
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Experience with Rules-Based Programming for
Distributed, Concurrent, Fault-Tolerant Code

Ryan Stutsman, University of Utah; Collin Lee and John Ousterhout, Stanford University

https://www.usenix.org/conference/atc15/technical-session/presentation/stutsman

USENIX Association 	 2015 USENIX Annual Technical Conference  17

Experience with Rules-Based Programming for

Distributed, Concurrent, Fault-Tolerant Code
Ryan Stutsman1, Collin Lee2, and John Ousterhout2

University of Utah1, Stanford University2

Abstract

This paper describes how a rules-based approach allowed

us to solve a broad class of challenging distributed sys-

tem problems in the RAMCloud storage system. In the

rules-based approach, behavior is described with small

sections of code that trigger independently based on sys-

tem state; this provides a clean separation between the

deterministic and nondeterministic parts of an algorithm.

To simplify the implementation of rules-based modules,

we developed a task abstraction for information hiding

and complexity management, pools for grouping tasks

and minimizing the cost of rule evaluation, and a polling-

based asynchronous RPC system. The rules-based ap-

proach is a special case of an event-based state machine,

but it encourages a cleaner factoring of code.

1 Introduction

Over the last decade more and more systems pro-

grammers have begun working on new and challenging

software subsystems that manage distributed resources

in a concurrent and fault-tolerant fashion. We call

these subsystems DCFT modules (Distributed, Concur-

rent, Fault-Tolerant). DCFT modules are most com-

mon in systems that provide infrastructure for large-

scale applications, such as Bigtable [8], Chubby [6],

Hadoop [2], HDFS [25], RAMCloud [22], Sparrow [23],

and ZooKeeper [15]. A DCFT module typically man-

ages a collection of distributed servers, such as workers

in a MapReduce application or replicas for a chunk of

data; it issues remote requests in parallel to maximize

performance, and it recovers from failures so that higher

layers of software need not deal with them.

DCFT code is different from most systems code be-
cause it must describe behavior that is highly nondeter-
ministic. As a result, DCFT modules are painfully diffi-
cult to implement. For example, the Chubby developers
reported:

Fault-tolerant algorithms are notoriously hard to ex-

press correctly, even as pseudo-code. This problem

is worse when the code for such an algorithm is

intermingled with all the other code that goes into

building a complete system. [7]

The current state of development for DCFT modules

resembles the situation in the mid-1960s for synchro-

nizing concurrent processes. In both cases, a new and

challenging style of programming was becoming more

common; there were no widely accepted design patterns

for implementing these modules, so each team developed

its own set of ad hoc implementation techniques. In

the case of synchronization, many different approaches

were tried over a period of more than a decade, and there

was considerable discussion about which approach was

best. By the early 1980s the systems community had

mostly settled on locks and condition variables, and this

approach has been the dominant one for managing small-

scale concurrency over the last three decades. We hope

that this paper will provide useful data to fuel the discus-

sion of DCFT modules, and that agreement will eventu-

ally emerge that makes it easier to implement these chal-

lenging systems.

This paper describes our experiences implementing

several DCFT modules in the RAMCloud storage sys-

tem [22, 24]. After struggling with our first implementa-

tions, we noticed that each of the DCFT modules ended

up organized around a collection of rules. In this rules-

based approach, the behavior of a module is described

with a small set of code snippets that trigger indepen-

dently based on the module’s state. The order of exe-

cution is not determined a priori, but rather by the evo-

lution of the module’s state in response to events in the

distributed system.

Since discovering this commonality, we have used the

rules-based approach explicitly in more recent DCFT

modules; these modules have been considerably easier

to develop than the early DCFT modules. Rules provide

a clean mechanism for expressing the nondeterminism of

a DCFT module while allowing the vast majority of code

to be written in a traditional imperative style.

This paper makes three contributions. First and fore-

most, it provides the first in-depth discussion of how to

implement DCFT modules in a practical large-scale sys-

tem. The paper introduces two of the DCFT modules in

RAMCloud, describes why they were hard to implement,

and discusses the design choices we made for RAM-

Cloud along with their implications. We believe that

the problems and solutions for RAMCloud are general

enough to be relevant for a variety of other systems.

Second, the paper describes the implications of a

rules-based approach on system structure. We found sev-

eral abstractions useful in structuring rules and imple-

menting efficient rules-based subsystems:

18  2015 USENIX Annual Technical Conference	 USENIX Association

• A task structure combines a set of related rules with

a collection of state variables. Each task uses its

rules and state variables to achieve a particular goal,

such as replicating an object. Tasks make it easier

to manage rules and understand their behavior.

• A pool is a simple scheduler that improves the effi-

ciency of rule evaluation. Each pool manages a col-

lection of related tasks; it separates inactive tasks

(those that are in their goal state) from active tasks

and evaluates rules only for the active tasks.

• A polling-based asynchronous mechanism for re-

mote procedure calls (RPCs) provides an efficient

and convenient way to incorporate remote commu-

nication into a rules-based module. Asynchronous

RPCs provide a better factoring than messages be-

cause they allow many error conditions to be han-

dled entirely within the RPC system.

These facilities allowed rules to be incorporated simply

and naturally into the RAMCloud system.

The paper’s third contribution is to demonstrate the

value of the rules-based approach. Rules allowed us

to solve a wide range of problems in RAMCloud us-

ing a small amount of code (only 30-300 lines of rules-

based code for each DCFT module). Rules are also ef-

ficient: when used in the critical path of RAMCloud’s

write operations, rules overheads account for only about

200-300 ns out of the total write time of 13.5 µs. The

rules-based approach is a specialized form of an event-

driven state machine, but it results in cleaner factoring

and simpler code than the traditional approach to state

machines. We reimplemented the scheduler for Hadoop

MapReduce (which uses the traditional approach) using

rules; our rules-based implementation replaced 163 state

transitions with only 19 rules.

2 DCFT modules

A DCFT module is a piece of code that runs on a sin-

gle machine but coordinates a collection of distributed

resources. For example, the resources might be a group

of worker machines, each of which will process a subset

of the data in a scalable computation. Or, the resources

might be storage servers, out of which a subset will be

chosen to store replicas for a chunk of data. In many

cases the management complexity is concentrated in a

DCFT module on a single machine. The other machines

are simply slaves that respond to requests; the slaves are

simple enough that they do not require the DCFT ap-

proaches discussed in this paper. In other cases, such as

consensus protocols, each machine runs an independent

DCFT module.

Most of the work of a DCFT module involves com-

municating with other machines, and this introduces two

challenges. First, communication is expensive enough

that DCFT modules typically issue concurrent requests

to improve performance. Second, distributed resources

may fail. For example, a worker may crash before com-

pleting its computation, or a storage server may crash and

lose all of its replicas. A DCFT module must detect fail-

ures and take recovery actions such as restarting a com-

putation on a different worker or creating new replicas to

replace the lost ones. Ideally, the complexities of distri-

bution, concurrency, and fault tolerance are encapsulated

within the DCFT module, so that it provides a simple and

fault-free API for its clients.

The rest of this section describes two DCFT modules

from the RAMCloud storage system, which will be used

as examples in the remainder of the paper. RAMCloud

contains several other DCFT modules besides these two;

they are described in Table 2 in Section 6.

2.1 Membership notifier

RAMCloud’s cluster membership notifier is a relatively

simple DCFT module. Each server in a RAMCloud clus-

ter needs to know about all of the other servers currently

in the cluster. A special server called the cluster coordi-

nator maintains the master copy of cluster membership

information, called the server list, and it must notify all

of the other servers whenever a server enters or leaves the

cluster. The membership notifier runs on the coordinator

and is responsible for propagating server list changes to

the rest of the cluster.

The notifier uses RPCs to send updates to other

servers. In order to update the cluster quickly, it sends

updates to multiple servers concurrently. Additional

server list updates may occur while the notifier is work-

ing; when this happens, the notifier batches multiple up-

dates in future RPCs in order to minimize the total num-

ber of RPCs. The notifier must ensure that each server

eventually receives all updates, and that all servers ob-

serve server list changes in the same order.

The membership notifier must handle a variety of

faults. For example, a server may crash while a notifi-

cation RPC to it is underway. If some servers are slow

to respond to RPCs, this must not prevent other servers

from receiving timely updates. Temporary network out-

ages may cause update RPCs to fail; these RPCs must be

retried.

2.2 Replica manager

The most complex DCFT module in RAMCloud, and the

one that motivated much of our thinking about DCFT

code, is the replica manager. The replica manager han-

dles log replication for storage servers. Each RAMCloud

storage server, called a master, organizes its DRAM as

an append-only log of data, which is divided into tens

USENIX Association 	 2015 USENIX Annual Technical Conference  19

Master In-Memory Log Append

object

to log and

replicate

Concurrently

recreate

lost replicas

Backup Servers

S3 S4 S5

S3S3

S3S4 S4

S4 S4

Figure 1: The replica manager is responsible for ensuring

that each of a master’s log segments is properly replicated

on backups. In this example new data has recently been ap-

pended to the log head (S5), so it is being replicated. In

addition, a backup has crashed, so the replica manager is

replacing lost replicas for segments S3 and S4.

of thousands of 8 MB segments (see Figure 1). Each

segment must be replicated on the secondary storage of

several other servers, called backups. An independent

replica manager module runs on each master; its job is

to ensure that the segments on that master are properly

replicated. When new data is appended to the head seg-

ment, the replica manager must update the replicas for

that segment. If a backup server crashes, the replica man-

ager must create replacements for any replicas stored on

that server.

In addition to the requirements above, the replica man-

ager must also enforce constraints between segments.

For example, in order to ensure that the log head can be

identified unambiguously during crash recovery, an ini-

tial header must be written to a new head segment before

the previous head is closed by writing a footer to it, and

the footer must be written before any data can be written

to the new head segment. See [26] for details on these

constraints.

The replica manager is under particularly stringent

timing constraints, since it is on the critical path for ba-

sic write operations. A master cannot respond to a write

request from a client until the new data has been fully

replicated. In order to minimize write latency (currently

about 13.5 µs end-to-end for small objects) the replica

manager must issue update requests in parallel for all of

the replicas of the head segment.

3 How we ended up with rules

We did not consciously choose a rules-based approach

for RAMCloud’s DCFT modules: the code gradually as-

sumed this form as we added functionality over a series

of refactorings. When we built the first DCFT modules

in RAMCloud, such as the ones described in the previ-

ous section, we had no particular point of view on how to

write such code, and we did not know that DCFT mod-

ules would require an unusual approach. Thus, we ini-

tially tried to write each module as a monolithic piece of

code that solved a problem from start to finish using a

traditional imperative approach. However, this approach

broke down almost immediately because of nondeter-

minism caused by concurrency and faults. To handle the

nondeterminism, the code disintegrated into fragments

that needed to execute relatively independently. None of

our DCFT modules has reached anywhere near complete

functionality with an imperative implementation.

For example, in the replica manager, the disintegra-

tion was initially caused by the desire to replicate seg-

ments concurrently. Different replicas could be in differ-

ent states and could progress at different rates, so it didn’t

make sense to manage the replicas with a deterministic

global algorithm. The most natural approach was to treat

each replica independently.

Fault tolerance caused additional disintegration of the

code. Failures have the effect of undoing work that

was previously completed, thereby requiring earlier steps

to be redone. For example, in the replica manager, if

a backup crashes while receiving a replica, the replica

manager must redo the process of selecting a server to

store the replica. Failures can occur at many points, and

different failures may require different amounts of work

to be redone. As a result, it isn’t possible to code an

algorithm from start to finish. It makes more sense to

think about the algorithm in terms of steps that make in-

cremental progress, such as selecting a backup server or

transmitting the segment header to the server for a par-

ticular replica. The execution order of the steps is non-

deterministic, based on concurrency and failures.

Given a large set of relatively independent code frag-

ments, we faced the question of how to manage their exe-

cution. We considered a fine-grained threaded approach,

but quickly rejected this possibility. The replica manager

must manage thousands of segments, with several repli-

cas per segment, so using a separate thread per replica, or

even per segment, would have been too inefficient [27].

Furthermore, multi-threading would only have handled

the code disintegration caused by concurrency; it would

not have addressed the disintegration caused by fault tol-

erance. In addition, threads were not needed from a per-

formance standpoint: most of the work of a DCFT mod-

ule consists of managing RPCs to other servers, with

only a few RPCs typically outstanding at a time.

We also considered a coarse-grained approach to

threading like SEDA [27], where tasks pass through a

series of stages with each stage served by one or a few

threads. However, the inter-thread communication re-

quired for this would have been unacceptable given our

requirements for low latency (for example, using a con-

dition variable to wake a thread takes about 2 µs; RAM-

Cloud servers process simple requests in about 1 µs).

Thus, we decided to manage all of the code fragments

for each DCFT module in a single thread. This left the

20  2015 USENIX Annual Technical Conference	 USENIX Association

problem of deciding the order in which fragments should

execute in the thread. Writing an intelligent dispatcher

that always knew what to do next was infeasible; the or-

der depended on nondeterministic events such as RPC

completions and failures, and there were complex de-

pendencies between fragments (for example, the footer

cannot be replicated for one segment until the header has

been replicated for the following segment). As a result,

we decided to let the fragments schedule themselves.

Each fragment has an associated condition, which tests

state variables to determine when it is appropriate for the

fragment to run. The DCFT module operates by repeat-

edly testing conditions and executing the fragments for

the conditions that are satisfied. Although this may ap-

pear to be expensive, we developed a few simple tech-

niques that make this approach efficient (see Section 5).

Over time, we noticed that all of our DCFT modules

disintegrated in the same way and ended up with similar

features. Furthermore, these features resembled rules-

based programming. Since then we have adopted the

rules-based approach for all new DCFT modules, and we

have developed infrastructure in RAMCloud to make the

rules-based approach efficient and easy to use. Section 4

describes the approach at a conceptual level, and Sec-

tion 5 describes how we implemented it in RAMCloud,

and the supporting infrastructure that we developed.

In retrospect, we realized that DCFT modules require

a highly unconstrained execution order; structures that

restrict the order are likely to cause problems. For exam-

ple, our first implementation of the membership notifier

ran synchronously: each time the coordinator modified

its server list to indicate the entry or exit of a server, the

rest of the cluster was notified before returning from the

modification. During this time, the server list lock was

held. However, if a server crashed during the notification

process, deadlock could result; the notifier couldn’t com-

plete without knowing about the crashed server (other-

wise it would keep attempting to update that server), and

it couldn’t mark the server crashed without acquiring the

lock. The rules-based version of this module never per-

forms synchronous operations, which allows it to adapt

to server list changes. We now use deadlock as a “ca-

nary in the coal mine:” if a module experiences dead-

lock, it may be a sign that its execution order is overly

constrained and that we need to convert it to the rules-

based approach.

As another example, we considered using the C++ ex-

ception mechanism to handle errors, but it is too restric-

tive to handle all of the error cases. Specifically, an ex-

ception handler can only catch exceptions in the calls

nested beneath it, but the steps in a DCFT module do

not follow a sequential or nested pattern. For example,

the replica manager must replace segment replicas that

are lost when a backup crashes. If a lost replica is for an

Cond. Action

Cond. Action

Cond. Action

Cond. Action

... ...

State

RulesEvent Handlers

...Ev
en

ts

Figure 2: In a rules-based approach, code is divided into

rules, each of which has a condition that tests state variables,

and an action that is executed if the condition is satisfied.

Rules can trigger in any order permitted by their conditions.

The state is modified by handlers for external events and by

the actions of some rules, which then allows new rules to

trigger.

older segment that is closed and inactive, then no thread

is replicating it, and there is nowhere to deliver an excep-

tion.

4 The rules-based approach

We use the term rules-based to describe a style of pro-

gramming where there is not a crisp algorithm that pro-

gresses monotonically from beginning to end. Instead,

the top-level controlling code of the module is divided

into small chunks, called actions, which can potentially

execute in any order (see Figure 2). Each action has an

associated condition that determines when the action can

execute; the condition is expressed as a predicate on the

module’s state variables. Together, an action and its as-

sociated condition constitute a rule.

A rules-based module operates by repeatedly select-

ing a rule whose condition is satisfied and then execut-

ing that rule’s action. Each action makes incremental

progress towards some goal (such as proper replication

of a segment); the module executes rules repeatedly until

it reaches the goal state. The goal is also described as a

predicate on the module’s state variables.

Actions can modify the state of the module or initiate

external operations such as RPCs to other servers. Each

action is nonblocking, and faults and external events have

no effect on an action once it starts executing. If an ac-

tion turns out to involve blocking or must handle nonde-

terminism due to faults, then it must be split into multiple

actions in different rules. For example, an action cannot

both initiate an RPC and wait for it to complete, since

that would require the action to block and would expose

it to nondeterministic failures of the RPC.

Nondeterminism manifests itself between actions, in

the form of events. An event is an occurrence outside

the direct control of the DCFT module that affects its

behavior, such as:

USENIX Association 	 2015 USENIX Annual Technical Conference  21

Rules

Rule Condition Action

R1 No backup server selected. Choose an available server to store replica.

R2 Header not committed, no RPC outstanding. Start RPC containing segment header.

R3 Header RPC completed. If backup rejected request, clear server assignment for replica. Otherwise, mark

header committed and mark prior segment to allow footer replication.

R4 Uncommitted data, no RPC outstanding,

prior footer is committed.

Start write RPC containing up to 1 MB of uncommitted data.

R5 RPC containing data completed. Mark sent data as committed.

R6 Segment finalized, following header com-

mitted, footer not sent, no RPC outstanding.

Start RPC containing footer.

R7 Segment footer RPC completed. Mark footer as committed and mark following segment to allow data replication.

Events

Event What Happened Handler

E1 RPC completed (or failed). Update RPC object to indicate completion.

E2 New data added to segment. Increment count of uncommitted bytes ready for replication.

E3 Backup server failed. Cancel any RPCs outstanding to server. For all replicas stored on the failed server:

cancel server selection; reset replica header, footer, and data to unsent and uncom-

mitted.

Table 1: A partial list of the rules and events for managing one replica of a particular log segment. In the normal case, rules

execute in order from R1 to R7 (R4 and R5 may trigger many times). Some rules test (R4 and R6) or modify (R3 and R7) state

from multiple segments. If an RPC fails, no actions are taken other than to mark the state “no RPC outstanding”; the rules will

automatically retry it. The handler for E1 is implemented by the RPC system.

• The completion of an RPC.

• The failure of a server.

• A new server joining the cluster (for the member-

ship updater).

• The addition of new data to the head segment (for

the replica manager).

When an event occurs, a handler updates state variables

as shown in Figure 2; these state changes then allow new

rules to trigger. For example, when an RPC completes,

the RPC subsystem sets a state variable associated with

the RPC.

The rules-based approach is similar in many ways to

event-based programming. However, in event-based pro-

gramming an event typically triggers actions directly. In

the rules-based approach an event handler merely up-

dates state variables; actions are then triggered based on

the new state. In our experience, this two-step approach

results in a cleaner factoring of code than the traditional

event-based approach (see Section 8).

As an example, Table 1 shows some of the rules

and events for managing a single segment replica in the

replica manager described in Section 2. Rule R4 speci-

fies the following predicate on a segment replica:

• some data appended to the segment has not been

transmitted to the backup storing the replica, and

• no replication RPC is outstanding to the backup,

and

• the preceding segment in the log has already com-

mitted its footer (so is safe to write to this replica).

If this condition is met, then the replica manager starts

an RPC to send uncommitted data to the backup storing

the replica. If the RPC completes successfully, a state

variable is set, which allows R5 to execute. If a backup

fails, event E3 executes: it cancels any RPCs outstand-

ing to the failed backup, then iterates over the full list

of segments in the log, resetting the replication state for

any replica assigned to the failed backup. After the state

is reset, recreation of the replicas happens automatically,

just as it does during normal operation, starting with rule

R1.

We found it natural to program with rules because they

reflect the inherently nondeterministic structure of the

problems being solved. Rules separate the determinis-

tic parts of a module (actions) from the nondeterministic

parts (events). Each action implements one of the basic

steps of the module. In this problem domain it is diffi-

cult to describe all of the control flows from one step to

another, so the rules-based approach does not even try.

Instead, it describes the control flow in terms of the con-

ditions that determine when each action executes, inde-

pendently of how that state was reached. This results in

a clean code factoring.

5 Implementing Rules

This section describes how we implemented the rules-

based approach in RAMCloud, with emphasis on two is-

sues: (a) achieving a clean code factoring, and (b) in-

tegrating rules-based DCFT modules cleanly and effi-

22  2015 USENIX Annual Technical Conference	 USENIX Association

ciently with the rest of RAMCloud. We introduced two

new abstractions to manage rules: tasks, which provide

modularity by associating a set of rules with a collection

of state variables, and pools, which reduce the cost of

rule evaluation by separating tasks into active and inac-

tive groups. The rules-based approach requires an asyn-

chronous communication mechanism; we chose to im-

plement an asynchronous RPC system, which provides a

cleaner factoring than a message-based approach. In ad-

dition to discussing these abstractions, this section also

describes how events are handled and the role of threads

in processing rules.

5.1 Tasks

The primary abstraction for implementing rules in RAM-

Cloud is a task. Tasks provide modularity for rule sets,

and they make it easy to use rules within a system mostly

programmed in an imperative style. A task consists of

three elements: a collection of state variables, a set of

rules, and a goal. The collection of state variables is im-

plemented as an instance of a class, and the rules are im-

plemented by an applyRulesmethod on the class. Each

invocation of applyRules makes one pass over all the

rules for that task, testing conditions and invoking ac-

tions for any conditions that are satisfied. In its simplest

form, the body of applyRules consists of a sequence of

if statements, one for each rule.

The goal of a task represents the outcome that the task

is trying to achieve, such as ensuring proper replication

of a single segment or updating all of the server lists in

the cluster to reflect a change on the coordinator. A goal

can be expressed as a predicate on the task’s state vari-

ables. Goals are reminiscent of invariants, but we chose

to use a different term because goals are unmet during

much of the operation of a DCFT module, whereas in-

variants are almost always true.

A DCFT module contains one or more tasks. It oper-

ates by repeatedly calling the applyRules methods on

its tasks until all tasks have achieved their goals. Events

may cause a task to fall out of its goal state (for exam-

ple, a server may crash, or new data may arrive that re-

quires replication). If this happens, the DCFT module

resumes processing rules until all tasks have once again

reached their goal states. RAMCloud uses a polling ap-

proach, continually testing rules for tasks not in their goal

state. Section 7 describes how to use rules in environ-

ments where sleeping is preferable to polling.

Many DCFT modules contain only a single task; the

RAMCloud membership notifier is one example. Its state

includes the coordinator’s server list (including its ver-

sion number), the version number of the server list stored

on each server in the cluster, a list of recent updates,

where each update mutates a server list from one ver-

sion to the next, and a list of outstanding RPCs. The task

contains three rules:

• Condition: there exists a server whose server list is

out of date with respect to the coordinator’s list, and

for which there is currently no outstanding RPC.

Action: initiate an RPC to that server, containing

the updates not yet received by that server.

• Condition: there are updates that are no longer

needed (they have been received by all servers in

the cluster).

Action: delete those updates.

• Condition: an outstanding RPC has completed.

Action: if the RPC succeeded, update the version

number stored for that server to reflect the updates

it just received.

The goal of the membership notifier is to reach a

state where the update list is empty. The notifier is

implemented as a thread that repeatedly invokes the

applyRules method until the goal is achieved, then

sleeps until the coordinator’s server list changes.

We try to structure our applyRules methods to make

it easier for the programmer to reason about the overall

behavior of the task. For example, we tend to order the

rules in an applyRules method to match the order in

which they will occur in the normal case without errors.

This preserves enough ordering in the code for the devel-

oper to understand how the code is intended to progress.

For tasks with a complex state space, it can sometimes

be difficult to ensure that the rules cover all possible

states. In these cases, we write the task’s rules using a

set of nested if statements, each of which always has an

unconditional else clause. This approach ensures that

all possible states have been considered; exactly one ac-

tion executes each time applyRules is called. Some of

these cases may not contain code, which means that state

is waiting for an event; the empty block serves as docu-

mentation that the state was considered.

5.2 Handling Events

In addition to invoking rules, a DCFT module must also

handle events, which are occurrences outside the mod-

ule that modify its state. Events are asynchronous with

respect to the DCFT module, so they must synchronize

with the DCFT module’s rules engine in order to update

state. In RAMCloud this is typically done with a tradi-

tional locking approach. For example, in the membership

notifier, the only events other than RPC completions are

modifications to the coordinator’s server list, which also

create new entries in the update list. A lock synchro-

nizes these modifications with the execution of rules, and

a condition variable is used to wake up the rules engine

if it is sleeping when the server list is modified.

USENIX Association 	 2015 USENIX Annual Technical Conference  23

RPC completion events are handled specially using

state variables; this mechanism is described in Sec-

tion 5.5.

5.3 Threading

There are several ways we could have chosen to use

threads in implementing rules. One possibility would

be to employ threading on a fine-grain basis, with one

thread for each task or perhaps even one thread for each

rule; however, this is unnecessary and inefficient. For

RAMCloud we chose a coarse-grain approach where

each DCFT module executes in a single thread and eval-

uates its rules sequentially. There is little incentive to use

multiple threads within a DCFT module because DCFT

modules spend most of their time waiting for RPCs to

complete. The concurrency of a DCFT module comes

from concurrent execution of RPCs to other servers, not

from concurrent execution of the module’s internal code.

If a DCFT module’s functions include significant local

processing then multiple threads might make sense for

that module, and Section 7 describes how this can be im-

plemented, but we have not yet encountered any modules

where this is the case.

Using a single thread per DCFT module eliminates

the need for most locks within a DCFT module, which

makes the module both simpler and faster. For exam-

ple, rules from one task can safely test and modify state

variables from other tasks without synchronization (see

rules R4 and R7 in Table 1). However, most DCFT mod-

ules must respond to some events generated outside the

module, and locks are needed to synchronize these event

handlers with the DCFT rules. This is typically imple-

mented with a lock around each call to applyRules.

Different DCFT modules can execute concurrently in

RAMCloud, since they use different threads.

5.4 Pools

Many of RAMCloud’s DCFT modules are simple ones

with only one task, but other modules have multiple

tasks. For example, the replica manager uses one task

for each segment stored on the server (typically tens of

thousands). Evaluating all of the rules for all of these

tasks is prohibitively expensive, so we introduced a pool

abstraction to make rule evaluation efficient. A pool is a

simple scheduler for a collection of related tasks. Pools

reduce the overhead of rule application by dividing tasks

into two groups: active tasks, whose rules must be eval-

uated, and inactive tasks, whose rules can be skipped. A

task stays active until it achieves its goal, at which point it

becomes inactive. Typically, only a small subset of tasks

are active at a time, so testing rules is efficient. Over its

life, a single task may be activated and deactivated many

Active Task List

Segment

Task

Segment

Task

Inactive

Tasks

Pool

Thread

Failure

Segment

Task

Segment

Task Segment

Task

Segment

TaskSegment

Task
Segment

TaskSegment

Task

Figure 3: The replica manager’s pool and its associated

tasks. Each task manages the replication of a single seg-

ment. The pool thread continually evaluates rules for ac-

tive tasks (those that have not yet met their replication goal).

When a task meets its replication goal it becomes inactive

and its rules are no longer evaluated. Server failures cause

the state of some tasks to be reset, and the affected tasks are

reactivated. Testing rules is efficient, since there is rarely

more than one segment (the head) under active replication at

a time.

times, since failures and other state changes can return a

task to a state where its goal is no longer met.

Each pool is implemented as a thread associated with

a list of active tasks. Whenever the list contains at least

one task, the thread cycles through the tasks, invoking

their applyRules methods. When the list is empty the

thread sleeps.

For example, the replica manager contains a pool with

one task for each segment; the task’s goal is to maintain

three complete replicas of the data in the segment. When

new data is added to the head segment, the corresponding

task is activated (see Figure 3). When the task catches up

in replicating its data, its goal is reached, so it is deacti-

vated. Once a segment is completely filled by the server

and its task finishes replicating it, then its task is deac-

tivated forever unless one of its replicas is lost due to a

failure. In this case the task is reactivated to begin recre-

ating the lost data. At any given time, most segments are

fully replicated, so the replica manager pool usually only

has to test rules for a few segment tasks at a time.

5.5 Asynchronous RPCs

The rules-based approach requires an asynchronous

communication mechanism because actions that initiate

remote requests cannot wait for completion (blocking

would prevent other rules from firing; it would also ex-

pose actions to nondeterminism, since remote commu-

nication can fail). To meet this requirement, we im-

plemented an asynchronous RPC mechanism based on

polling. This section describes how the RAMCloud RPC

system simplifies the implementation of rules, and why it

results in a cleaner code factoring than alternatives such

as callback-based RPCs or message-based programming.

24  2015 USENIX Annual Technical Conference	 USENIX Association

In RAMCloud all RPCs are inherently asynchronous.

Each RPC is represented with a C++ object; the construc-

tor for the object forms the request message and initiates

transmission of that message. The RPC object contains

a state variable that can be tested to determine whether

the RPC has completed. If the state variable indicates

completion, another method may be invoked on the RPC

object to retrieve results or failure information. Each

RPC object also supports a synchronous wait method

that polls the state variable until the RPC has finished.

This approach fits naturally with rules-based program-

ming: DCFT modules keep RPC objects as part of their

state, and the conditions for rules test the RPC objects for

completion (see Table 1 for an example). An alternative

approach for asynchronous RPCs is to invoke a callback

function when an RPC completes. However, callbacks

are awkward because they must synchronize their execu-

tion with rules that might be executing concurrently. The

state variable provides a simpler form of synchronization

between the completion of the RPC and the rules engine.

RAMCloud uses polling not only for asynchronous

RPCs in DCFT rules engines, but also for synchronous

RPCs invoked outside DCFT modules. Polling works

well in RAMCloud because the expected completion

time for RPCs is only a few microseconds. Blocking a

thread to wait for an RPC serves little purpose: by the

time the CPU could switch to another task, the RPC will

probably have completed, and the polling approach elim-

inates the latency overhead for waking the blocked thread

when the RPC completes.

An alternative to asynchronous RPCs would have been

to use a messaging approach, with separate request and

response messages. However, we found that RPCs pro-

duce a cleaner code factoring by allowing more func-

tionality to be implemented transparently in the RPC

mechanism; this simplifies the code in DCFT modules.

Remote procedure calls automatically associate each re-

quest message with the corresponding response message.

In a pure message-based approach, higher level software

must make this association, which increases its complex-

ity. Furthermore, the RPC approach allows some er-

rors to be detected and handled transparently in the RPC

system, whereas a message-based approach must expose

these errors to higher-level software. RAMCloud’s RPC

system allows the creation of customized modules that

recover automatically from many errors. For example, if

a network connection fails, a recovery module will au-

tomatically open a new connection and retry; or, if an

RPC fails with an error indicating that the target server no

longer stores the desired object, a recovery module will

automatically find the correct server and retry the request

with that server. As a result, many of RAMCloud’s RPCs

return no errors except those caused by bad arguments:

all system errors are handled internally by the RPC sys-

tem. In a message-based approach, these problems must

be handled by higher-level software.

6 Evaluation

This section discusses the strengths and weaknesses of

rules, based on our experiences in RAMCloud.

6.1 Benefits

Thinking in terms of rules has allowed us to produce

new DCFT modules more quickly, with fewer refactor-

ings before reaching satisfactory solutions. Specifically:

• The task and pool abstractions simplify the devel-

opment of DCFT modules. Tasks serve a purpose

similar to that of monitors [19]: a monitor helps to

modularize synchronization code by encapsulating

a lock with a collection of state variables and a set

of methods that manipulate those variables; a task

helps to modularize DCFT code by encapsulating

a collection of state variables with rules and events

that manipulate those variables to achieve a goal.

Both of these structures provide a framework that

reduces the number of decisions a developer must

make to produce a working module.

• The applyRules methods bring all of the rules for

a task together in a few pages of code, making it

easier to understand the task’s behavior.

• It is relatively easy to add rules to an existing DCFT

module when new issues are discovered.

• It is straightforward to integrate rules-based mod-

ules into the RAMCloud system. We use rules-

based code surgically in only a few applyRules

methods, while the vast majority of the system is

programmed in a traditional imperative fashion.

Table 2 summarizes each of the seven DCFT modules

in RAMCloud, with two overall conclusions. First, the

table shows that the rules-based approach can be used

to implement a variety of tasks, including different ap-

proaches to replication, coordinating workers executing

in parallel, and crash recovery. Second, the rules-based

approach allows the nondeterministic parts of the sys-

tem to be concentrated in a small amount of code, so

that the vast majority of the system can be written using

a simpler imperative style. The applyRules methods

in RAMCloud range in size from 30-300 lines, which is

only a small fraction of the overall DCFT modules. All

of the rules-based code in RAMCloud amounts to only

about 1,100 lines, out of a total system size of more than

50,000 lines.

One potential problem with the rules-based approach

is the cost of testing rule conditions, which happens re-

peatedly. We measured this cost for the RAMCloud

replica manager, which is the most time-sensitive DCFT

USENIX Association 	 2015 USENIX Annual Technical Conference  25

DCFT Module Functionality Task Rules Events applyRules

Types code

Membership notifier Notifies all servers of changes to coordinator’s server list 1 3 3 36

Replica manager Maintains a specified number of replicas of each segment

on a master

1 23 3 258

Recovery manager Executes on coordinator to recover crashed master: locates

complete copy of log, splits the master’s tablets,

coordinates many masters to replay log and recover

partitions

4 12 2 299

Recovery master

replay

Executes on recovery masters during crash recovery: reads

log segment replicas from backups, replays entries,

replicates new data

1 3 0 230

Backup replica

recovery

Executes on backups during crash recovery: reads segment

replicas, divides log entries into buckets for different

recovery masters

1 4 2 31

Multi-read Executes on clients: reads many objects concurrently using

batched requests to multiple servers

1 2 2 75

Indexed read Executes on clients: retrieves index entries from one or

more secondary index servers, then reads the

corresponding objects from other servers

1 14 2 132

Table 2: Summary of DCFT modules in RAMCloud. “Task Types” counts the number of different kinds of task (not instances) in

the module. “Rules” counts the total number of rules in all task types. “Events” counts only module-specific events (it excludes

RPC completion events, which are handled automatically by the RPC subsystem). “ApplyRules code” counts lines of code

(not including comments) in all applyRules methods. Some of the line counts include additional code not directly related to

processing rules.

module in RAMCloud (it is on the critical path for all

write operations). The replica manager also has the

largest rule set of all the RAMCloud DCFT modules.

As shown in Figure 4, only a few hundred nanosec-

onds are needed for evaluating conditions in each call

to applyRules. When applyRules takes a signifi-

cant amount of time to execute, it is because of actions

that initiate RPCs and handle completions. Furthermore,

only two invocations of applyRules are on the critical

path for each write: the first (which issues replication

RPCs) and the last (which receives the results from the

last replication RPC). Based on Figure 4, we estimate

that testing conditions accounts for 200-300 ns out of a

total time of about 13.5 µs for writes.

6.2 Challenges

It is not always easy to identify modules that require

the rules-based approach. The natural tendency is to

code any new module in an imperative style (especially

for programmers not already familiar with DCFT mod-

ules and rules), and it is easy to underestimate the im-

plications of fault tolerance. Thus, we sometimes find

ourselves attempting to implement new DCFT modules

without rules. When this happens, corner cases result in

refactorings that gradually break up the code flow, until

eventually we realize that we need to switch to a rules-

based approach. The introduction of rules usually sim-

plifies the code, and seemingly intractable problems sud-

denly become tractable. For example, the introduction

of rules in the membership notifier eliminated deadlocks

that had plagued several previous versions of the code.

The greatest challenge in using rules is to get out of

the traditional mental model where an algorithm is de-

fined monolithically. Instead, the algorithm must be de-

fined as a collection of independent small pieces, each of

which makes incremental progress towards a goal. These

pieces become the actions of rules, and conditions and

event handlers are added to invoke the actions appropri-

ately. Our experience is that once a developer adopts this

mental model, the actual rule set follows fairly quickly,

and it is straightforward to incorporate the rules into the

overall system.

It can be difficult to visualize the behavior of a DCFT

module from a collection of rules. However, we think

this problem is inevitable, given the nondeterminism that

the rules must capture: nondeterministic solutions will

always be harder to understand than deterministic ones.

We do not advocate the use of rules as an overall archi-

tecture for applications. Asynchronous nondeterministic

programming is fundamentally more difficult than tradi-

tional imperative programming, so it should only be used

where it is absolutely necessary.

26  2015 USENIX Annual Technical Conference	 USENIX Association

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000

F
ra

c
ti
o

n
 o

f
In

v
o

c
a

ti
o

n
s

applyRules Execution Time (ns, log scale)

Time w/o RPC actions
Total time

Figure 4: Cumulative distribution of the execution time of

the applyRules method for the RAMCloud replica man-

ager, measured using YCSB Workload A [9] to generate

writes of 1000-byte objects. “Total time” includes the cost

of actions as well as condition checks. “Time w/o RPC ac-

tions” excludes time spent in actions that initiate RPCs and

process RPC results. Most invocations of applyRules oc-

cur while waiting for RPCs to complete; these invocations

test conditions but no actions fire.

7 Rules Without RAMCloud

Although most of our experience with rules is in the con-

text of RAMCloud, we believe that the rules-based ap-

proach also makes sense for other applications. This sec-

tion discusses modifications of the rules approach that

may be appropriate in environments other than RAM-

Cloud.

A polling approach to rules evaluation makes sense in

RAMCloud’s low-latency environment, but in applica-

tions with high communication latency it makes more

sense for the rules engine to sleep while waiting for

events. The rules approach can accommodate sleeping

with two modifications. First, the rules engine must

be able to determine when it is safe to sleep. To do

this, applyRules methods must return an indication of

whether any rules triggered. If no rules triggered, then no

state changes were made, so no rules will trigger in the

future until an event occurs. In this situation, the pool

can deactivate the task just as if it had reached its goal

state. In fact, with this mechanism for sleeping, no spe-

cial handling is needed for goal states: the mechanism

for sleeping will handle them automatically. Once all of

the tasks in a pool are inactive, the pool can sleep. The

second modification for sleeping is that the rules engine

must wake up again when necessary. To implement this,

each event must be associated with a task; when the event

occurs, the task is reactivated and its pool is awakened.

Most of the rest of the rules mechanism still applies,

even in environments without polling. For example, the

task abstraction still makes sense as a way of encapsulat-

ing a rule set with its state variables. Pools are still use-

ful, both for minimizing the number of rules that must

be tested and also as the mechanism for sleeping. Asyn-

chronous RPCs retain their advantages over messages or

synchronous RPCs, as described in Section 5.5.

One additional modification that may be appropri-

ate in some environments is to relax RAMCloud’s one-

thread-per-DCFT-module restriction. If some actions in-

volve significant local processing, then it may be desir-

able to allow other rules to execute concurrently with

them. Concurrency can be implemented using an ap-

proach similar to that for asynchronous RPCs: the ac-

tion dispatches its work to a separate worker thread and

then returns, so that the rules engine can process other

rules while the worker thread executes. When the worker

thread completes, it sets a state variable just like an RPC

completion, which can then cause other rules to trigger.

If the worker thread needs to access state variables dur-

ing its execution, then it must synchronize with the rules

engine.

In summary, most of RAMCloud’s rule mechanism

carries over directly to other environments, and with a

few small changes the mechanism can handle issues we

have not yet experienced in RAMCloud, such as high-

latency communication and long-running actions.

8 Event-driven state machines

The rules-based approach emerged so consistently in all

of our DCFT modules that we initially thought it might

be inevitable. However, we have since discovered that

other systems use different approaches for DCFT mod-

ules. The most common alternative appears to be an

event-driven state machine; Chubby [6] and Hadoop [2]

are examples of this approach. In this section we com-

pare the rules-based approach to this alternative, and we

argue that the rules-based approach produces cleaner and

simpler code.

An event-driven state machine is a system with one or

more state variables, whose behavior is determined by

events. When an event occurs, the state machine takes

actions based on the current state and the event. The ac-

tions can alter the state, which affects the way that future

events are handled.

The state machine definition is broad enough that it in-

cludes the rules-based approach as a special case. How-

ever, in most state machines the actions are determined

directly from the events. Rules use a two-step approach

where event handlers only modify state and never take

actions. Rules then trigger based on the resulting state,

which reflects the sum of the outside events.

The difference between these two approaches is sub-

tle, but the rules-based approach results in a cleaner code

factoring. In DCFT modules, the current state of the

system is more important than how the system got to

that state, so it is cleaner to structure code around state,

not events. A single event may need to trigger many

actions, and the same action might be triggered from

multiple events. For example, the replica manager may

USENIX Association 	 2015 USENIX Annual Technical Conference  27

State Machine States Transitions Distinct

Job 14 82 27

Task 7 24 16

TaskAttempt 13 57 15

Total 34 163 58

Table 3: Hadoop MapReduce 2.4 manages task scheduling

using 3 state machines. For each state machine the table lists

the number of explicitly named states, the total number of

transitions between states, and the number of distinct actions

among all the transitions for the state machine.

need to choose a backup for a particular replica either

because a new segment is being created, or because an

existing replica was lost in a crash. The traditional state

machine approach results in considerable duplication of

code, which is not present in the rules-based approach.

To demonstrate the advantages of the rules-based

approach, we analyzed the job scheduler in Hadoop

MapReduce 2.4, which uses the state machine approach

described above. The overall goal of the job scheduler

is to schedule a collection of tasks across a group of

servers. The module manages a group of objects, with

each object controlled at any given time by one of three

state machines (see Table 3). In total, the three state

machines contain 34 states, with 163 separately-defined

transitions, where a transition describes the actions to

take when a particular event occurs in a particular state.

Of the 163 transitions, only 58 have distinct actions:

the other 105 transitions are duplicates. Furthermore,

upon analysis of the actions, we found that many of

the “distinct” transitions are near-duplicates. For ex-

ample, rather than writing one error cleanup action that

works across many states, MapReduce contains numer-

ous nearly-identical cleanup actions, each specialized

slightly for the state and event that trigger it.

For comparison, we reimplemented the MapReduce

job scheduler using a rules-based approach, with each

state machine replaced by one task. We used Python

for the rules-based implementation because of its rapid-

prototyping capabilities and verified by hand that each of

the 163 transitions in the Java state machines is covered

by the rules-based implementation. Our Python imple-

mentation is complete enough to schedule and run simple

jobs. The source code for the Python implementation is

available on GitHub along with the corresponding code

for the Java state machine [3].

The rules-based implementation of the MapReduce

scheduler is significantly simpler than the state machine

implementation: a total of 19 rules in 3 tasks provided

functionality equivalent to the 163 transitions in the state

implementation. Each of the three applyRules meth-

ods fits in a screen or two of code (117 total lines of code

and comments between the three applyRulesmethods),

which makes it possible to view the entire behavior of

each task at once. Furthermore, the order of the rules

within each applyRules method shows the normal or-

der of processing, which also helps visualization. In con-

trast, the state machine implementation required more

than 750 lines of code just to specify the three transition

tables, plus another 1,500 lines of code for the transition

handlers.

Transition handler counts, rule counts, and lines of

code are metrics that are easy to compare, but other met-

rics may provide more insight. For example, more elab-

orate code complexity metrics or a full user study could

help highlight the differences between the approaches.

9 Other Related Work

Several formalisms exist for specifying and reason-

ing about concurrent code. For example, Dijkstra’s

Guarded Command Language (GCL) [11] provides non-

deterministic conditional and loop constructs similar

to the iterative conditional checks used in rules-based

tasks. Hoare’s Communicating Sequential Processes

(CSP) [14] extends GCL to support specification of and

reasoning about interconnected nondeterministic pro-

cesses. GCL and CSP have been influential in the design

of concurrency primitives of programming languages

like the recent Go and Rust systems languages. The

occam [5] programming language adheres to CSP even

more closely; programs in occam tend to follow a rules-

based style.

Lamport’s Temporal Logic of Actions and his TLA+

specification language [18, 28] allow specification of

concurrent systems. TLA+ supports a model checker and

proof system. However, it is not a full programming lan-

guage and cannot be used for implementation. Similar

to our rules, TLA+ specifications use conditional atomic

actions to transition from one state to the next; this may

make it a good fit for verifying rules-based modules.

Rules are also used in other application domains to

solve problems other than DCFT:

• Expert Systems [16] and the General Problem

Solver [21, 20] are AI programs that reason using

heuristic methods; they are implemented as a set of

rules that iteratively transform a knowledge base to

arrive at a solution.

• Make [12] is a utility that builds software based on

user-provided rules. Each rule specifies how to re-

build a particular file, if the current version is out of

date.

• Model Checkers are formal verification tools that,

like rules-based modules, iteratively apply condi-

tional transformations to state variables to ensure

user-specified invariants are preserved.

28  2015 USENIX Annual Technical Conference	 USENIX Association

Actors, originally conceived in the 1970s, have be-

come popular in recent years for building distributed or

concurrent applications [13, 1]. In the actors approach,

a program is divided into independent modules with no

shared state, called actors, which communicate using

asynchronous messages. Actors often handle messages

using an approach like that described in Section 8 for

event-driven state machines (each actor is a state ma-

chine, and messages represent events). However, actors

could also use a rules-based approach, and this would

be advantageous for actors that implement DCFT mod-

ules. We also believe that an asynchronous RPC system

would provide a better communication mechanism for

DCFT actors than asynchronous messages, as discussed

in Section 5.5.

Several groups have developed domain-specific lan-

guages and frameworks for specifying DCFT modules

as a collection of event-driven state machines:

• Chubby [7] is a consensus-based configuration ser-

vice that uses a custom state machine specification

language to simplify the specification of its core al-

gorithm.

• Mace [17] provides a restricted language for speci-

fying state machines that allows specifications to be

verified using a provided model checker. Unlike the

rules-based approach, Mace programs only perform

actions in response to events, though Mace also pro-

vides a construct that generates events in response

to conditions on state.

• P [10] is a graphical language for specifying state

machines that was used to implement the USB de-

vice driver stack of Microsoft Windows 8. P also

allows model checking of state machines.

• SEDA [27] is an event-driven framework for build-

ing highly concurrent services that avoids the over-

head of the thread-per-request approach. SEDA ser-

vices are actor-like; they consist of pipelined stages

interconnected by message queues. Each stage can

optimize throughput by adjusting how many threads

it uses. SEDA doesn’t address fault-tolerance, and it

increases response latency, making it inappropriate

for RAMCloud.

• Bloom [4] is a language for building distributed sys-

tems in which programs are expressed using declar-

ative rules over unordered sets of tuples. A key

benefit of Bloom’s “disorderly” approach is that

it avoids artificial coordination compared to tradi-

tional imperative programs. Conditions on rules

have something of a declarative style in rules-based

code, but actions are programmed in an imperative

style.

10 Conclusion

DCFT modules are becoming increasingly important in

large-scale software systems, but they are difficult to im-

plement and developers today have little guidance on

how to implement them. In this paper we have described

the problems we faced while implementing DCFT mod-

ules in RAMCloud and the rules-based solution that

emerged from our experience. The rules-based approach

results in a simple code factoring because it separates

the deterministic and nondeterministic parts of a DCFT

module. In addition, we found that a few other patterns

and mechanisms encouraged a clean factoring of rules-

based code, including tasks, pools, and an asynchronous

RPC system. With this infrastructure, it was relatively

easy to incorporate rules-based code into the RAMCloud

system, and the rules-based approach has provided clean

solutions to a variety of problems. In comparison to other

approaches we considered, the rules-based approach en-

courages a cleaner factoring of code, which is particu-

larly important given the inherent complexity of DCFT

modules.

Experience with many more systems will be needed

before agreement can be reached on the best way to im-

plement DCFT modules. We hope that our experience

can serve as a basis for additional discussion and experi-

mentation.

11 Acknowledgments

Many people provided helpful feedback on this pa-

per, including Andrea Arpaci-Dusseau, Remzi Arpaci-

Dusseau, Eric Eide, Diego Ongaro, Henry Qin, David

Silver, numerous anonymous conference reviewers, and

our shepherd Ajay Gulati. This work was supported by

STARnet, a Semiconductor Research Corporation pro-

gram sponsored by MARCO and DARPA, and by grants

from Facebook, Google, Huawei, Mellanox, NEC, Ne-

tApp, Samsung, and VMWare.

References

[1] Akka, 2014. http://akka.io/.

[2] Welcome to Apache Hadoop!, 2014.

http://hadoop.apache.org/.

[3] PlatformLab/mappy Git Repository, May 2015.

https://github.com/PlatformLab/mappy.git.

USENIX Association 	 2015 USENIX Annual Technical Conference  29

[4] P. Alvaro, N. Conway, J. Hellerstein, and W. R.

Marczak. Consistency Analysis in Bloom: a

CALM and Collected Approach. In CIDR 2011,

Fifth Biennial Conference on Innovative Data Sys-

tems Research, Asilomar, CA, USA, January 9-12,

2011, Online Proceedings, pages 249–260, 2011.

[5] A. Burns. Programming in Occam 2. Addison-

Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1987.

[6] M. Burrows. The Chubby Lock Service for

Loosely-coupled Distributed Systems. In Proceed-

ings of the 7th Symposium on Operating Systems

Design and Implementation, OSDI ’06, pages 335–

350, Berkeley, CA, USA, 2006. USENIX Associa-

tion.

[7] T. D. Chandra, R. Griesemer, and J. Redstone.

Paxos Made Live: An Engineering Perspective. In

Proceedings of the Twenty-sixth Annual ACM Sym-

posium on Principles of Distributed Computing,

PODC ’07, pages 398–407, New York, NY, USA,

2007. ACM.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,

D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,

and R. E. Gruber. Bigtable: A Distributed Storage

System for Structured Data. In Proceedings of the

7th Symposium on Operating Systems Design and

Implementation, OSDI ’06, pages 205–218, Berke-

ley, CA, USA, 2006. USENIX Association.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-

ishnan, and R. Sears. Benchmarking cloud serving

systems with YCSB. In Proceedings of the 1st ACM

Symposium on Cloud computing, SoCC ’10, pages

143–154, New York, NY, USA, 2010. ACM.

[10] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Ra-

jamani, and D. Zufferey. P: Safe Asynchronous

Event-driven Programming. In Proceedings of the

34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’13,

pages 321–332, New York, NY, USA, 2013. ACM.

[11] E. W. Dijkstra. Guarded Commands, Nondetermi-

nacy and Formal Derivation of Programs. Commu-

nications of the ACM, 18(8):453–457, Aug. 1975.

[12] S. I. Feldman. Make — A Program for Maintain-

ing Computer Programs. Software: Practice and

Experience, 9(4):255–265, 1979.

[13] P. Haller and M. Odersky. Event-Based Program-

ming Without Inversion of Control. In D. Lightfoot

and C. Szyperski, editors, Modular Programming

Languages, volume 4228 of Lecture Notes in Com-

puter Science, pages 4–22. Springer Berlin Heidel-

berg, 2006.

[14] C. A. R. Hoare. Communicating Sequential Pro-

cesses. Communications of the ACM, 21(8):666–

677, Aug. 1978.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.

ZooKeeper: Wait-free Coordination for Internet-

scale Systems. In Proceedings of the 2010 USENIX

Annual Technical Conference, USENIX ATC ’10,

pages 11–11, Berkeley, CA, USA, 2010. USENIX

Association.

[16] P. Jackson. Introduction to Expert Systems.

Addison-Wesley Longman Publishing Co., Inc.,

1990.

[17] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala,

and A. M. Vahdat. Mace: Language Support for

Building Distributed Systems. In Proceedings of

the 2007 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI

’07, pages 179–188, New York, NY, USA, 2007.

ACM.

[18] L. Lamport. The Temporal Logic of Actions. ACM

Transactions on Programming Languages and Sys-

tems (TOPLAS), 16(3):872–923, 1994.

[19] B. W. Lampson and D. D. Redell. Experience with

Processes and Monitors in Mesa. Communications

of the ACM, 23(2):105–117, Feb. 1980.

[20] A. Newell, J. C. Shaw, and H. A. Simon. Report

on a General Problem-solving Program. In IFIP

Congress, pages 256–264, 1959.

[21] A. Newell and H. Simon. GPS, A Program

That Simulates Human Thought. In Computers &

thought, pages 279–293. 1995.

[22] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ouster-

hout, and M. Rosenblum. Fast Crash Recovery in

RAMCloud. In Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles,

SOSP ’11, pages 29–41, New York, NY, USA,

2011. ACM.

[23] K. Ousterhout, P. Wendell, M. Zaharia, and

I. Stoica. Sparrow: Distributed, Low Latency

Scheduling. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles,

SOSP ’13, pages 69–84, New York, NY, USA,

2013. ACM.

30  2015 USENIX Annual Technical Conference	 USENIX Association

[24] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-

structured Memory for DRAM-based Storage. In

Proceedings of the 12th USENIX Conference on

File and Storage Technologies, FAST’14, pages 1–

16, Berkeley, CA, USA, 2014. USENIX Associa-

tion.

[25] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.

The Hadoop Distributed File System. In Proceed-

ings of the 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), MSST

’10, pages 1–10, Washington, DC, USA, 2010.

IEEE Computer Society.

[26] R. S. Stutsman. Durability and Crash Recovery in

Distributed In-Memory Storage Systems. PhD the-

sis, Stanford, CA, USA, 2013.

[27] M. Welsh, D. Culler, and E. Brewer. SEDA: An

Architecture for Well-Conditioned, Scalable Inter-

net Services. In Proceedings of the eighteenth ACM

symposium on Operating systems principles, SOSP

’01, pages 230–243, New York, NY, USA, 2001.

ACM.

[28] Y. Yu, P. Manolios, and L. Lamport. Model check-

ing TLA+ specifications. In Correct Hardware

Design and Verification Methods, pages 54–66.

Springer, 1999.

