section 4.7), and range queries

(Section 5.1.3) using different techniques that involve locking only a small amount of data

for short periods of time. Such minimal locking of data allows other operations to proceed

without being impacted by a few long running operations.

A recurring feature in SLIK is that it permits temporary inconsistencies in its implemen-

tation, while maintaining consistent behavior for applications. This feature helps reduce

the latency and complexity in the system: it plays a key role in the basic consistency algo-

rithm (Section 5.1.2) which enables strong consistency for basic index operations without

the overheads of more complex mechanisms like transactions. This feature also helps retain

scalability by allowing long running operations like index creation and deletion (Section 3.3)

to proceed without blocking other operations.
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11.3 Future Work

This work focused on balancing the tradeoffs between scalability, low latency, consistency

and durability. However, it leaves a number of interesting problems unanswered. This

section discusses some of them.

The current interface for reconfiguration of indexlets using splitAndMigrateIndexlet

leaves a lot of room for improvement as it requires heavy involvement by clients. It requires

a client to explicitly split an indexlet when it gets too large; it requires the client to specify

the identifier for the server that should host one of the resulting partitions; and it requires

the client to have information about which key will yield a good split location. The first

and second issues can be fixed by a server-driven or coordinator-driven process that au-

tomatically initiates a split when an indexlet starts getting too large and determines the

new host server based on metadata already available to the servers. The third issue can be

handled by adding functionality into the B+ Tree to traverse the nodes and automatically

determine a good split point for the given tree. Providing automated index reconfigura-

tion would allow application developers to focus on developing application specific features

rather than having to ensure that the underlying system is load balanced.

It is also of interest to consider how the system could be optimized for varying needs

of different applications. In particular, it would be valuable to explore different levels of

consistency. If we know the expected workloads a priori, it might be possible to implement

weaker consistency without impacting the correctness of the final application. For example,

consider a social networking site that uses a table to keep track of the number of times

(secondary key) the profile for each username (primary key) is viewed that day. Every

second it reads the objects with the most views to display a summary of trending users.

This application might be able to tolerate a small discrepancy in counts as it is interested

only in overall trends. Having weaker consistency (when it does not affect correctness) is

useful because consistency trades off with performance: as we enable stronger consistency,

the latency increases or the throughput decreases. For example, if SLIK did not have to

provide strong consistency, a write request could have simultaneously contacted the index

servers and data server to update index entries and the object. This would result in weaker

consistency but halve the latency (because now the write becomes a one-step process rather

than a two-step process). As another example, transactions that use optimistic concurrency

control mechanisms lead to lower overall throughput in case of conflicts in order to ensure
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strong consistency. Building a system that offers the application developers an option to

tune the level of consistency (like Megastore [15]) might lead to the best of both worlds:

strong consistency when needed, better performance when not.

Further, enabling a couple of features that provide a richer data model and query lan-

guage could better meet the needs of diverse applications. One useful feature is to allow

multiple values for the same key. For example, a table storing records of books might have

a secondary key for the genre(s) a book belongs to. While a book might have just one genre

(like “gardening”), another might have more (like “mystery”, “thriller” and “fantasy”).

A lookup for all books with “mystery” genre should return the second book, as should a

lookup for all books with “thriller” or “fantasy” genre. Providing this feature would require

rethinking the object format of SLIK. For example, a more flexible format like JSON might

be a better fit, but would impact performance by increasing parsing overheads. Apart from

that change, most of the other design and implementation should remain unchanged; hence,

SLIK’s utility could be improved without significantly sacrificing performance.

Another useful feature is to provide compound indexing that enables multi-attribute

lookups. For example, from a books table, one might want to find all books with genre

= “mystery” and 1500 < publication year < 2000. One implementation approach is for

the client library to concurrently perform the first step of lookup, lookupKeys, for each

secondary key. It can then take an intersection of the primary key hashes returned from these

queries and perform the second step of lookup readHashes on that intersection. However,

given that the hashes are returned in sort order of the respective secondary keys, this

approach would require a client to gather all the hashes from step 1 before performing step

2. This may not work well at large scale as the client may not have the capacity to store all

the hashes and compute the intersection locally. Another possibility is to slightly modify

the server side code for lookups. Here, the client performs lookup on one of the keys as

usual. After readHashes, the clients already parse the matching objects to check that the

given secondary key falls within the specified lookup range (in order to prune extraneous

entries as per the consistency algorithm). They could additionally perform the same check

for other keys that are a part of the query and return only the objects where all the keys

fall within the respective ranges. To reduce the amount of wasted work, the original lookup

should be performed on the key that will match the least number of objects. However, there

is currently no clearly optimal solution for efficiently performing multi-attribute lookups,

and it is therefore of interest to investigate in the future.
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While I built SLIK such that its design is applicable to most key-value stores, it is

currently implemented only in RAMCloud. When implementing SLIK in another system,

different requirements might mean that some of the alternative approaches discussed are

better suited than the ones chosen for SLIK. Further, differences in the underlying key-value

store can lead to different index implementations. For instance, if a key-value store did not

support fast crash recovery, it might be better to use the rebuild approach for recovering

indexes. If a key-value store implemented Multi Version Concurrency Control (MVCC), it

might be useful to leverage that and enable stronger consistency for range queries. It will be

interesting to see how the ideas presented in this dissertation hold up and what new ideas

emerge when implementing SLIK in a different underlying key-value store for a different set

of requirements.

11.4 Final Thoughts

SLIK shows that modern scalable storage systems need not sacrifice the powerful program-

ming model offered by traditional relational databases. Furthermore, when implemented

using DRAM-based storage and state-of-the-art networking, storage systems can provide

unprecedented performance. SLIK is an important first step on the path to a high-function,

low-latency, large-scale storage system.
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