

Fiz: A Component Framework for Web Applications

John K. Ousterhout
Department of Computer Science

 Stanford University

Abstract

Fiz is a framework for developing interactive Web applications. Its overall goal is to raise the level of programming
for Web applications, first by providing a set of high-level reusable components that simplify the task of creating
interactive Web applications, and second by providing a framework that encourages other people to create addi-
tional components. Components in Fiz cover both the front-end of Web applications (managing a browser-based
user interface) and the back end (managing the application's data). Fiz makes it possible to create components that
encapsulate complex behaviors such as Ajax-based updates, hiding many of the Web's complexities from applica-
tion developers. Because of its focus on components, Fiz does not use mechanisms such as templates and model-
view-controller in the same way as other frameworks.

1 Introduction
Although the World-Wide Web was initially conceived
as a vehicle for delivering and viewing documents, its
focus has gradually shifted from documents to applica-
tions. Facilities such as Javascript, the Document Ob-
ject Model (DOM), and Ajax have made it possible to
offer sophisticated interactive applications over the
Web. In the future it is likely that more and more of
the world's interesting applications will be delivered via
the Web, displacing the traditional model of installable
binaries.

Unfortunately, creating an interactive Web application
today is not an easy task. Some of the problems are
inherent in the Web, such as the separation between
server and browser, and the numerous languages and
technologies that must be combined in a Web applica-
tion. Other problems come from the development
frameworks and libraries available today, which are too
low-level. The result is that application developers
spend too much time building complex facilities from
scratch; there are few high-level reusable components
available to Web developers, and it is difficult for de-
velopers to carry over code from one application to the
next.

This paper describes Fiz, a new server-side framework
for Web applications. Fiz’ goal is to simplify Web
development by raising the level of programming: in-
stead of building from scratch, developers create appli-
cations quickly using a library of flexible components
ranging from high-level objects such as navigation bars
and tree views down to smaller components such as
specialized value editors. In addition to its built-in li-
brary of components, Fiz provides a framework that
encourages the development of new components and
the composition of existing components into even lar-

ger and more useful structures. We will release Fiz in
open-source form and hope to build a user community
that creates an ever-increasing set of interesting com-
ponents, which will make it dramatically easier to cre-
ate applications that advance the state-of-the-art in Web
interactivity.

The rest of this paper is organized as follows. Section
2 summarizes the intrinsic properties of the Web that
complicate application development, and Section 3
reviews the most common facilities provided by exist-
ing frameworks. Section 4 presents the Fiz architec-
ture, along with the kinds of components it encourages
and some of the infrastructure it provides for creating
components. Section 5 summarizes the implementation
status of Fiz and evaluates Fiz' successes and risks.
Section 6 compares Fiz to other frameworks, and Sec-
tion 7 concludes.

2 Why Web Development is Hard
There are several factors that contribute to the difficulty
of building interactive Web applications:
• The functionality of a Web application is distributed,

with part running on a server near the application's
data and part running in browsers near the applica-
tion's users.

• Web applications must integrate a complex collec-
tion of diverse technologies, including HTML [12],
Javascript [5], CSS [8], DOM[8], URLs, XML[1],
SQL[13], HTTP, SSL, and one or more server-side
languages such as PHP [20], Java [4], Python [11],
or Ruby [6]. Different languages are typically used
for server and browser programming.

• Web applications must support a variety of browsers
with feature sets that are still not 100% compatible.

• Web applications support multiple users with (what
appears to be) a single server. This creates interest-

- 1 -

Stanford CSD Technical Report, January 9, 2009

ing opportunities for collaboration, but forces devel-
opers to deal with problems related to concurrency
and scalability. Popular Web applications must han-
dle 100-1000x the workload of traditional applica-
tions.

• Web applications must be highly customizable. In
the pre-Web GUI world a uniform look and feel was
encouraged, but Web applications strive for unique
appearances and behaviors. This makes it more dif-
ficult to create reusable components.

• The public accessibility of Web applications intro-
duces a variety of security and privacy issues, and
the complexity of the Web development environ-
ment makes it easy for unaware developers to create
security loopholes such as SQL injection attacks.

Creating a prototype implementation of a simple Web
application may seem easy, but it is a much more diffi-
cult proposition to develop a sophisticated application
that is secure, robust, and scalable. Ideally, a good
component set should help to manage the factors de-
scribed above, but these factors also make it difficult to
create such a component set.

3 A Brief History of Web Frameworks
The features of current Web frameworks arose through
a series of systems implemented over the last ten years;
this section reviews four major developments that ex-
plain the current state-of-the-art.

The first Web applications were enabled by the CGI
(Common Gateway Interface) protocol. Prior to CGI,
Web servers returned only static files. CGI defined a
mechanism that maps certain URLs to executable pro-
grams instead of files; for those URLs the Web server
invokes the executable as a subprocess. The subproc-
ess receives the URL as input, generates an HTML
Web page, and writes the contents of the page to its
standard output, which is then returned to the request-
ing browser. CGI programs are written using a variety
of languages such as Perl or C++.

The CGI mechanism is stateless: a new subprocess is
invoked for each incoming request, and the subprocess
exits upon completion of the request. If a CGI applica-
tion needs to maintain state across a series of requests,
it must store that information in a file or database and
reload it for each new request. The stateless property
has become a hallmark of Web applications; although it
complicates application development it improves ro-
bustness (no state is lost if a server machine crashes
between requests) and simplifies scaling (incoming
requests can be distributed across a cluster of server
machines without worrying about which one holds the
state for that request).

CGI programs were quickly replaced by first-
generation Web frameworks such as PHP [20] and Java
servlets [2]. In these frameworks the runtime system
for a particular language is bound tightly to the Web
server (to avoid the overhead of starting a new process
for every request) and augmented with Web-specific
library packages that provide features such as the fol-
lowing:
• Parsing incoming URLs and dispatching to an ap-

propriate piece of code for the URL
• Interfacing to a variety of backend databases and

information sources
• Using browser cookies to implement sessions, which

store the state for an ongoing interaction with a par-
ticular browser

• Manipulating information in formats such as HTML
and XML.

First-generation frameworks also introduced templates
to simplify HTML generation. A template is an HTML
document that has been annotated with code in the
framework's language. To generate a Web page the
template is expanded by replacing the annotations with
HTML computed by the code. The code in the annota-
tions can consist of simple variable substitutions, more
complex statements that compute content, or even loop-
ing structures that replicate portions of the template
(such as the rows of a table). Templates have become
the centerpiece of nearly all Web frameworks.

Recent years have seen the arrival of a second genera-
tion of Web frameworks. These frameworks provide
ORM (Object Relational Mapping) facilities that sim-
plify the use of relational databases in Web applica-
tions. One of the best examples of ORM is provided by
the Rails framework [21]. Rails associates each data-
base table with a class in the underlying Ruby lan-
guage, with one object of the class for each row in a
table and one field of an object for each column of a
row. Rails manages the movement of information be-
tween the database and the objects, so Web developers
can think in terms of the Ruby classes rather than SQL.
Rails also manages relationships between database ta-
bles so that they appear as convenient references be-
tween collections of Ruby objects rather than foreign
keys. Similar ORM facilities have appeared in other
second-generation frameworks such as Django [3], and
ORM libraries have been added to some first-
generation frameworks.

Second-generation frameworks also introduced a styl-
ized division of labor for Web page generation based
on the model-view-controller (MVC) paradigm [16,17].
Model classes manage back-end data using the frame-
work's ORM mechanism. Views are templates that gen-

- 2 -

Stanford CSD Technical Report, January 9, 2009

erate the final Web page. Controllers provide the glue
that ties the pieces together. For example, in Rails each
incoming URL is dispatched to a controller, which in-
vokes models to fetch data for a Web page, then in-
vokes a view to generate the page's HTML.

Concurrently with the server-side developments de-
scribed above, an assortment of Javascript library pack-
ages has evolved for use in writing code for the
browser. The initial motivation for such libraries was
to hide incompatibilities between browsers, but over
time they have incorporated numerous additional facili-
ties such as:
• Extensions to the DOM (Document Object Model)

to make it easier to modify HTML documents in the
browser

• Extensions to the Javascript object model
• Communication with the server (e.g., using the Ajax

mechanism)
• Animations and other dynamic effects
• Higher-level user interface controls, such as a calen-

dar or rich-text editor
Some examples of popular Javascript packages are Pro-
totype [14], Scipt.aculo.us [19], Jquery [10], and YUI
[22]. Google’s GWT framework also supports the de-

velopment of higher-level controls for the browser,
using an approach where developers write in Java,
which is then translated automatically to Javascript [9].

Although current frameworks and library packages
provide a vast improvement over the CGI approach, the
server-side facilities are still relatively low-level: their
abstractions look more like the Web's raw materials
(HTML, Ajax, SQL, etc.) than the applications they are
used to create. Some browser-side frameworks provide
higher-level components, but these components exist
only on the browser; it is up to application developers
to integrate the browser components with server-side
facilities.

4 Fiz Architecture
Fiz is a Web development framework written in Java
that runs on Web server machines. Its overall goal is to
raise the level of programming for Web applications so
that developers can spend more time thinking about the
structure and behavior of their applications and less
time dealing with arcane details of the Web. Fiz' ap-
proach is to encourage the creation of high-level com-
ponents: it contains a collection of library procedures

Fiz Dispatcher

Front End
Back End

Data Manager Data Manager Data Manager

TableTre

SQL
Database

Enterprise Application Remote Feed

Tabs Form

Sections

Interactor Interactor

URL

Data
Requests

Figure 1. A Fiz application consists of a front end, which services browser requests and manages the application's user in-
terface, and a back end, which manages the application's data. The primary components for the front end are sections, which
implement specialized chunks of user interface, such as a form or a collection of tabs. Each incoming request for a URL is
dispatched by Fiz to an interactor object; the interactor creates a Web page by assembling sections. The back end of an ap-
plication consists of one or more data managers, each of which provides access to a particular kind of information. Data
requests provide asynchronous communication between sections and data managers.

- 3 -

Stanford CSD Technical Report, January 9, 2009

that provide a framework for developing and integrat-
ing components, and it also contains an initial set of
components.

Figure 1 shows the overall structure of a Web applica-
tion based on Fiz. Fiz applications divide into two ma-
jor parts: a front-end, which handles browser commu-
nication and creates the application's user interface, and
a back-end, which manages the application's data.
Each of these parts offers opportunities for interesting
components. Sections 4.1 and 4.2 discuss front-end
components and Section 4.3 discusses back-end com-
ponents. Sections 4.4 and 4.5 describe additional Fiz
APIs to simplify the creation and integration of compo-
nents. Section 4.6 shows how components can encap-
sulate complex behaviors such as dynamic Ajax re-
quests, and Section 4.7 describes the ways in which Fiz
allows components to be customized.

4.1 Sections
Unlike most Web frameworks, Fiz is not organized
around templates (though it does have a “tiny template”
mechanism that is discussed in Section 4.5). Whereas
templates encourage designers to start by thinking
about HTML, Fiz encourages designers to focus on the
high-level structure of a Web page using section ob-
jects. A section represents a self-contained element of
a page such as a table, a form, a navigation bar, or an
embedded advertisement. Some sections may be spe-
cial-purpose, such as an application-specific navigation
bar; others, such as forms, tables, and tab sets, can be
parameterized to support a variety of uses. For the
most part HTML is generated by section objects and

therefore invisible to developers. Figure 2 shows an
example of how a Web page might be broken down
into sections.

Figure 2. An example Web page, exploded to display
one possible decomposition into sections.

Each kind of section is implemented by a Java class. A
developer instantiates a section by providing a collec-
tion of configuration properties (name-value pairs)
containing overall parameters for the section. In addi-
tion, many sections contain one or more subcompo-
nents (either other sections or smaller objects), which
the developer also provides.

Figure 3 illustrates how a simple section can be instan-
tiated in Fiz, as well as the way in which different Fiz
components work together to generate HTML for the
section. Figure 3 creates an instance of TableSection,
one of the built-in section classes defined by Fiz. The
code in Figure 3(a) specifies a single configuration
property (request), whose value (getStudents)
indicates a source of data for the section. The code also
creates a Column object for each column in the table.
Column is a Fiz class with two methods: one to gener-
ate HTML for the column's header and another to for-
mat data for that column in each row of the table's
body. The TableSection collects the data for the table
using the mechanism described later in Section 4.2,
creates the overall HTML table structure, and provides
conveniences such as error handling and HTML
class attributes to enable odd-even row displays and
other CSS effects. Then for each row of the table Ta-
bleSection invokes the Column objects in turn to pro-
vide the HTML inside the <td> element for that col-
umn. For the non-header rows, TableSection passes all
of the data for that row to the Columns; each Column
extracts the particular data values that it needs. In sim-
ple cases only a single value is needed for a particular
column, but the first column in Figure 3 uses three data
values.

The components used in Figure 3 are reusable and cus-
tomizable in several ways:
• The TableSection class can be used for a variety of

tables with different data sources, different numbers
of columns, and different formatting of individual
columns.

• This mechanism supports a variety of different col-
umn displays by defining classes such as Link,
which format values for the body of the table. For
example, the Checkbox class extracts a specified
value from the input data, treats it as a Boolean
value, and displays one of two images: an empty box
(for false) or a checked box (for true).

• Classes such as Link or Checkbox can be used in
other sections besides just TableSections: they are
examples of formatters, which use a record contain-

- 4 -

Stanford CSD Technical Report, January 9, 2009

new TableSection(
 new Dataset("request", "getStudents"),
 new Column("Name", new Link("@last, @first", "student?id=@id")),
 new Column("Student Id", "@id"),
 new Column("Graduation Year", "@grad"),

ing name-value pairs to generate HTML in a class-
specific fashion.

Figure 3 illustrates Fiz’ goal of providing components
that look more like the finished application than its raw
materials. The TableSection is defined by describing
how the data for the table is mapped to columns and
how the individual columns are displayed. There is no
HTML in Figure 3 except for the URL template for the
Link. HTML is generated by the various components,
and Fiz automatically handles issues such as quoting
HTML special characters that might appear in data val-
ues (see Section 4.5).

Fiz currently provides six built-in section classes; see
Table 1 below.

4.2 Interactors and Dispatching
In a Fiz application Web pages are created by assem-
bling collections of sections; this task is performed by
interactors. Interactors are the top-level classes that
manage interactions with the browser. Each interactor
handles a collection of related URLs, such as those for
viewing and editing inventory, or those for posting and
viewing a blog. For example, a blog-management in-
teractor might support URLs for viewing blog entries,
searching a blog, posting a new entry, or commenting
on an existing blog entry. The URLs handled by an
interactor may include both those for generating normal
HTML pages and those for responding to Ajax re-
quests. In many ways Fiz interactors are similar to con-

Figure 3. An example of a Fiz section: (a) Java code to construct the section; (b) the data for the section as returned by
the getStudents request, consisting of name-value pairs for each row; (c) the appearance of the section in the resulting
Web page. Configuration properties for the section are provided using a Dataset object containing name-value pairs (see
Section 4.4). Each Column generates HTML for one column of the table. For example, the last Column will display
“GPA” in the header row, and for each body row it will extract the value named gpa from the data for the row and display
that value (the string “@gpa” is a simple form of template where “@” causes variable substitution; see Section 4.5). For
the first column of the table a Link object generates the HTML for the body rows; its arguments specify two templates,
one for the column's text and another for a URL that will be visited when the text is clicked.

 new Column("GPA", "@gpa"))

2149821 Alice Anderson 2009 3.6
2147322 Bob Benson 2010 2.9
3990714 Carol Collins 2012 3.2
4027333 David Dawson 2009 3.8
4019329 Ellen Evans 2012 3.7

id first last grad gpa

(a)

(b) (c)

CompoundSection Manages a group of child sections; includes a general-purpose layout mechanism to describe ar-
rangements of sections, and optionally displays a custom frame around the entire group.

FormSection Displays a collection of FormElements, each of which allows a particular item in a record to be
edited. Also handles form posting and error handling (error messages are displayed inline in the
form).

TabSection Displays a collection of tabs, with control over what happens when a tab is clicked (display a new
URL, invoke an Ajax request, or invoke a Javascript statement).

TableSection Displays data in a two-dimensional array.
TemplateSection Displays literal HTML strings and simple templates.
TreeSection Displays a hierarchical structure that can be expanded and collapsed dynamically by clicking on

“+” and “-” boxes; uses Ajax requests to expand nodes.

Table 1. The section classes currently implemented by Fiz.

- 5 -

Stanford CSD Technical Report, January 9, 2009

troller classes in Rails.

For each URL handled by an interactor there is a
method in the interactor called an entry method. The
entry method generates a Web page by creating a col-
lection of sections and passing that collection to a
method in Fiz called showSections. ShowSec-
tions renders the page using a multi-pass algorithm
described in Section 4.3 below.

Fiz is responsible for dispatching URLs to interactor
entry methods; these URLs have the form
 /fiz/class/method/…
where class specifies an interactor class and method
specifies a method within that class. The Fiz dispatcher
uses Java reflection to construct an instance of the class
(if it hasn't been referenced in a URL already) and in-
voke method. Any public method of an interactor class
is automatically accessible through a URL if it has a
signature appropriate for an entry method; there is no
need to create a configuration file for dispatching.

4.3 Data Managers and Data Requests
The notion of separating the management of data in an
interactive application from the management of its user
interface has been widely accepted since the original
model-view-controller proposal for Smalltalk [16,17].
This separation makes sense because the same data may
be presented and manipulated in several different ways,
and because the two parts lend themselves to different
developers. Most Web frameworks incorporate this
separation, and so does Fiz.

However, data management in Fiz differs from other
Web frameworks in two significant ways. First, most
frameworks are biased towards relational databases as
the back-end source of data; they provide little or no
support for other data sources and may not even handle
multiple database instances gracefully. Fiz uses a back-
end framework that encourages a variety of data
sources. Second, most frameworks use synchronous
mechanisms that serialize access to data. This approach
is fine for simple applications, but complex applications
such as Amazon.com or Facebook can use data from
dozens or hundreds of sources in single page; they re-
quire parallel execution of data requests to get adequate
performance. Fiz uses an asynchronous approach to
data management, which allows requests to execute in
parallel.

Back-end components in Fiz are called data managers.
A data manager is a Java class that provides access to a
particular kind of data, such as a relational database, a
remote data feed, an existing application, or an applica-
tion-specific file format such as Excel spreadsheets.

Some data managers manage their data directly while
others provide an access layer for data managed by a
remote service or an external application on the same
machine. Data managers can be layered, with one data
manager creating additional functionality on top of
lower-level functions provided by one or more other
data managers. There can be multiple instances of the
same kind of data manager, such as multiple data man-
agers for SQL databases, each providing access to a
different database instance.

A data manager is invoked using a data request object
that provides a rendezvous point between caller and
callee. A data request is initialized with a set of name-
value pairs that specify a particular data manager, an
operation for the manager to perform, and any addi-
tional parameters needed by the operation. Once the
operation has completed the data manager adds result
information to the data request; or, if the request failed
then the data manager adds error information to the
data request. The caller uses the data request to access
the results or error information. The dataset facility
described in Section 4.4 is used for representing the
parameters, results, and error information in a data re-
quest.

Although data requests can be created and invoked syn-
chronously in Fiz, they are typically used in an asyn-
chronous fashion as part of a three-pass mechanism for
rendering Web pages. Recall from Section 4.2 that a
Web page is typically generated by an interactor, which
creates a collection of sections describing the page and
then passes the collection to the showSections
method in Fiz. ShowSections renders the page us-
ing the following approach:
1. ShowSections makes a pass through all of the

sections, invoking the registerRequests
method in each section. RegisterRequests cre-
ates data requests for any data needed by that sec-
tion. Request processing is not initiated at this point;
the data requests are collected in a pool associated
with the Web page. The section retains references to
its requests for use later to retrieve the results.

2. Once every section has had a chance to register its
requests, showSections initiates processing on
all of the requests by passing them to their respective
data managers. At this point each data manager has
a choice: either it can process the request immedi-
ately and synchronously, adding result or error in-
formation to the request and marking the request
complete, or it can return immediately and complete
the request in the background (e.g., by passing the
request to a separate thread for processing). Han-
dling requests asynchronously adds complexity to

- 6 -

Stanford CSD Technical Report, January 9, 2009

3. ShowSections makes another pass through all of
the sections, this time invoking the html method for
each section. Html generates the HTML for the
section, along with any Javascript, CSS, or other in-
formation needed for the section. When the html
method attempts to retrieve result or error informa-
tion from a data request, Fiz checks to see whether
the request has completed; if not, the rendering
thread stalls until the data manager marks the request
complete.

With this approach developers can work in a world that
appears almost entirely sequential, yet gain the benefits
of concurrency between data managers. Interactors and
sections are always invoked sequentially, so their de-
velopers need not worry about concurrency issues. At
the same time, all of the data requests can be handled in
parallel (assuming the data managers are written to be
asynchronous), and this is typically the most time-
consuming part of generating Web pages. Data man-
ager developers are the only ones who have to deal
with concurrency issues, and the concurrency model for
data managers is relatively simple, with most concur-
rency issues (such as synchronization over request
completion) handled automatically by Fiz.

In comparison to the synchronous approach used in
other Web frameworks, Fiz’ mechanism for data man-
agement improves performance in three ways:
• Requests can be executed in parallel.
• If there are multiple requests for the same data man-

ager, the data manager receives them together in a
batch. This may allow the data manager to process
them more efficiently: for example, it can package
them together in a single message exchange with a
remote server, rather than using separate message
exchanges for each request.

• If the same data request is made by multiple sections
(not an unusual occurrence) the requests are merged
into a single request that is shared by the sections.
This avoids redundant processing of the same re-
quest, which would happen in a traditional synchro-
nous approach.

Although Fiz' approach can usually handle data re-
quests in parallel, there are some situations where data
requests must be serialized. For example, the section
structure of a page may depend on user preferences
stored in a database. In this situation the interactor will
first have to issue a synchronous data request to retrieve
the structural information. Once it has this information,
it can create the sections for the page; the remaining
data requests will then proceed in parallel.

4.4 Datasets
In order for a framework to allow a variety of compo-
nents to work together, it must provide a communica-
tion mechanism between the components that is generic
and extensible. The mechanism must be generic in the
sense of being simple and uniform, so that any compo-
nent supporting the mechanism can be combined easily
with any other component supporting the mechanism.
The mechanism must be extensible in the sense that it
must allow components with a deeper understanding of
each other to communicate in a more specialized fash-
ion, without interfering with the more generic commu-
nication supported universally.

As an example of such a generic and extensible mecha-
nism, consider pipes in the Unix operating system [18].
A pipe is a unidirectional stream of bytes from one
process to another. Unix uses pipes as a mechanism for
interconnecting processes and makes it easy (using
various shell programs) to create collections of proc-
esses that communicate via pipes. Pipes are generic in
that they are easy to support and place almost no limits
on the kind of information that can be transmitted.
Pipes are extensible in that readers and writers can im-
pose additional structure on the information in the pipe.
For example, most applications assume that information
is textual, and many applications treat the text as line-
oriented, but other applications make no interpretation
whatsoever of information transmitted via the pipe.
Unix’s pipe mechanism is one of the system's most
powerful features.

Fiz uses a structure called a dataset for communication
between components. In its simplest form a dataset is a
collection of name-value pairs such as the following:

state: California
capital: Sacramento
flower: poppy
2000census: 33,871,648

Both names and values are arbitrary strings; a dataset
may contain any number of entries or none at all. The
value of an entry in a dataset can also be a nested data-
set or an array of nested datasets (see Figure 4); this
allows datasets to represent complex hierarchical struc-
tures. Internally, datasets are stored as hierarchical
hash tables; externally they may be stored in a variety
of formats such as XML, YAML, or Javascript literals
(datasets only use a subset of the features of these ex-
ternal formats).

Datasets are used for numerous purposes in Fiz, includ-
ing the following:
• The parameters for each data request are specified

with a dataset.

- 7 -

Stanford CSD Technical Report, January 9, 2009

• The response for each data request is a dataset. For
example, the response for a TableSection must con-
tain an entry named record whose value is an ar-
ray of nested datasets, each containing the data for
one row of the table.

• If a data request fails, it returns error information in
a dataset. There will always be a message element
containing a human-readable message, but some er-
rors also return additional values that may be useful
in handling the error, such as a culprit value
identifying a particular form field that was invalid.

• Datasets provide configuration properties for sec-
tions and other components. This is more conven-
ient than an ordered list of parameters for the con-
structor, because the components typically support a
large number of optional properties of which only a
few are used in any given instance. Using a dataset
allows the uninteresting properties to be omitted, and
the name-value syntax helps to clarify the properties
that are supplied. (An implementation language of-
fering a keyword-value form for method arguments
might make this use of datasets unnecessary.)

• When an incoming URL contains query values, such
as /a/b/c?id=41243&color=red&size=M,
Fiz makes the query values available in a dataset.
Incoming data from posted forms is handled in the
same way.

• Datasets are used to pass structured data between the
server and browser using the reminder mechanism
described in Section 4.6.

• Configuration information for Fiz is stored on disk
as datasets.

One disadvantage of Fiz datasets is that the Java lan-
guage forces a somewhat verbose notation for defining
datasets. Scripting languages such as Javascript tend to
offer dataset-like features with a more concise syntax.

4.5 Templates
Although Fiz does not encourage the use of templates
as an overall structuring mechanism for Web pages, it
does provide a “tiny template” facility that is useful for
generating HTML inside sections and other compo-
nents. Generating a Web page requires a considerable
amount of string manipulation, typically combining
computed values with static HTML, Javascript, URLs,
etc. The Fiz template mechanism provides two benefits
for such string manipulation: first, its concise syntax
reduces coding and makes it easier to visualize the final
strings that will be generated; second, it automatically
quotes substituted values in the appropriate fashion for
the output being generated.

Templates in Fiz behave roughly the same as templates
in other Web frameworks. A template is expanded by
combining it with a dataset to produce a new string.
Most characters in the template are simply copied to the
output string, but a few patterns cause special process-
ing; for example, if @id occurs in the template, then
the value of the id entry in the dataset is added to the
output string instead of @id. Fiz templates support only
a small set of common substitutions, which were cho-
sen by examining an existing Web application to iden-
tify the most common idioms; see Table 2.

Fiz templates are intended for generating small snippets
of HTML, Javascript, etc. This usage resembles the
format strings used for the C printf function more
than it resembles templates in other Web frameworks,
which are larger objects stored in separate files. Figure
5 shows an example of typical template usage and illus-
trates the conciseness/visualization advantage of tem-
plates over traditional I/O mechanisms.

When Fiz substitutes a value in a template it automati-
cally quotes characters in the substituted value that

Figure 4. A dataset represents a hierarchical collection of name-value pairs, where each name is a string and each value is
either a string, a nested dataset, or an array of nested datasets: (a) an example dataset in its YAML external representation;
name, age, and height have string values, while the value for courses is an array of two nested datasets, each with
name and semester entries; (b) the same dataset defined in Java.

Dataset d = new Dataset(
 "name", "Alice",
 "age", "24",
 "height", "64",
 "courses", new Dataset(
 "name", "Math 104",
 "semester", "Fall 2007"),
 "courses", new Dataset(
 "name", "English 208",
 "semester", "Spring 2008"));

name: Alice
age: 24
height: 64
courses:
 - name: Math 104
 semester: Fall 2007
 - name: English 208
 semester: Spring 2008

(a) (b)

- 8 -

Stanford CSD Technical Report, January 9, 2009

Pattern Action
@name

have special meaning in the output. For example, when
generating HTML a < character in a substituted value
will be converted to the HTML entity <, which the
browser will then display as <. Without the quoting the
browser would interpret the < as the beginning of a tag.
This feature spares developers from adding extra code
to quote special characters, which is tedious and a com-
mon source of errors (forgetting to quote special char-
acters can lead to problems such as SQL injection at-
tacks).

Although Fiz quotes special characters in substituted
values, it does not quote characters in the template
string. This distinction works well in Fiz, since tem-
plates almost always contain meta-characters such as <
that need to retain their special significance in the out-
put, while substituted values almost always contain raw

data that should be treated as literal. Automatic quoting
is more difficult in other templating systems because
the templates are used in a more general fashion where
substituted values often contain special characters that
must not be quoted.

The Fiz templating mechanism is used for more than
just generating HTML. The same mechanism is also
used for generating Javascript, URLs, CSS, and SQL
statements, each of which has its own special characters
and quoting mechanisms. The template methods pro-
vide an optional argument to identify the output format,
and different quoting rules are applied for each format.
For example, consider the task of generating an HTML
tag containing a Javascript event handler: one template
is expanded to generate the Javascript code (using
Javascript quoting), then the result of this template is

Insert the value specified by name into the output string.

@(name) Insert the value specified by name into the output string. Useful when name is
immediately followed by alphabetic characters.

{{template}} If any of the substitutions in template references nonexistent data then do noth-
ing; otherwise expand template.

@name?{template} If name exists then insert its value into the output string; otherwise expand tem-
plate.

@name?{template1|template2} If name exists then expand template1, otherwise expand template2.

Table 2. When a template is expanded each character from the template string is copied to the output string, except for a
few patterns that cause substitutions. If one of the patterns on the left occurs in the template string, its characters are not
copied to the output; instead, the corresponding action on the right is taken.

Template.expand("<table id=\"@id\" {{class=\"@class\"}}>", properties, html);

(a)

html.append("<table id=\"");
html.append(properties.get("id"));
String value = properties.check("class");
if (value != null) {
 html.append(" class=\"");
 html.append(value);
 html.append("\"");
}
html.append(">");

(b)

Figure 5. Templates provide a concise mechanism for substituting dynamic values into formats such as HTML: (a) Java
code to generate an HTML tag using a Fiz template; (b) code that generates the same result using standard Java string
facilities. In each case a <table> tag is added to the html string, substituting the id value from a dataset named
properties; if there is a class value in the dataset then a class attribute is included in the tag. In addition to reduc-
ing code size, the implementation using a template makes it easier to visualize the string that is generated. Furthermore,
the code in (b) does not quote special characters in substituted values, whereas this is handled automatically by the tem-
plate.

- 9 -

Stanford CSD Technical Report, January 9, 2009

used as a substituted value in a second template to gen-
erate the HTML tag (using HTML quoting for any spe-
cial characters in the Javascript).

4.6 Encapsulating Ajax: Reminders
For a component framework to succeed it must support
encapsulation: a developer must be able to use a com-
ponent in a Web page without understanding details of
its implementation. This allows components to hide
complexity from developers. One example of encapsu-
lation in Fiz is Javascript. Many components require
Javascript to be downloaded to the browser to give
them dynamic behavior; this can be done in Fiz without
any awareness of the Javascript outside the component.

A more challenging encapsulation issue arises from
Ajax requests. Ajax is a protocol that allows Javascript
in the browser to issue an HTTP request to the server
and use the results to modify the current page [7]. For
example, consider the TreeSection component in Fiz,
which displays a hierarchical structure and allows the
user to expand and collapse portions of the structure by
clicking on them. In order to handle large trees effi-
ciently, the tree component initially displays only the
top level of the structure; when the user clicks on an
unexpanded node, the browser issues an Ajax request
that returns the children of that node for display. Ide-
ally it should be possible for the tree component to en-
capsulate its Ajax requests: a Web developer should be
able to use the component in a page without knowing
that the component makes Ajax requests and without
having to write any code to deal with the Ajax requests.

The first problem with Ajax requests is dispatching.
One approach is for the interactor that generated the
page to receive any Ajax requests for the page and pass
them on to the appropriate component. Rails encour-
ages an approach similar to this in its controllers, but in
so doing it forces the page developer to be aware of all
of the Ajax requests related to any of its components or
their subcomponents; as pages become more dynamic,
with more Ajax requests, this creates increasing com-
plexity for the page developer.

In Fiz a component can arrange for Ajax requests to be
dispatched directly to it, bypassing the interactor that
generated the page containing the component. This
allows a component to encapsulate the handling of its
Ajax requests so that they are not visible to the page
developer.

However, dispatching directly to a component intro-
duces a problem with state management. In order for a
component to handle an Ajax request it needs access to
the parameters used earlier to create the component,

such as the data request for retrieving the contents of a
node. This information was passed to the component
by the interactor at the time the page was rendered, but
that information is no longer available: it was discarded
after the original page was rendered. If a component is
to encapsulate its Ajax requests, it must have a mecha-
nism for saving its state between the original page dis-
play and later Ajax requests.

One approach is for the component to record its state
on the server, indexed by an identifier for the particular
instance of the component. The instance identifier is
embedded in the Web page and returned with the Ajax
request, allowing the component to locate the saved
state. The problem with this approach is that the server
cannot tell when the saved state is no longer needed:
the user could return to an old page at any time in the
future (using the “Back” button) and cause an Ajax
request. Thus, the server would have to retain the state
for all instances of all components for the life of the
browser session.

Instead of recording state on the server, Fiz uses a
mechanism called reminders, where component state is
passed to the browser and then returned with future
Ajax requests. A reminder is a dataset that can be
moved back and forth between the server and the
browser. Fiz provides facilities that make it easy for a
component to define reminders and arrange for them to
be returned to the server in later Ajax requests; Fiz han-
dles the details of serializing reminders, transmitting
them to the browser as part of a Web page, storing
them in the browser, and returning them to the server in
the Ajax requests. When an Ajax request is dispatched
later to the component, each of the request’s reminders
is available to the component as a dataset. For exam-
ple, when TreeSection issues an Ajax request to expand
a node, the request includes two reminders: one con-
tains overall information for the tree and the other con-
tains information specific to the node being expanded.

Reminders solve the state management problem for
components, but they introduce potential security is-
sues: a rogue browser can read the contents of remind-
ers and can potentially forge reminders. For example,
the reminder for a tree control contains information
describing the data request to issue when expanding a
node: without any protection, a rogue browser could
forge this information, thereby issuing any data request
supported by the server. To prevent this sort of attack
Fiz signs each reminder with an SHA-256 crypto-
graphic checksum based on the session identifier. This
prevents browsers from forging a reminder or using a
reminder in a session other than the one for which it
was defined. Browsers can still read the contents of

- 10 -

Stanford CSD Technical Report, January 9, 2009

reminders; we plan to add encryption to the reminder
mechanism for cases where reminders contain sensitive
information.

Reminders are similar in many ways to cookies, which
are passed back and forth between the browser and the
server to manage Web sessions. However, cookies
contain information that is global to a session, whereas
reminders carry information that is local to particular
sections in particular pages. Reminders are also similar
to “viewstate” information in the ASP.NET framework.

4.7 Customization
Web applications strive for unique appearances and
behaviors. If an application is going to use pre-existing
components, it must be able to customize those compo-
nents to implement the application's desired look and
feel. One risk for a component framework is that the
components will not enable a sufficient degree of cus-
tomization to meet the needs of applications, or that the
effort to customize existing components might be com-
parable to the effort required to build the application
from scratch.

One of the goals for Fiz is to provide a variety of easy-
to-use mechanisms for customization. Here are a few
examples of mechanisms available today:

Configuration properties: as described in Section
4.1, components can be customized with a variety of
parameters.
CSS: Fiz components add class attributes to the
HTML elements they generate, which application
developers can use in CSS stylesheets to modify the
appearance of the components. For example, Table-
Section adds odd and even classes to the <tr>
elements for table rows, which can then be refer-
enced in CSS to display striped backgrounds for the
table. Unfortunately this form of customization ex-
pands the interface of the components by exposing
some of the details of the HTML generated by the
components.
Templates: templates provide a convenient mecha-
nism for a variety of customizations. For example,
the FormSection displays error information next to
form elements that are invalid; the application devel-
oper can provide a template for the error message,
which is expanded in the context of a dataset con-
taining details about the error; this allows the devel-
oper to control what information is displayed as well
as the precise HTML formatting of that information.
Another example is the TreeSection component: the
developer can provide a template for displaying a
particular node, which allows the developer to select

the information to display for the node, one or more
icons to display next to the node, and so on.
Image families: some components use a family of
images to create their appearance; for example, the
TabSection class uses several images to give the
notebook tabs their appearance and to differentiate
the selected tab. A developer can create an alternate
family of images to change the appearance, and sup-
ply the base name for this family as a configuration
property. We will encourage Fiz users to contribute
their custom image families, which we will then dis-
tribute with Fiz to increase the set of appearances
available “out-of-the-box”.

Although Fiz components support customization, they
do not require it: components have default appearances
and behaviors that should be adequate for many pur-
poses.

5 Status and Evaluation
Implementation of Fiz began in January 2008; by Sep-
tember 2008 it had enough functionality for us to begin
using it in the development of a test application (a
community Web site for Fiz). The application has ex-
posed several shortcomings and missing features, many
of which have since been addressed. We are continu-
ing to develop both Fiz and the community Web site in
parallel, using the Web site as driver for Fiz evolution.

We will release Fiz in open-source form in the summer
of 2009, and we will continue to develop Fiz based on
input from users. The community Web site, which will
become available at the same time as the open-source
release, will allow Fiz users to contribute, share, and
rate additional components. Our longer-term goal is to
stimulate the creation of a large and robust set of com-
ponents for interactive Web applications. We hope that
Fiz will encourage contributions on several levels: in
addition to creating new sections and data managers,
users can contribute components for use inside sec-
tions, such as form elements or columns for tables, and
families of images for customizing existing compo-
nents.

To measure the benefits of using components, we im-
plemented three Web page fragments twice, once using
Rails templates and once using Fiz components. Figure
6 shows the results: the component-based approach
reduced code size for each fragment by 5-10x. The
examples in Figure 6 are relatively simple ones; as
more complex components are developed, it seems
likely that the gap between components and templates
will grow.

- 11 -

Stanford CSD Technical Report, January 9, 2009

0
20
40
60
80

100
120
140

Rails Table Fiz Table Rails Form Fiz Form Rails Tabs Fiz Tabs

Li
ne

s
of

 C
od

e

Although these small-scale comparisons are encourag-
ing, the most important questions have to do with the
scalability of the Fiz approach. For example, is there a
large space of interesting reusable components that can
be created? Can new components be created by com-
posing existing components? How well will Fiz work
for large applications: can most of the applications’
functionality be created with existing components, or
will each application require the creation of a large
number of new components? Are the components suf-
ficiently customizable to meet the needs of real applica-
tions? We hope that the open-source release of Fiz will
lead to wide enough usage of Fiz to answer these ques-
tions.

Another risk to the success of Fiz is complexity: for Fiz
to succeed it must reduce the complexity of Web appli-
cation development. The Fiz components help by en-
capsulating complex issues so that developers don't
have to consider them. For example, reminders auto-
matically take care of MAC-based integrity checks, and
sections such as TreeSection hide the use of Ajax re-
quests for dynamic updates. However, developers must
now learn about the Fiz component set, which adds
complexity. It is not clear how to measure complexity
quantitatively, so we can only understand Fiz' net im-
pact on complexity by observing usage of the frame-
work in a variety of applications. We hope this will
happen as a result of the open-source releases. In the
meantime, we recognize that our mission is to develop
components that provide maximum power with mini-
mum complexity.

6 Comparisons
Fiz differs from other Web frameworks in several sig-
nificant respects. Most of these differences came about
because Fiz is focused on creating higher-level compo-

nents that hide HTML, whereas most existing frame-
works are focused on generating HTML.

Almost all existing Web frameworks besides Fiz use
templates as the top-level structuring mechanism for
Web pages. This works for simple document-oriented
Web pages but does not work as well for Web applica-
tions: templates encourage the developer to think about
low-level HTML rather than the high-level structure of
the application. Furthermore, Web pages for applica-
tions tend to be highly conditionalized: the templates
end up with too much code to visualize the HTML
structure and too much HTML to visualize the code
structure.

Most templating systems permit templates to reference
other templates and encourage developers to use tem-
plates as the basis for reusable components. However,
templates do not provide a good mechanism for creat-
ing reusable components. Top-level components speci-
fying the overall page structure should contain little or
no HTML, so there is no particular advantage in using
templates to represent them. Lower-level component
templates need to be highly parameterized if they are to
be reusable; this increases the amount of code that they
contain, which exacerbates the problems of the previ-
ous paragraph. Overall, templates work against reus-
able components.

The facilities of an object-oriented programming lan-
guage provide a better basis for creating reusable com-
ponents than templates. Hence Fiz bases its component
mechanism on sections defined as Java classes. This
encourages developers to think more about the top-
level structure of their pages and less about low-level
HTML. Fiz does use templates, but only for what they
do best, which is generating HTML and other low-level
formats inside components. This leads to a different

Rails Javascript

Rails CSS

Rails Template

Fiz

Figure 6. A comparison of Fiz components and Rails templates for implementing three sections: the table from Figure 3,
a form with five text entries, and a tab set with five tabs. The line counts for Rails include the template plus any associated
CSS and Javascript. The numbers for Fiz count lines of Java code to construct the section using existing Fiz components.

34

6

77

12

113

11

5.7x

6.4x

10.3x

- 12 -

Stanford CSD Technical Report, January 9, 2009

style of usage for templates, where there are many
small templates embedded in highly conditionalized
code; the containing code implements much of the con-
ditional behavior, so the templates can employ simpler
substitution mechanisms.

Most existing Web frameworks use an overall applica-
tion structure based on the model-view-controller para-
digm (MVC). However, the division of functionality
between view and controller is a bit unclear in MVC
and different frameworks make the division differently.
Fiz uses a two-part division into back end and front end
(see Figure 1), where the back end is equivalent to the
model from MVC and the front end includes both view
and controller.

Combining view and controller functionality creates a
cleaner separation between components. In the Rails
framework, for example, a controller typically collects
all of the data needed for a page into global variables,
then invokes one or more views (templates) to render
the page using the collected data. This means that the
controller has global knowledge of all the data in the
page. In Fiz, however, each section handles both the
data collection and rendering functions for its part of
the page. This provides better encapsulation, eliminat-
ing the need for global knowledge of the page.

Fiz also differs from other Web frameworks in its data
management. Section 4.3 has already discussed how
Fiz encourages a variety of data managers, rather than
just relational databases, and uses an asynchronous
invocation approach to improve performance. In addi-
tion, Fiz does not use ORM (object-relational map-
ping). Instead of creating a separate Java class for each
database table and instantiating an object of that class
for each row that is processed, Fiz uses a single struc-
ture, the dataset, to represent any row (or collection of
rows) from any table. This makes sense because Web
applications do very little processing of their data; their
primary function is to move data from an input source
into an output Web page and vice versa. Datasets work
well for this because they integrate cleanly with data
managers for input and with templates for generating
Web pages. Most data never needs to be converted to
an internal representation: it arrives as a string, is stored
in the dataset as a string, and is incorporated in another
string for output.

Fiz datasets are similar to several other mechanisms for
representing structured data, such as XML, JSON, and
YAML, and several of these formats can be used to
store datasets externally. The primary benefit of data-
sets is the way they are integrated into the flow of Web
page processing via data requests, templates, reminders,
etc. Datasets provide a flexible integration mechanism

between components in the server and between the
server and the browser.

7 Conclusion
Fiz takes a different approach to Web application de-
velopment than previous frameworks. Whereas previ-
ous frameworks take a bottom-up approach, layering on
facilities to optimize HTML generation, Fiz takes a top-
down approach focused on creating high-level reusable
components. The Fiz framework makes it possible to
create components that encapsulate complex presenta-
tions and behaviors, yet can be instantiated in a simple,
almost declarative, fashion.

The next steps for Fiz will take it in two directions:
first, wider usage in production applications to test its
overall usability; and second, creation of additional
components to see how large a library can be created.
These experiences will provide a more complete
evaluation of how well Fiz raises the level of program-
ming for Web applications.

8 Acknowledgments
Michael Armbrust, David Erickson, Guru Parulkar,
Mendel Rosenblum, Abraham Sebastian, William So-
bel, Eric Stratmann, and Guido van Rossum have im-
proved the presentation of this paper by applying a
critical eye to various drafts.

9 References
[1] Bray, Tim, et al., editors, Extensible Markup Lan-

guage (XML) 1.0 (Fourth Edition), W3C Recom-
mendation (http://www.w3.org/TR/2006/REC-
xml-20060816), 2006.

[2] Coward, Danny, et al., editors, Java Servlet Speci-
fication, Version 2.4, Sun Microsystems, 2003.

[3] Django project home page
(http://www.djangoproject.com/).

[4] Flanagan, David, Java In A Nutshell, O'Reilly Me-
dia, 2005.

[5] Flanagan, David, JavaScript: The Definitive Guide,
O'Reilly Media, 2006.

[6] Flanagan, David, and Matsumoto, Yukihiro, The
Ruby Programming Language, O'Reilly Media,
2008.

[7] Garrett, Jesse James, Ajax: a New Approach to
Web Applications, http://www.adaptivepath.
com/ideas/essays/archives/000385.php.

[8] Goodman, Danny, Dynamic HTML: The Definitive
Referenc, O’Reilly Media, 2006.

[9] Google Web Toolkit home page
(http://code.google.com/webtoolkit/).

[10] Jquery project home page (http://jquery.com/).

- 13 -

Stanford CSD Technical Report, January 9, 2009

- 14 -

[11] Lutz, Mark, Programming Python, O'Reilly Media,
2006.

[12] Musciano, Chuck, and Kennedy, Bill, HTML and
XHTML: The Definitive Guide, O’Reilly Media,
2002.

[13] Ousterhout, John, “Scripting: Higher-Level Pro-
gramming for the 21st Century,” IEEE Computer,
Vol. 31, No.3, March 1998, pp. 23-30.

[14] Prototype project home page
(http://www.prototypejs.org/).

[15] Ramakrishnan, Raghu, and Gehrke, Johannes, Da-
tabase Management Systems, McGraw-Hill, 2003.

[16] Reenskaug, Trygve. Models-Views-Controllers.
Xerox PARC technical notes, December, 1979
(http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-
12-MVC.pdf).

[17] Reenskaug, Trygve. Thing-Model-View-Editor.
Xerox PARC technical note, May 1979
(http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-
05-MVC.pdf).

[18] Ritchie. D.M., and Thompson, K. “The UNIX
Time-Sharing System.” Communications of the
ACM, Vol. 17, No. 7, July 1974, pp. 365-375.

[19] Script.aculo.us project home page
(http://script.aculo.us/).

[20] Tatroe, K., Lerdorf, R., and MacIntyre, P. Pro-
gramming PHP, Second Edition. O’Reilly Media,
April 2006. Also see http://www.php.net/.

[21] Thomas,D., and Heinemeier Hanson, D. Agile Web
Development with Rails. Second Edition, The
Pragmatic Bookshelf, 2007.

[22] Yahoo! User Interface Library home page
(http://developer.yahoo.com/yui/).

	1 Introduction
	2 Why Web Development is Hard
	3 A Brief History of Web Frameworks
	4 Fiz Architecture
	4.1 Sections
	Interactors and Dispatching
	4.3 Data Managers and Data Requests
	4.4 Datasets
	4.5 Templates
	4.6 Encapsulating Ajax: Reminders
	4.7 Customization

	5 Status and Evaluation
	6 Comparisons
	7 Conclusion
	8 Acknowledgments
	9 References

