9

asz -

TEEE Dishilbwied Copoi=-

5‘6—9’-4“_‘“

‘Scheduling Techniques for Concurrent Systems

John K. Qusterhout

Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract

Current operating systems base many of their decisions
on the assumption that processes are independent, This
paper exsmines whet bappens in multiprocessor sys-
tems that use interprocess communication extensively.
Traditionel techniques for short-term scheduling resuit
in serjous limitations on interprocessor commaunication;
2 two-phase blocking scheme is suggested as & solution
to the problem. Long-term scheduling policies that as-
sume process independence result in a form of thrash-
ing when there are groups of cooperating processes.
The notion of coscheduling is introduced, and three al-
gorithms are described for achieving it. Simulstion
results suggest that substantial degrees of coscheduling
can be achieved over a variety of conditions using rela-
tively simple methods.

1. Introduction

. The scheduling technigues used by current operat-
ing systems are based in large part on the assumption
that processes are independent. It has been assumed
that interactions between processes are the exception
rather than the rule and, until recently, this has been
the case. In more recenl systems, however, the
assumption of process independence is becoming less
and less valid. Multiprocessor systems are appearing
more and more frequently; they encourage a style of
programming wherein collections of cooperating
processes use several processors concurrentiy to zolve
problems. Cooperating groups of processes are being
used even in single-processor systems; perhaps the
most visible example of this approach is the pipeline
mechanism of Unix [Ritchie 74].

The work described here wes performed at Carnegie-Meusn
University. It was supporied in part by the Defense Advanced
Research Projects Agency (DOD), ARFA Order No. 3597, monitored by
the Air Force Avionica Laborstory under comract F33815-78-C-1581,
and in part by the Graduate Fellowship Program of the Nationsl Sci-
ence Foundation.

CH1802-8/82/0000/0022800.75 © 1982 IEEE

22

As cooperation bhetween processes becomes more’
widespread and occurs on a flner grain, traditional
scheduling tecbniques break down. This paper
describes two ways that naive schedulers can limit the
efliciency of interprocess communication and presenis
simple and practical mechanisms to eliminate those
bottlenecks. The mechanisms described bere were
implemented in the MNeduse operating system
[Ousterhout BO].

Section 3 shows how short-term scheduling can
become the bottleneck in interprocess communicetion,
and suggests a two-phase blocking rnechaniam as & 2olu-
tion. The remsining sections of the paper address a
more diflicult problem esssocieted with long-term
scheduling. Section 3 shows how a form of process
thrashing can occur when traditional mechanisms are
used to schedule cooperating processes, and introduces
the notion of coscheduling., Section 4 describes three
coscheduling elgorithms. Section b presents simulation
results that illustrate the differences between the algo-
rithms. Aithough the algerithms are relatively sirnple
and were designed for & more restricted environment
than exists on many multiprocessors, the simulation
results suggest that all three will provide acceptabie
degrees of coscheduling.

There are strong similaritics between the problems
of coscheduling and the problems faced in memory

meuegciusiat. The paper inbrsduses analege for thrash
ing and working sets and shows how the various cos-
cheduling algorithms make tradeoffs between forms of
external and internal fragmentation. A technique simi-
lar to bit-map memory allocation appears as part of one
of the coscheduling algorithms.

2. Making Waiting Efficient: Pauses

Waiting is a fundamenta! aspect of communication.
¥hen information is to be passed from one process to
anpther, it is exceedingly unlikely that the two
processes will both reach the rendervous poinft at
exactly the same instant in time. Either the sender will
have the information ready before the receiver is
prepared to accept it or vice versa. Thus one of three
torms of waiting must occur: either 1} the receiver will
wait for the sender to reach the rendezvous point
{because no data is available to be received), 2} the
sender will wait for the receiver to reach the rendezvous
point (because the communication mechanism is
unbuffered or the available buffer space is full), or 3)
the data will wait (in & buffer) for the receiver to reach
the rendezvous point.

In situations where information flows in only a sin-
gle direction, for exampie from e program to s disk file,
clever buffering can be used to ensure that the slower

process (the bottleneck in overall throughput) never
has to wait. Under these conditions, case 3 dominates;
current operating systems make that case quile
efficient. However., as interprocess communication
becomes more and more prevalent, two-way (interac-
tive) informstion flow is becoming more commeoen.
FPerhaps the best exampies of two-way flow are the
remote procedure call mechanisms being implemented
at several sites [Nelson 81, Spector 82}. In remote pro-
cedure call. a clien{ process sends a message to a
server process and immediately waits for a reply. The
server process waits for a requesi, from a client process,
serves it, and sends a reply. In the Medusa system,
operating system functions are invoked with a form of
remote procedure call. Remote procedure call and
other forms of two-way communication lead naturally to
process waiting {cases 1 and 2 above} rather than data
waiting {case 3 above). .

Most short-term schedulers make procsss waiting
very inefficient, Whenever a process waiis for some
event, it is thrown off its processor and another process
is activated. When the event occurs, the process must
be reactivated. In single-processor systems there is no
way to avoid the two context swaps since another pro-
cess must execute to generate the event. However, in a
multiprocessor system the communicating processes
generally execute on diflerent processors, so the con-
text swaps may waste time unnecessarily.

A solution is to divide waiting into two phases. Dur-
ing the first portion of the wait, called a pause, the exe-
cution state of the process remains loaded and the pro-
cessor is 1dle. If the desired event occurs during the
pause lime. the process can be reactivated with ne con-
text swapping overhead. If the pause time ix exceeded,
then the process enters the dlock phase and must relin-
quish its processor. Pauses are designed especially for
the situation where comrmupnication is occurring on a
very fine grain, i.e, the evenl being waited for is likely to
occur very soon after the wait begins. If the duration of
the wait is less than two context swap times then the
lost processor time due to the pause is less ithan the
time that would otherwise have been wasted in context
swaps. 1f waits generally lest a long time, then the
pause time should be made zero in order to avoid
wasted processor time (however, in this case pauses
occur infrequently so the total wasted time iz likely to
be srnall anyway}.

The Medusa system implements pauses with a
user-settable pause time. Although a context swap
takes about as long as 150 average instructions, & mes-
sage can be transmitted from one process to another
process {paused on a different processor) in the same
time as about 60 average instructions. The time given is
the time from intiation of the send operation to the exe-
cution of the first instruction by the paused process
after it receives the message and resumes processing.
Of this time, only about 10 instruction-times are used to
reactivate the process; the rest is used to transmit the
message. Thus a paused receiver will begin servicing a
message 34 times as fast a= a pon-paused receiver (80
instruction times versus 210}.

3. Thrashing and Process Working Sets

long term scheduling policies cen also limit the
speed of interprocess communication, This is most
likely when communication occurs much meore fre-
quently than the scheduling decisions that establish
priorities. For example, suppose several processes are
executing on multiprocessor and sending and receiving
messages among Lhemselves. Now suppose that the

© account

23

system's scheduling policy allows half of the processes
to execute only in odd time slices and the other half
only in even time slices. If the processes are inleracting
frequentily, then it is likely that mosi or all of the
processes in the executing half will block awaiting fes-
sages from processes in the descheduled half. When the
descheduled half is activated and the (blocked)} half is
descheduled, then the newly-execuling processes are
also likely to block while waiting for messages with the
idle hall. Regardiess of the raw speed of the processes
or of the interprocess communication mechanism in
this example, the processes will only be able to interact
as frequently as the systern reschedules processors.
.Even more intelligent schedulers than the one in this
example can produce similar behavior unless they lake
of the communication patterns of the

P L]
Protnas<s.

There is a strong similarity between the eabove
exampie and the thrashing that occurred in early
demand paging systems. Just as there is a working set
of memory pages that must be coresident for a unipro-
cessor program to make any progress (for example, see
[Denning 701), closely-interacting parsgliel programs

parallel program:
have a_process working set thal must be coscheduled
(eefiedsled for sxactor S altaneousiy] for TREPRFEL.
el program to make qrogreﬂ.‘fﬁ memory UArashing,
the swapping-ifi ¢! each psge needed by the program
causes one or more of the other pages needed by the

program Lo be swapped out; thus the progreszs of the

program is limited by the speed of swapping, not the
speed of references Lo main memory. Similarly process
thrashing occcurs when the scheduling of each process
whose services are awaited causes another process,
whose services will scon be needed, to be descheduled;
the progress of the paralle] program is limited by the
rate at whick scheduling decisions are made, not the
speed of the low-level communication primitives. 1f
eflicient interprocess communication primitives are to
be used to their fullest, mechanisms must be provided
to avoid process thrashing.

Twa steps must be taken to eliminate process

thrashing: first, there must be a way of determining pro-
cess working sets: second, the process allocation and
scheduling mechanisms must be organized in a way that
coschedules these working sets. Coscheduling, com-
bined with the pauss mechanism described in Section 2,
allows the communication mechanism to proceed at full
‘speed by ensuring that processes are eavailable for
interactions when needed. Coscheduling slso reduces
the number of context swaps arising from blocked
processes and therehy reduces opersting system over-
head.

In demand

paging systerns the working zet esti-
mates are made dyhamically. Hardware keeps track of
the memory pages most recenily touched by the pro-
ceszor. Since oniy one program runs &t a time the
access informalion can be used to estimate the working
set for the currenl program: the operating system then
ensures that the working set is main-memory-resident
whenever the program runs. Any page may reside in
any main-memory frame, hence the working set may be
adjusted dynamically without massive shuflling of pages.

Unfortunsately, several complicating factors make
dynamic estimation of proceas working sets rather
difficult. On s multiprocessor there may be many
processes from diflerent working setz executing at the
same time; the mere fact that two processes execute &
communication primitive at the same time does not
imply that they should be in the same working set. One
way to determine process working sets is to trecerd
information in the form of pairs of processes that

interact: both gathering this information and analyzing
it to estimate working sets appear to be expensive
operations.

A second problem with dynamic process working
set estimation stems from processor preferences. In
seme multiprocessor systems a process can execute
equaliy well on any processor (this is analogous io
demand paging systems where any virtual page may be
loaded into any physical page). on other multiprocessor
systemns with non-uniform memeory a process must be
run on the single processor containing its code and/or
data (this is equivalent to memory management without
mapping: a virtual page can reside in only one physical
page). I processes have processor preferences then
working set information must be available at the time
the processes are assigned {o processors.

~ 3.1. Assumptions and Goalx

Because of the difliculiy of collecting and uzing pro-
cess working set information dynamically, the rest of
this paper considers & resiricted scenarie in which pro-
cess working sets are specified statically by the pro-
grammer. Each program is a {ask force containing one
or more processes that constitule a process working
set. Each process belongs to exactly one task force,
and it is assumed that the membership of a task force
does not change during itt lifetime. I assume a special
form of processor preference that exists on Cm®* [Swan
77]): a process can be loaded onto any processor, but
canno! move efter jt starts execution. The ability to
move processes dynamically would lead (o better
resulls than those reported here.

A task force is coscheduled if all of its runnable
processes are execuling simultaneously on different
processors. Each of ihe processes in that task force is
alsp said to be coscheduleg. If at least one processof a
task force is executing but the task force is not cos-
cheduled then the tack force is said to be frapmented:
the collection of executing processes is referred to as
the execuling fragment of the Lask force.

The rest of the paper assumes that coscheduling is
desirable, and examines how it might be achieved. The
primary goal of the algorithms described here is to
maximize coscheduling: for a given series of task force
arrivals intc the system and departures from the sys-
tem, which cannot be predicted in advance, they
attempt to maximize the average number of processors
execuling coscheduled processes. The coscheduling
algorithms include both allocation and scheduling
mechenisms. It is important that scheduling be
eflicienl because it pccurs frequently. Allocation oeeours
iess often, so it can involve more complex computations.

The systemn iz assumed to contain P processors,
each of which can multiplex between at most Q
processes {the simulation data uses P=50 and Q=16
which is the situation in Medusa). Thus process spare
consists of P*{ process sints to which processes may be
sssigned. Task f{orce aliocation consists of assigning
eech precess of the new task force to an empty process
siot. | assume that Q is large encugh so that allocation
slways socceeds. Scheduling consists of ordering the
ex=cvution priorities of the processes on sach processor.
The slot assignment of a process is not changed during
its lifetime, and each process is required t¢ execute on
the processor to which it was initially assigned. The
elgorithms essume that no task force contsing more
than P processes,

24

4. Three Algorithme {or Coscheduling

The three coscheduling algorithms discussed in this
section derive their "flavor” largely from their views of
process space, The firsi algorilhin views process space
as -a two-dimensionai matrix of processes. while the
second and third algorithms view process space as a
linear seguence.

4.1. The Matrix Method

The matrix coscheduling algorithm is a very simple
one that performs surprisingly well. The space of all
process slots is organized as r matriz with Q rows and P
columns {see Figure 1). Each column contains the pro-
cess slots of one processor, and each row of the matrix
eontains a process from each processor.

Allscation:
See if there are enough unused slots in row 0 of the
matrix to accormnodate all. of the processes of the
tazk force, If not, then attempt to assign all of the
processes to siols in row 1, and so on until a single
row is Jound that can hold the entire task force.

Scheduling: .

This slgorithm uses a round-robin mechanism to
muitiplex the system between the different rows of
the matrix. In time siice O, each process inrow D is
given highest execution priority on its processocr,
thereby coscheduling all task forces in that row: In
time slice 1, row 1 is coscheduled, and so on until
all task forces have been scheduled. Then return to
row D and repeat,

Processor F-1
Process 0

i

Processor 0

Process O

Processor 0 FProcessor P-1

Process Q-1 Process Q-1

Figure 1. For the matrix algorithm, process space
is organized 2-dimensionally, with each column con-
taining the processes of a single processor.

4.1.1. Alternale Selection

When a row it scheduled for execution, it iz likely
that one or more of the process slots in that row wili
either be empty or contain processes that are blocked
{(e.g. while awaiting terminal input). When this happens,
the processor scans its column of the matrix circularly
for a process in another slot that is runnable. If a pro-
cess in one of these slols is runnable, it is allowed to
execute and is referred to as en alternate. Unless
empty process slots cause all of the other processes in
the allernate's task force to run, the alternate will exe-
cute as a fragment.

This alternate selection method is applied indepen-
dently by each processor; no sttempt is made to select
niternates in a way that maximizes coscheduling, except
that selection algorithm is identical in each processor.
Thus it is likely that alternates will execute as frag-

Ty precCa~ c

ments: an alternate that really needs coscheduling will
biock as soon as it attempts interactions with other
processes in its task force. However, the method does
have the nice property that there is a clean separation
between global and local scheduling decisions. Al a glo-
bal level, all that needs to be done is to select the high-
priority row of the matrix. Given the number of that
row, each processor csn schedule itself and perform
alternate selection independently. The simulation
results presented below suggest that the increase in
coscheduling to be bad by selecting alternates centrally
would be smali; furthermore, a central scheduler would
have to be invoked anytime there is a change in execu-
tion status of any process.” In a large system, this might
impose & considerable burden on the central scheduler.
With the simple-minded alternate selection, changes in
execution status can be handled locally by the kernels
of the individual processors. Global intervention occurs
only on time slice boundaries.

 4,1.2. Summary of the ¥Matrix Method

The attractive features of the matrix algorithm are
the simplicity of its allocation and scheduling algo-
rithms, and the clean separation between local and glo-
pal scheduling decisions. The algorithm has several
drawbacks. First, process space is partitioned into dis-
joint rows: & task force cannot be assigned to slots in
more than une row. Thus there are likely to be many
uvnused process slots in each row. This inefficiency is
gimilar to internal fragmentation in paging systems.
The olher two algerithms are attempts to solve this
problem; it turns out that they in turn suffer from an
eflect similar to ezternal fregmentation in segmenta-
tion systems. A second disadvantage of the matrix
methed is the simple-mindedness of the aiternate selec-
tion algorithm, which could cause opportunities for cos-
cheduling to be missed. This disadventage is shared b
the other algorithms as well. Finally. the matrix algd-
rithm causes the execution priority of the whole system
to change at the same time. Thus shared facilities used
for context swapping {e.g. paging devices) will be loaded
unevenly.

4.2. The Continuous Algorithm

Most of the UrawpacKs Of LAe motrix algecliliug aiiac
because of Lhe rigid partitioning of process space into
the rows of the matrix. The continuous algorithm uses a
different view of process space in order to achieve
denser packing and smoother scheduling (see Figure 2).
For this ealgorithm, process space is viewed as a
sequence of process slots. The process slots in any P
consecutive positions of the sequence beiong to
different processors. The allocation and scheduling
algorithms consider at a particular moment & window of
P consecutive positions in the sequence, and slide the
window across the sequence over time. For purposes of
the algorithms below, process slot 0 in processor 0 is
considered to be in the leftmost position of the
sequence, and process stot Q-1 of processor P-1 is con-
sidered to be in the rightmost position.

Allocation:

Place a window of width P siots at the left end of the
process sequence. See if there are enough emply
siols in the window to accomodate the new task
force. H not then move the window one or more
positions to the right, until the leftmost process
slot in the window is empty but the siot just outside
the window to the left is full. Repeat this until a
window pesition is found that can contain the entire
task force.

- -
-7
- . . ’ . Ed

5

Scheduling:
Piace a scheduling window of width P siots at the
left end of the process sequence. AL the beginning
of each time slice move the window one or more
slots to the right until the leftmost process in the
windaw is the leftrnost process of a task force that
has not yet been coscheduled in the current sweep.
When the window has advanced far enough that all
existing processes have received sxecution time,
return the window to the left side and start a new
sweep. When the window conteins empty process
slots or processes that are not runnable, use the
alternate selection mechanism from the matrix
algorithm.

Processor 0

Processor P-1 Processor P-1

Process O Procass 0 Process 1

1 i L

\ B

S

1
—

1 >

" Window for Allocation or Scheduling
Figure 2. For the continuous algorithm, proces§
space is organized as a linear sequence of process
slots; at any given time the scheduler or allocator
considers those slots lying within a window.
4.2.1. Comments on the Continuous Algorithm

There are several reasons for moving the aliocation
and scheduling windows in the way described above, In
the case of the allocation window, there is ne particular
advantage in testing a window poasition if its leftmost slot
is occupied: moving the window another slot will elim-
inate the occupied slot and may add an unoccupied slot
at the right end. In addition, there is no point in testing
a window position if an unoccupied slot hes just been
lost off the window's left edge: the best that could have
happened is Lo add another unoccupied slot on the right
side, which makes the new window position equivalent to
the old position. There i much in common between this
method of task force aliocation and the “bit-map”
method of memory allocation; for example, see [Haber-
mann 78] Chapter B.

There are similar arguments for moving the
scheduling window so that its leftmost slot iy aiways the
ieftmost slot of & task force. If the leftmost window alot
is empty, nothing is lost by moving the scheduling win-
dow mnother siot to the right. 1f the feftmost SLOL IS
occupied but its process isn't the leftmost slot of & task
force, then that task force cannot possibly be cos-
cheduled: we might as well advance the window to the
next task force. Moving to the leftmost siot of a task
force guarantees thst every window position gos-
chedules at least one tazk force and every task force is
coscheduled at least once in every sweep.

However, il the scheduling window were simply
advanced one task force each time slice, task forces of
different size and location would receive unequal treat-
ment. For example, consider the situation of Figure 3
where P is 10 and a task force with 10 proceases is sur-
rounded by several task forces with 2 processes. The
acheduling window tends to move more slowly across
small tesk forces than across large ones, thereby giving
the small ones more coacheduted time slices: in the
figure, TF4 receives 4 coscheduled slices to every 1 for
TF5. In addition. large task forces cast a "shadow” over
the task forces just to their right: slthough TF4 and TF8
esch have two processes, TF4 receives muech more cos-
cheduted time than TF8. Finally, task forces at the left-
most end of the process sequence receive harsher treat-
ment than those at the rightmost end (the leftmost end
of the sequence casts a shadow egquivalent to that of a

Lask force with P processes), To reduce this discrimina-
tion, the scheduling window should be moved each time
slice until a} its leftmost process is the leftmost process
of a task force, and b) that task foree has not yet been
coscheduled in the current sweep across process space.
Note the improvement in Figure 3. .

If] LTz IFY IF];F; I,=|_§ IF I?

e —" g——

Scheduling Window

Coscheduied Stices Per Scheduting Sweep
Move Window to Move Window 10
Tash Force Next Task Force Non-coschaduled TF

TF1 1 1
TF2 2 1
TF3 K 1
TF4 4 1
TFS 1 1
"TF6 1 1
TF7 2 1
TFS 1 1

Figure 3. An example of unequal treatment of
different tesk forces. The columns indicate how
many coscheduled time slices eech task force
receives each sweep if a) the scheduling window is
moved one task force each time slice, and b) the
scheduling window is moved each time slice yntil
the leftrnost task force is one that hasp't been cos-
cheduled yet this sweep.

The continuous algorithm reduces the problems
caused by the rigidity of the row structure in the matrix
algorithm. Task forces can be packed more tightly in
process space since empty slots that would have been in
separate rows under the matrix algorithm may still lie
within a singie allocation window position. The context
swapping load is distributed more evenly by the continu-
ous algorithm than the matrix algorithm because not all
processors change scheduling priority each time slice.
In spite of its dense packing of task forces the continu-
ous algorithm generally requires less work during sllo-
cation than the matrix algorithm; see the simulation
results for details,

Unfortunately, the continuous algorithm still
suffers from several drawbacks. The most serious prob-
lem concerns divisions within task forces. When the
process sequence becomes populated with many small
"holes" {contiguous empty siots), new task forces are
likely te be divided between several holes; the distance
in the process sequence between the leftmost and right-
most processey of a4 new task force, which 1 call the
uidth, may be substantially greater than the size of the
task force. A small tank force with a large wigth will
have similar scheduling properties to a large task force
with the same width, in that there are only a few
scheduling window positions for which the task force will
be coscheduled. As tesk forces become split between
several holes, even the improved scheduling algorithm
discussed ahove becomes unfair: small contiguous task
forces will receive many more coscheduled time slices
then those that are large or badly split. Thix situation is
similar to external fregmentation in segmentation sys-
tems, where utilization of primary memory degrades
substantially if the memory becomes too fragmented.
The simulation resuits verify that the, continuous
algorithm’s behavior deteriorates ss process space
becomes fragmented. .

4.3. The Undivided Algorithm

This aigorithm is identical o the continuous algo-
rithm in every respeci except that during allocation all
of the processes of each new task force are required to
be contiguous in the linear process sequence (i.e. the
task force may not be divided between two or more
holes). The undivided algorithm does not pack process
space as efliciently as the continuous algorithm, but
reduces fragmentation and thus results in substantially
better system behavior under heavy loads {see the
simulation results). In fact, this algorithm performed
smoothly under a variety of system conditions, and
showed the least sensitivity of the three algorithms to
tactors such as task force size and system load.

5. Analysis of the Algorithms Using Simulation

In order lo gain & more quantitative understanding
of the algorithms, a simulator has been written. The
simulator analyzes the scheduling behavior of a fifty-
processor systemn using each of the above three
scheduling algerithms under a variety of synthetic
loads.

5.1. The Simulation Model

Because of the scarcity of general-purpose mu!-
tiprocessors, there exists almost no information on how
such systems are likely to be used by concurrent pro-
grams. The simulation results are hased upon a simple-
minded model parameterized in the following way: -

Size ‘The expected task force size {individual
task forces are chosen from a pseudo-
random exponential size distribution).

Load The expected rativ of the number of
runnable processes to the number of
processors (this value is used to com-
pute task force arrivals, where the
expected arrival rate is a linear func-
tion of load with negative slope).

The expected lifetime of task forces
{actual lifetimes are chosen from a
pseudeo-random exponential distribu-
tion).
The simulator permits task forces to be
in the system without being runnable.
The idle fraction iz deflned as the
expected fraction of task forces' life-
time that they are not runnable; task
forces are made runnable and not
runnable for pseudo-random exponen-
tial periods of time based on the idle
fraction. Most of the results presented
below assume a zero idls Fraction;
f;:t‘um 5.4 discusses the eflects of idle
..

For lack of a suitable model of interaction between
the processes ol a task force, the sirulator does not
allow for a task force to be partially runnable. All the
processes of a task force are made runnable or not
runneble together. Fortunately, this assumption leads
Lo & pessimistic estimate of coscheduting.!

Lifetime

ldle Fraction

Uin & real system, # & task force 1o anly partially coscheduled thes
the _oso‘:u;:id‘n: mm:;:t :\&y’teﬂ block m’muicltbn with the
desched ored; Another t be
somheduled by the altérnate selectien muhn:uam."g &e‘hdnu.lc:::
the fragment sontinues to executs even though it is not coscheduled,
and bence leads 1o & Jower overall estimate of conscheduling.

Since ihe purpese of the simulation is to measure
how eflective the three algorithms are, most of the
results are presented in terms of coscheduling
effectiveness. Coscheduling eflectiveness is the mean
(across all the time slices of a simulation run) of Lhe
ratio of the total number of processors executing cos-
cheduled processes to the total number of processors
with runnable processes. A coscheduling eflectiveness
of 1 is ideal. Coscheduling effectiveness measures the
system's ability to coschedule task forces, NOT the
response time that will be seen by individual users or
the overall performance of the system. In situations
where coscheduling is not needed (for exarnple, when
there is no interprocess communication), overall sys-
tern performance rmay not depend on coscheduling
eflectiveness.

5.2 f:ﬂeetiveneas az a Function of Load

Figure 4 plots the coscheduling eflectiveness of the
three coscheduling algorithms as a function of system
load, for a mean task force size of 13.5 processes and no
idle time. As expected, all of the algorithms performed
quite well for underipoaded systems and degraded as the
system joad increased. Above aload of two or three the
coscheduling eflectiveness leveled off at aboul two-

thirds. me.}.n'c

-

.

o
)

0@ L3
il
/b ;WMPl J‘wﬂ

o
-}

o
o

a
o

Coscheduling Eflectiveness

€ suwor

0‘(M-ft//):-p;}“jh

0.5 of'&'/ﬁ drﬂ#v/
04 fre.
0.3 Box = Maux Algonihm
Tringie + Confinuous Akyorithm
0.2 Carcle = WUndowled Algorumm
0.1
0.0 1.0 2.0 30 4.0

System Load
Figure 4. Coscheduling effectiveness of the three
algorithms for average task force size 13.5
processes, no idle task forces. The vertical lines
are B0% confidence intervals for the undivided
curve for individual tirne slices.

The same overall behavior as in Figure 4 was
observed for all of the systerm conditions simulated
here. This can be understood by considering the two
factors that result in a coscheduling eflectiveness less
than 1.0:

Straddling. In the continuous and undivided algo-
rithms, it is possibie for a task force to straddie the
right end of the scheduling window. If this occurs,
then those processes inside the window will execute
as a fragment and lower the system's coscheduling
effectiveness.

Alternate Selection. ln all three algorithms, alter-
nate selection occurs when there are vacant pro-
cess siols or unrunnable processes in the high-
priority portion of process space. Because of its
simple-mindedness, aliernate =election does not
often result in coscheduling. 1f there are other
runnable processes in the processors for which

27

T : .1 PV B
coe’ L. P2 e
FARS

alternate selection occurs, they will probably exe-
cute as fragments and degrade the system’s cos-
cheduling effectiveness. .

For an average system load less than 1.0 almost all
processes arc allocated in the firsl row {for the malrix
method) ot in the first P processes in the sequence (for
the other two methods). Thus straddling almost never
pecurs. When vacant slots exist in the high-priority por- -
tion of process space, it is likely that the processors
invoived contain no processes at all so these holes will
not degrade effectiveness, When the averamge system
load becormnes greater than 1.0 then both straddling and
aliernate selection begin to oeccur and coscheduling
effectiveness degrades. Straddling and alternate selec-
tion are functions of how task forces are packed into
process space; for large loads the packing arrangement
becomes independent of load (it depends only on the
task force size distribution and the allocstion algo-
rithm), so coscheduling eflectiveness levels off.

Figure 4 indicates that the algorithms difler in
effectiveness by only aboat 15%. This is not surprising
since one of the two contributions to poor coscheduling
effectiveness is alternate selection, which is done in the
same way by each of the algorithms. The matrix algo-
rithm avoids straddling completely. but incurs slightly’
more aiternate selection as a result. Under heavy loads
the undivided algorithm performs between five and ten
percent better than the continuous algorithm which in
turn performs five to ten percent better than the matrix
algorithm. .

Figure 4 also plots B0% confidence intervals for the
undivided algorithm. The confidence intervals are for
individual time slices: in any given time slice one can
expect the coscheduling effectiveness Lo fall within the
range of the bars with BO% probability. Note that the
short-term fluctuations tor any single algorithm are
larger than the differences between the aigorithms.
However, in spite of the short-term fluctuations, the
average over several time slices converges very quickly.
Different runs with diflerent random seeds produced
identical average effectiveness values to within several
significant digits.

" 5.3. Effectiveness as a Function of Task Force Size

The differences between the algorithms are most
apparent in comparisons of system performance under
varying task force sizes. Figure 5 shows how eoschedul-
ing effectiveness varies &s a function of task force size
for an average load of two. For each size, the algo-
rithms showed similar behavior (as a function of load}) to
that of Figure 4 with variations only in the level at which
effectiveness stabilized for high loads.

The data i Figure 5 supports the prediclions made
earlier. For very small and very large task forces all
three algorithms perform quite well: in the limiting
cases of mean size 1 or 50 the scheduling effectiveness
of each algerithm iz 1. The continuous algorithm per-
forms worst when there are many small task forces.
Under these conditions the average hole sire will be
small; task forces are likely to be fragmented between
several small holes and hence have widiths much larger
than their sizes. As the average task force size
increases 3o does the average size of the holes; task
force fragmentation occurs less drastically so cos-
cheduling effectiveness immproves.

The matrix algorithm is nol as prone to fragmenta-
tion as the continucus algorithm, sc its performance
does not suffer as greatly at the hands of small task
torces, However, as the average task forcc size
approaches 25 (one half the number of processors) the

matrix algorithmn is unable to pack them very densely in
the matrix rows. Al an average size of 25, process space
will only be about 50% packed; since allernate selection
dces not preduce much coscheduling, the coscheduling
eflectiveness is only about 50%.

The undivided algorithm offers a compromise where
large task forces can be packed relatively densely, but
small task forces do not cause fragmentation. It zshows
less sensitivity to task force size then either of the
other two algorithms. Since no data is available on what
kind of task force size distribution to expect in actual
systems the undivided algorithm appears to be the best
cheice. 1t seems likely that in multiprocessor systems
> of the near future there will be more small task forces

than large ones (it will be easier to program smail
amounts of concurrency than large smounts), sc the
continuous algorithm is especially undesirable. Bince
the undivided algorithm perforined worst with a mean
task force size of around 13 processes, that size is used
in Figure 4 and in most of the remaining measurements.

vt
-

Coscheduling Effectivene.
o o e o
L T .)

@
7

Bor + Malax Mgorithm
Trangie » Conlmubys Algorithm
Cucie = Undwidts Aigorithm

¢} 5 10 15 20 25 20

Average Task Force Size
Figure 5. Effectiveness of the algorithms as a fune-
tion of mean tesk force size with a system load of
2.0 and no idle task forces.

5.4. ldle Task Forces
In actual systems, all processes cannot be expected

to be runnable all of the time. If a task force becomes

idle while waiting for some external event such as termi-
1.

Coscheduling Effecliveness
© & o o ©
& v m o

o
Y

Bos = Malin Aigonthm
Triangle = Contnuout Aornnm
Circlt = Undnritiad Algorithm

3.0 4.0

System Load
Figure 8. Effectiveness of the three algorithms as a
function of system load for an average task force
size of 13.5 processes and an idle fraction of .8,

CEEE r
’DP’C'L-“"‘ A gmam [

0.0 1.0 2.0

‘OGC,F?
-

Sy g e
G
gy

28

nal input, then its processes occupy siotr in process
space without being runnabie, This reduces the degree
of coscheduling in Lhe system by causing more alternate
selection to oceur. Experience with timesharing sys-
tems indicates that many programs spend most of their
time in an idle state, so0 the simulator was modified to
provide data on the effects of idle task forces.

Figure 8 plots coscheduling effectiveness as a func-
tion of load for an average task Force size of 13.5 and an
idle fraction of one half. Although the general behavior
of the algorithms is not altered greatly by idle time, &
comparison of Figures 4 and 6 shows that the continu-
ous algorithm suffers somewhat more from idle time
than the other two algorithms, Figure 7 charts cos-
cheduling effectiveness as a function of idle fraction for
an average system load of two. For very large idle {rac-
tions the performance degradation is as high as one
third. The curves of Figure 7 can be explained in the °
following way. In the limiting cese of very high idle frac-
tions only one task force in the high-priority partion of
process space (the current row or scheduling window)
will be runnable. If any other task forces are to be cos-
cheduled then that coscheduling must occur as & result
of alternate selection. Note also that with an average
joad of two and an avermge task force size of 13.5,
several task forces are likely to be runnable at any
given time. The continuous algorithm tends to fragment
task forces such that it is quite likely that the runnable
task forces will overlap in their processor usage, hence
only one will be coschedulable. Both the undivided algo-
rithrn and matrix algorithm tend to aliocate task forces
in contiguous slots {the undivided algorithm by design,
the matrix algorithm by a quirk of its implementation),
so0 there will be fewer overlaps between the runnable
‘task forces. Thus under high idle fractions the matrix
and undivided algorithins have somewhat hetter charac-
teristic% than the continuous algorithm.

w 1

a9 o
o

Coscheduling Etfectivenss:
o o
o

od
n

e
a

»
o
M

Sox = Maria Algorithm
Trange = Comningous Algorithm
Circie = Undividad Algorithm

L
h

0.1

00 7 03 07 04 05 08 07 08 09 10
ketie Fraciion
Figure 7. Effectiveness ax a function of idle frac-

tion for an average task force size of 13.5 processes

‘and a systern Joad of 2.0.
5.5. Relative Treatment of Different-Size Task Forces

Figure 8 grephs the coscheduled fraction as a func-
tion of task force size for the undivided algorithm under
three different system loads. The coscheduled fraction
for a task force is the ratic of the number of cos-
cheduled time slices received by the task force to the
Lotal number of time slices when at least one of the task
force's processes is executing. Under light ioads all
task forces ars but under
moderate or heavy loads Lhe largest task forces are cos-
cheduled lags then one third of the time. Although Fig-
jure 8 contains data for just the undivided aigerithm, the

nearly always coscheduled,

/

corresponding data for the other two algorithms is simi-
lar.

o

o
w0
-

Cosceduled Fraction
[4 o
~ @

o
o

0.5
a4
0.3 Box « Losd D%
Tiangie » Losd 16
0.2 Cole = Losd 20
o.1
0 ! 10 20 30 40 50

Task Force Size
Figure B. The fraction of time that task forces are
voscheduled, as function of task force size. These
measurements are for the undivided algorithm with
an average task force size of 13.5 processes.)

In Figure S the fraction of the processes of a task

force executing {averaged over the time slices when at
least one process of the task force was executing) is

plotted as a function of task force size. Once again all
tatk forces receive good, nearly identical, treatment
when the system is lightly-loaded and large task forces
suffer somewhat more Lhan small task forces as the load
increases. However, it is encouraging to note that even
under heavy loads the average executing fragment for
large task forces contains more than half of the
processes of the task force. The vertical bars in Figure
9 are 807 confidence intervals for the behavior of any
single L'acs’k force in the load=1.0 curve. .

o
io

L]
[

°
-

Q
]

a
2

Average Size of Execuling Fragmen(
]
»

Q
4

Bor 2 Load D5
Tuangle = Load 10
Cacie = Low 20

=]
L)

o

a to 2 a2 40 50
A Tash Force Size
Figure 9. The average size of executing fragments

{as a fraction of total task force), measured using
the undivided algorithm with an average task force
size of 13.5 processes. The vertical lines are BOZ
confidence intervals for the load=1.0 curve for a
single task force of the given size.

Figure 10 shows the relative number of time slices
given to each size of executing fragment for large task
forces (30-50 processes) using the undivided algorithm
under three different system loads The righitmost point
in each curve is the overall coscheduled fraction for
task forces with sizes between 30 and 50.

29

ol
_§ .
o9
= o r
-
-3
So07
%
o .9

0.5

0.4 8 : Lom05

Tugngle = Losd 10

o3 Cuce » Lang 20

0.2

0.1

: . :' g-—o- _=:x;;g_ -

o2 D3 04 08 06 07 08 0 1D
Fraction of Task Force Executing

_Figure 10. The fraction of time slices given to exe-
cuting fragments of various sizes for task forces
with 30-50 processes, measured using the undivided
algorithm with an average task force size of 13.5
and no idle task forces.

5.8. Efficiency of Allocation and Scheduling

The simulatoer gathered data about the amount ¢f
work involved in allocation and scheduting: see Table 1.
During allocation the undivided aigorithm ,required
many more potential task force locations to be checked
than either of the other two algorithms. The continuous
algorithm consistently required the least number of
checks bul prodiiced somewhat less coscheduling as a
result. The econtinucus and undivided algorithms pro-
vided smoother processor scheduling, with only about
half as many vonlext swaps occurring in each time siice
compared to the matrix algerithm.

0.0 a1

Matrix Canleiutus Undivided
Algentnm Algonthm Algorithm
Average number of posilions
examined rlunng each ollocaton 1% 13 87
Average lraction of processors
Lconlell Swapping sach ime slice & 37 37

Table 1. Allocation and scheduling statistics for the
three algorithms with a load of 1.8, an average task
force size of 13.5, and no idle task forces,

5.7. Summary

The coscheduling of task forces is in many ways
very similar to thoe dynamic allocation of memory.
Naive scheduling algorithms can easily lcad Lo thrash-
ing; however, wilh a lilile care quile acceptable degrues
of cuscilieduling appear to be obtainable. The algo-
rithms presented here represent three scts of tradeo(ls
involving the cost of allocation and scheduling, the den-
sity of packing (both within a task force and for the sys-
termn as a whole), and forms of internal and external frag-
mentation. The vontinuous algorithm provides fas! alle-
cation and scheduling and dense packing of the systern
as a whole. bul is prone to external fragmentatiocn. It
consistently performs worse than the other two algo-
rithms. The matrix algorithm provides fast sllocalion
and scheduling, but suffers from internal fragmentation
when many large task forces are present, However, its
overall performance is not much worse than the undi-
vided algorithm and its implementation iz the simplest.
The undivided algorithm requires rmore eflort in alloca-
tion than either of the other two algorithms. but pro-
vides for dense packing both within task forces (they
are always allocated contiguously) and for the system as

2 -r-ﬁ-m-ﬂ

a whole; this resulted in insehritivity of the algorithm to
several conditions that degraded the performance of
the other slgorithms.

For moderate system loads (around 1.0} a cos-
cheduling effectivencss of between 0.7 and 0.9 can be
expected. Application programmers can expect small
task forces to be coscheduled almost all the time under
almost any conditions; under moderate loads large task
forces will be coscheduled about half the time with the
average executing fragment containing about four fifths
of the processes of the task force.

Some caution must be exercised in interpreting the
simulation results, since the algorithms and /or simula-
tion model do. not include several factors that could
eflect performance. As mentioned in Seetion 5.1,
scheduling dependencies between the processes of a
task force are not modeled: this simplification make
the results presented here pessimistic. Neither the
simulator nor the algorithms take into account the pos-
sibility that task forces may expand or shrink in size
dynamicaliy. The algorithms assume that any process
may be assigned Lo any processor: this may not be a
valid mssumption in some systems. Finally, the distribu-
tions used to model task force size and other parame-
ters could turn out to be inappropriate; to date, ne
data is available to validate these choices. It is
encouraging to note that the simulation results were
only mildly sensitive to several factors such as task
force size and idie fraction, This suggests that changes
in the distributions would have only amall effects on the
results of the simulations.

8. Conclusions

This paper has shown how scheduling algorithms
designed for systems with independent processes break
down when they are applied to collections of processes
that interact frequently, Naive short-term schedulers
result in wasteful context swaps which can be avoided
by keeping a process’ execution state loaded if it is
likely to be waiting for only a short amount of time.
Naive long-term schedulers cause process thrashing to
occur. This problem is more difficult to aveid; three
algorithms for coscheduling were described, and simula-
tion resuits showed that ali three provided substantial
degrees of coscheduling, although one algorithm con-
sistently sutperformed the others by 10-20%.

Because of its simplicity, the metrix algorithm was
implemented in Medusa, Unfortunately, user load on
Medusa has been light, so it has not been possible to
validate the simulations with the actual system.

7. Acknowledgments Predeep Sindhu played an impor-
tant role in the development of the ideas presented
bere and implemented pauses as part of the Meduss
communication mechanisms. Peter Hibbard and Don
Scelza participaied in early discussions of coscheduling
techniques.

8. References
[Denning 70] Denning, P.J. Virtual memory. Com-

puting Surveys 23 (Sept. 1970), 153
188,

[Habermann 78] Habermann, AN, Fniroduction io
ineraM Siwtern Decion. Science

Operating System Des ig
Research Associates, Chicago, IL.
1871.

[Nelson B1)

[Ritchie 74]

[Spector B2]

{Swan

- {Ousterhout 80]

77]

Nelson, B.J.' Remole Procedure Call.
Technical Report, Xerox Palo
Research Center, CSL-B1-9, May 1981.

Qusterhout, J.K., Scelza, DA, and
Sindhu, P.S. Medusa: an experiment
in distributed operating system
structure. Comm. ACM £3.2 (Feb.
1980), 92-105. o
Ritchie, D.M. and Thompson, K. The
Unix time-sharing system. Comm.
ACM 177 (July 1974), 385-375.
Spector, A.Z. Performing Remote
Operations Efficiently on & Local
Compuler Network. Comm. ACH 25 .4
{April 1982), 248-259. o
Swan, RJ., Fuller, S.H, =and
Siewiorek, S.P. Cm®* - = modular,
multi-microprocessor. Proc. AF/PS
1877 NCC, 46. AFIPS Press, Arlington,
VA 1877, 645-855.

