
An X11 Toolkit Based on the Tcl Language

John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

Abstract

This paper describes a new toolkit for X11 called Tk. The overall functions provided
by Tk are similar to those of the standard toolkit Xt. However, Tk is implemented
using Tcl, a lightweight interpretive command language. This means that Tk’s func-
tions are available not just from C code compiled into the application but also via Tcl
commands issued dynamically while the application runs. Tcl commands are used
for binding keystrokes and other events to application-specific actions, for creating
and configuring widgets, and for dealing with geometry managers and the selection.
The use of an interpretive language means that any aspect of the user interface may
be changed dynamically while an application executes. It also means that many in-
teresting applications can be created without writing any new C code, simply by writ-
ing Tcl scripts for existing applications. Furthermore, Tk provides a special send
command that allows any Tk-based application to invoke Tcl commands in any other
Tk-based application. Send allows applications to communicate in more powerful
ways than a selection mechanism and makes it possible to replace monolithic appli-
cations with collections of reusable tools.

This paper will appear in the Proceedings of the 1991 Winter USENIX Conference.

An X11 Toolkit Based on the Tcl Language December 4, 1990

1. Introduction

Tk is a new toolkit for the X11 window system [10]. Like other X11 toolkits
such as Xt [1] or the Andrew toolkit [9], Tk consists of a set of C library procedures
intended to simplify the task of constructing windowing applications. The Tk library
procedures, like those of other toolkits, serve two general purposes: framework and
convenience. First, they provide a framework that allows applications to be built out
of many small interface elements called widgets (e.g. buttons, scrollbars, menus,
etc.). The toolkit’s framework makes it possible to design widgets independently,
compose them into interesting applications, and re-use them in many different situa-
tions without re-design. The second purpose of the toolkit is to provide ready-made
solutions for the most common needs of windowing applications. For example, Tk
includes a set of commonly used widgets plus procedures to make it easy to build
new widgets. Using Tk, it is possible to build many interesting windowing applica-
tions by plugging together existing widgets. Many other applications can be built by
constructing one or two new widget types and combining them with Tk’s existing
widgets.

Although Tk’s overall purpose is similar to that of other toolkits, its implemen-
tation has the unusual property that it is based around the Tcl command language.
Tcl is a simple interpretive programming language designed to be embedded in appli-
cations and to work cooperatively with C code in the applications [8]. Tcl programs
can be created and executed dynamically, and all of the functionality of Tk (and of
Tk-based applications) is available through Tcl. This gives Tk a greater degree of
flexibility, dynamic control, and power than other toolkits. For example, Tcl can be
used to modify the entire widget configuration of an application at any time. New
applications can be created by writing Tcl scripts for a windowing shell or for exist-
ing Tk-based applications; C code is needed only for creating new widget types or
data structures.

The most important feature of Tk is that it allows different applications to work
together in powerful ways. Tk provides a remote-procedure-call-like facility that
allows any Tk-based application to invoke Tcl commands in any other Tk-based
application. This results in more powerful communication than the traditional selec-
tion or cut buffer. Current windowing applications are forced by the lack of good
communication to lump large amounts of functionality into a single application. Tk
makes it possible to replace such monolithic applications with collections of smaller
specialized applications that communicate with each other using Tcl commands.
These smaller tools are often re-usable for other purposes, thereby resulting in more
powerful windowing environments.

Tk and Tcl also simplify windowing environments by making a single run-time
command language available everywhere. There is less need for application
designers to invent special-purpose languages or protocols to handle particular situa-
tions: the application can just use Tcl. For example, Tcl serves as a user interface
description language. It is also easier to build a new application because the applica-
tion designer need only implement a few key primitive operations for the application;
Tcl allows those primitives to be composed with other primitives within the

- 1 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

application or in other applications. Tcl also simplifies things for users. Instead of
learning a different command language for each application, a user need only learn
Tcl. The user will then be able to program any Tk-based application merely by learn-
ing the application-specific primitives provided by that application.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the Tcl language and how the Tcl interpreter is embedded in applications. Section
3 summarizes the framework Tk provides for building widgets. Section 4 describes
how widgets are constructed and manipulated in Tk. Section 5 demonstrates the
advantages of Tk with a few examples of user interface programming. Section 6
describes how Tk allows applications to work together by sending Tcl commands to
each other. Section 7 presents the current status of Tk along with some size and per-
formance measurements. Section 8 compares Tk to other toolkits and Section 9 con-
cludes.

2. Summary of Tcl

Tcl stands for ‘‘tool command language.’’ My goal in developing Tcl was to
make it easy to generate powerful command languages for interactive applications.
Tcl is a library package written in C. It implements an interpreter for a simple pro-
gramming language that provides variables, procedures, control constructs like if
and for, arithmetic expressions, lists, strings, and other features. Tcl also allows
applications to extend the generic command set with application-specific commands.
An application need only implement a few basic Tcl commands related to the appli-
cation; when these are combined with the Tcl library a fully-programmable com-
mand language results. The paragraphs below summarize a few of the key features of
Tcl; see [4] and [8] for more information on Tcl and how it has been used.

set a 1000
print foo; print bar

Figure 1. Simple Tcl commands consist of fields separated by white space. The first field is
a command name and the additional fields are arguments for the command. Commands are
separated by semi-colons or newlines.

set msg "Hello, world"
set x {a b {x1 x2}}

Figure 2. Double-quotes or nested curly braces may be used to delimit complex arguments
in Tcl commands. Each of the above commands has three fields in all. If an argument is en-
closed in braces then the contents of the braces are passed to the command without any
further interpretation (newlines and semi-colons are not command separators and the substi-
tutions described in Figures 3-5 are not performed). If an argument is enclosed in quotes,
then the substitutions in Figures 3-5 are performed on its contents.

- 2 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

print $msg
if $i<2 {set j 43}

Figure 3. Dollar signs invoke variable substitution in Tcl commands: the dollar sign and
variable name will be replaced with the value of the variable in the argument passed to the
command.

print [list q r $x]
set msg [format "x is %s" $x]

Figure 4. Tcl commands may contain other commands enclosed in brackets. When this oc-
curs, the nested command is executed and its result is substituted into the argument of the
enclosing command, replacing the bracketed command.

set msg "\{ and \[are special"
print Hello!\n

Figure 5. Backslashes prevent special interpretation of characters like braces and brackets
in Tcl commands. Backslashes can also be used to insert control characters into commands,
as in the second command above.

The Tcl language has a simple syntax with features reminiscent of the UNIX
shells, Lisp, and C. Figures 1-5 summarize the complete Tcl syntax. In their sim-
plest form (Figure 1), Tcl commands are like shell commands: they contain one or
more fields separated by white space; the first field is the name of a command and
the other fields are arguments passed to the command. Unlike UNIX shell com-
mands, Tcl commands return string values. The Tcl syntax includes additional
features for specifying complex arguments, substituting variable values, and execut-
ing nested commands (see Figures 2-5).

Tcl is an embedded language: it is a library that is designed to be linked together
with C applications as shown in Figure 6. The main loop of the application generates
Tcl commands. This could happen in any of several ways, depending on the applica-
tion. One way is to read commands from standard input; this results in a shell-like
program. Another way, used by Tk, is to associate Tcl commands with X events such
as button presses or keystrokes; when an X event occurs, the corresponding com-
mands are executed. When the application has generated a Tcl command it passes it
to a Tcl library procedure for evaluation. The Tcl interpreter parses the command,
performs the substitutions described in Figures 2-5, uses the first field of the com-
mand to locate a command procedure for the command, and then calls the command
procedure to actually execute the command. The command procedure carries out its
function and returns a string result, which the Tcl interpreter returns back to the cal-
ling code in the application.

The Tcl library includes several built-in commands that implement the generic
facilities such as variables and looping. Additional command procedures may be
provided by each application. The application registers its own specific commands
by passing their names and command procedures to Tcl. This information is used

- 3 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

Commands Commands
Application-SpecificBuilt-In

Parser

Init

Tcl Application

Command
Loop

Figure 6. The Tcl interpreter is a C library package that is embedded in applications. The
application generates Tcl commands and provides command procedures for application-
specific commands. Tcl parses the commands and calls a command procedure to execute
each command. Application-specific commands must be registered with the Tcl interpreter,
usually during initialization.

later by the Tcl interpreter when it evaluates command strings. Application-specific
and built-in commands have exactly the same structure; they are indistinguishable
except that built-in commands are registered automatically and users may expect
them to be present in all applications. New commands may be created and deleted at
any time while an application executes.

Control constructs like if are implemented as ordinary commands that make
recursive calls to the Tcl interpreter. For example, the command

if $i<2 {set j 43}

causes the command procedure for if to be invoked. This command procedure
evaluates its first argument as an expression. If the value of the expression is non-
zero, then the command procedure calls the Tcl interpreter recursively to execute the
command ‘‘set j 43’’. It is common in Tcl-based applications for one command
to take another Tcl command as argument and then execute that command, either
immediately or later on.

There is only one official data type in Tcl: strings. All commands, arguments to
commands, command results, and variable values are strings. Some commands
expect their strings to have particular formats (e.g. arithmetic expressions or Lisp-like
lists), but whenever information is passed from one place to another it is as a string.
This approach makes it easy to communicate information between C procedures and
Tcl programs (there are no complex data type conversions). It also means that Tcl
programs have the same basic form as Tcl data, which allows new Tcl programs to be
synthesized and executed on-the-fly (in this sense Tcl is similar to Lisp).

- 4 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

The most important aspects of Tcl are the simplicity of the language and the
simplicity of its interface to C programs. The language simplicity makes Tcl easy to
learn; the interface simplicity makes it easy to use Tcl in applications, easy to write
new Tcl commands, and easy to use Tcl to compose primitives written in C.

3. Overview of the Tk Intrinsics

An application based on Tk is constructed by assembling a collection of user-
interface components called widgets. A widget consists of one or more windows that
display information on the screen and react to keystrokes and mouse actions. A
widget may be as simple as a ‘‘button’’, which displays a text string and executes a
command when a mouse button is pressed over it, or it may be as complicated as a
dialog box containing sliders, buttons, text entries, and list boxes. Complex widgets
may be composed out of simpler widgets.

As described in the introduction, Tk supports the creation and use of widgets by
providing a standard framework in which widgets are constructed; this makes it pos-
sible for widgets to be designed and implemented independently yet still work
together in interesting ways. Tk also provides a number of convenience procedures
to carry out the most common operations required by widget implementors. This set
of facilities (the part of the toolkit that isn’t associated with a particular widget set) is
called the toolkit intrinsics.

In Xt and most other toolkits the intrinsics exist as a set of C library procedures.
In contrast, Tk provides not only C procedures but also a collection of Tcl commands
that make virtually all of the intrinsics accessible from Tcl. The Tcl interfaces allow
the look and feel of an application to be queried and modified at any point in the
application’s execution. They also allow new interface elements, or even new appli-
cations, to be created dynamically just by writing Tcl scripts. In these respects Tk is
different from other toolkits.

The paragraphs below summarize the main facilities provided by the Tk intrin-
sics. Most of the facilities are similar to those provided by Xt or other toolkits;
where there are differences, they exist mostly to make the Tk facilities accessible
from Tcl.

3.1. Window Names

In order to refer to windows in Tcl commands, each window in Tk has a name
that identifies it uniquely among all the children of the same parent window. Each
window also has a class, such as Button, that identifies the type of widget
displayed in the window. Lastly, each window has a path name that identifies the
window uniquely within its application. A path name consists of zero or more names
separated by dots. For example, the path name ‘‘.a.b.c’’ denotes a window c
inside a window named b inside a window named a inside the main window of the
application. The path name ‘‘.’’ refers to the main window of the application.

- 5 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

3.2. Event Dispatching

Like most toolkits, Tk provides a centralized mechanism for dispatching X
events. Widgets and other interested parties inform Tk of events they care about and
provide C procedures to handle the events. When an event occurs Tk invokes all the
relevant handlers. The Tk dispatcher supports X events, file events (which trigger
when a file becomes readable or writable), timer events, and ‘‘when-idle’’ events
(which trigger when all other pending events have been processed).

Tk also provides Tcl commands for creating event bindings; in this case the
events trigger the execution of Tcl commands instead of C procedures. See Figure 7
for examples.

3.3. Resource and Structure Caches

Allocating X resources such as pixel values or fonts is expensive because it
requires inter-process communication with the X server. To reduce the amount of
server traffic, Tk caches information about the X resources currently in use by an
application. If the same resource is requested multiple times for different purposes,
only the first request results in server traffic; the later requests are satisfied by sharing
the existing resource. This provides a substantial boost in performance in the com-
mon case where a few resources are used in many different widgets within an appli-
cation.

Tk’s resource caches are indexed by textual descriptions of the resource rather
than binary values (e.g. MediumSeaGreen might be used for a color,
coffee_mug for a cursor, or @star for a bitmap stored in a file named star).
This makes it easier to name X resources in Tcl commands or in the option database
described below. In addition, given an X resource identifier, Tk will return the tex-
tual name for that resource; this feature makes it easy for widgets to provide human-
readable information about their current configuration.

Tk also caches structural information about windows, such as parent-child rela-
tionships, sizes, and locations, and makes this information available to widgets so

bind .x <Enter> {print "hi\n"}
bind .x a {print "you typed ’a’\n"}
bind .x <Escape>q {print "you typed escape-q\n"}
bind .x <Double-Button-1> {print "mouse at %x %y\n"}

Figure 7. Tk provides a Tcl command called bind, which can be used to arrange for other
Tcl commands to be executed when certain X events (or sequences of X events) occur. The
four commands above cause messages to be printed on standard output when the mouse
enters window .x, when the letter a is typed in .x, when the escape key is typed fol-
lowed by the q key in window .x, or when mouse button 1 is pressed twice in rapid suc-
cession in .x. Before executing the command for an event Tk replaces % sequences in the
command with fields from the event. For example, in the last command above the %x and
%y will be replaced with the x- and y-coordinates from the X event before executing the
command.

- 6 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

that they don’t have to fetch it from the X server.

3.4. Geometry Management

Geometry management refers to algorithms for controlling the locations and
sizes of child windows within a parent, such as ‘‘all-in-a-row’’ or ‘‘all-in-a-column’’.
In Tk, as in Xt, individual widgets do not control their own geometry. Instead, spe-
cialized geometry managers manage window arrangements. Each widget specifies a
preferred size for its window (e.g. a button widget might request a size just large
enough to contain the text being displayed in the button). A geometry manager then
computes the actual size for each window, taking into account the requested sizes of
the windows it manages, the size of the parent window, and its own particular layout
algorithm (see Figure 8 for an example). Each widget must make do with whatever
size it is assigned. This approach separates the internal design of a widget from its
arrangement in a larger application, so that widgets can be used with a variety of
geometry managers.

(c)

(b)

(a) D

C

B

A

D

C

B

A

Figure 8. An example of geometry management. (a) shows the requested sizes of four win-
dows and (b) shows the size of the parent window in which the windows are to be arranged.
An ‘‘all-in-a-column’’ geometry manager might produce the layout in (c) by arranging the
windows in order from top down. Window C ended up with less width than requested and
window D received less height than requested because there was insufficient space in the
parent. The widgets using windows A-D are expected to make do with whatever size they
are assigned by the geometry manager.

- 7 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

Tk acts as intermediary for geometry management. It allows geometry
managers to claim control over windows, and when a widget requests a particular
size for its window Tk passes that information to the relevant geometry manager.
Only one geometry manager manages a given window at a time.

Tcl commands are used to control the geometry managers. For example, Tk
contains a built-in geometry manager called the packer. The command

pack append .x .x.a top .x.b top .x.c top

will cause the packer to claim control over the windows .x.a, .x.b, and .x.c.
The packer will add those windows to the list of windows it manages inside window
.x and arrange the windows in a column with each window placed at the top of the
space not occupied by previous windows in the list. The resulting arrangement will
be similar to the one shown in Figure 8. (The packer also includes a number of other
features that are not evident from this one example, such as placing windows against
the other sides of the parent’s cavity and selectively stretching windows to fill extra
space.)

3.5. Options

Tk provides a standard mechanism for users to specify their preferences about
widget options such as colors and fonts. It maintains these options in a database and
provides efficient mechanisms for widgets to query the database when they configure
themselves. Tk’s option database is the same as the resource manager mechanism in
Xt: users specify their preferences in a .Xdefaults file or in a special root-
window property using a simple pattern-matching language (e.g.
‘‘*Button.background: red’’ means that all button widgets should have a
red background color). In addition to providing C library procedures for querying the
option database, Tk also provides Tcl commands that can be used to query the data-
base or add entries to it.

3.6. The Selection

The X11 Inter-Client Communications Conventions Manual (ICCCM) specifies
a complex set of protocols that applications must use to manipulate the selection [10].
Tk provides mechanisms to implement the ICCCM protocols and hide as many of
their details as possible. If a widget supports the notion of a selection, it registers a C
procedure that Tk may call to retrieve the selection when it is in that widget. This
procedure is called a selection handler and is similar in many respects to other
event-handling procedures. When a widget wishes to claim the selection it calls
another Tk procedure, which uses the ICCCM protocols to notify the existing selec-
tion owner that it has lost the selection. From this point on Tk will arrange for selec-
tion requests to be forwarded to the selection owner by calling its selection handler.
When some other widget (potentially in another application) claims the selection, Tk
will notify the current owner that it has lost the selection. Lastly, Tk provides a pro-
cedure to retrieve the selection from its current owner. Tk also provides Tcl support
for the selection: selection handlers may be written in Tcl and a Tcl command is
available to retrieve the selection.

- 8 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

3.7. Focus Management

Given that there are many windows on the screen, each of which might poten-
tially receive keyboard input, but only one keyboard, there must be a mechanism for
sharing the keyboard among the windows. At any one time keystrokes are directed to
a single window, which is called the focus window or input focus. A separate window
manager process controls the transfer of the focus among applications, but the win-
dow manager knows nothing of the internal structure of an application. Tk provides a
Tcl command that can be used to assign the focus to a particular window within an
application, so that all keystrokes in any window of the application are directed to the
focus window. For example, when an application pops up a dialog box with a text
entry, the focus may be assigned to the text entry so that the user can enter text
without having to move the mouse to the dialog box; when the dialog box is com-
plete, it can assign the focus back to the originating window again.

4. Tk Widgets

In Tk, widgets like scrollbars and buttons are implemented with C code that uses
the Tk intrinsics. At runtime, Tcl commands are used to instantiate and manipulate
widgets. Two different kinds of Tcl commands are used for widgets: creation com-
mands and widget commands. For each type of widget, such as button, radiobutton,
or scrollbar, there exists one Tcl command to create widgets of that type. The
command’s name is the same as the widget’s type. For example, the command
button .hello -bg Red -text "Hello, world" -command "print Hello!\n"

will create a new button widget. The first argument gives the path name of a new
window to be created for this widget. Additional arguments are used to specify
options for the widget. In the example the options specify a background color to use
for the widget, a string to display in the widget, and a Tcl command to execute when
the button is invoked by clicking a mouse button over it. For unspecified options, the
widget checks in the option database for a value; if none is found then it uses a
default associated with the widget type. Once the widget has been created, a
geometry manager may be invoked to position the widget in its parent and map the
widget so that it is displayed.

As part of creating a widget, a new Tcl command is created whose name is the
same as the path name of the widget’s window (‘‘.hello’’ in the example above).
This command is called a widget command and may be used to manipulate the
widget. For example, the following Tcl commands could be used to manipulate the
button widget created above:

.hello flash

.hello configure -bg PalePink1 -relief sunken

The first command causes the button to change colors back and forth a few times.
The second command resets some of the widget’s configuration options: it changes
the background color to light pink and changes the 3-D appearance of the button so
that it appears to be depressed instead of raised. The configure form is sup-
ported by all widget commands and allows any configuration option of any widget to

- 9 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

be changed at any time in the same way that it may be specified when creating the
widget.

Most widgets are active: they carry out some function when manipulated with
the mouse and/or keyboard in a particular way. For example, if a mouse button is
clicked over a button widget or menu widget, some action will be invoked in the
application; a mouse click over a scrollbar causes the view to change in some associ-
ated widget, and so on. In Tk widgets, all of these actions are specified as Tcl com-
mands. In the button example above, the command was specified as ‘‘print
Hello!\n’’. When the button is invoked the widget’s C code invokes the Tcl inter-
preter to execute the command, which just prints a message on standard output.

In some cases the widget will augment the user-supplied command with addi-
tional information. For example, consider the case of a listbox with an associated
scrollbar. When the user clicks on the scrollbar, the scrollbar must notify the listbox
that it should adjust its view. It does this by issuing a Tcl command. As part of
creating the scrollbar widget the application designer specifies the first part of the
command. For example, if the listbox is in a window named .list then the com-
mand will be specified as ‘‘.list view’’ to invoke the widget command for the
listbox. Before executing the command, the scrollbar adds an additional number to it,
producing a command like ‘‘.list view 40’’; this command requests that the
listbox adjust its view so that item 40 appears at the top of its window.

The use of Tcl commands for all widget actions provides both flexibility and
power. In the scrollbar example of the previous paragraph it allowed two indepen-
dent widgets, a listbox and a scrollbar, to be connected so that they work together. In
the most general case a user or application designer could write an arbitrary Tcl pro-
cedure and specify that procedure as the command for a widget. In this way, for
example, a single scrollbar could be made to control several windows.

5. Programming Within An Application

For many users I expect the Tcl language to be invisible: users will manipulate
applications using the keyboard and mouse and be unaware of the fact that an inter-
pretive language underlies the user interface. However, advanced users and applica-
tion designers can use Tcl to gain power and flexibility. For example, a Tcl com-
mand could be invoked to add a new keystroke binding to an existing widget (e.g.
backspace over a whole word when Control-w is typed in an entry widget). Such a
command could be typed to a running application (if the application provides a com-
mand type-in window) or placed in a startup file to be read automatically whenever
the application is executed. The application itself would not have to be modified in
any way to support the new binding — as long as the entry widget allows its contents
to be fetched and modified from Tcl, it will be possible to implement the backspace-
over-word operation using a Tcl command or command procedure.

In addition to all the other purposes it serves, Tcl also serves as a user interface
description language; there is no need to design a special user interface language, and
Tcl’s general programming constructs provide quite a bit of power in creating and

- 10 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

modifying interfaces. For example, Tcl can be used to modify the arrangement of
windows within an application, e.g. put the diagnostic message window at the top of
the application rather than the bottom, or change the order of menus in the pull-down
menu bar. Tcl can even be used to create entirely new interface elements such as dia-
log boxes while an application is running. In fact, Tk contains no special support for
dialog boxes. The basic commands for creating and arranging widgets are already
sufficient to create dialog boxes: even in the normal case, dialogs are created by writ-
ing short Tcl scripts.

Tcl can also be used to create new applications without writing any C code. For
example, I have built a simple windowing shell called wish, which consists of Tcl,
Tk, and a main program that reads Tcl commands from standard input or from a file.

1 #!wish -f

2 scrollbar .scroll -command ".list view"
3 listbox .list -scroll ".scroll set" -relief raised -geometry 20x20
4 pack append . .scroll {right filly} .list {left expand fill}

5 proc browse {dir file} {
6 if {[string compare $dir "."] != 0} {set file $dir/$file}
7 if [file $file isdirectory] {
8 set cmd [list exec sh -c "browse $file &"]
9 eval $cmd
10 } else {
11 if [file $file isfile] {exec mx $file} else {
12 print "$file isn’t a directory or regular file\n"
13 }
14 }
15 }

16 if $argc>0 {set dir [index $argv 0]} else {set dir "."}
17 foreach i [exec ls -a $dir] {
18 .list insert end $i
19 }

20 bind .list <space> {foreach i [selection get] {browse $dir $i}}
21 bind .list <Control-q> {destroy .}

Figure 9. A simple directory browser, implemented as a script for wish, the windowing
shell. This script is stored in a file named browse (without the line numbers). Line 1 is a
comment line; when the file is executed, it causes wish to be invoked as command inter-
preter for the file. Lines 2-4 create a scrollbar and a listbox, arrange for the scrollbar to con-
trol the view in the list box as described in Section 4, and place them side-by-side in the
application’s main window. Lines 5-15 create a procedure browse, which is invoked to
browse subdirectories (by running another version of the browser) or files (by running an ed-
itor called mx). Lines 16-19 initialize the listbox to hold the contents of a particular directo-
ry. Lines 20-21 create bindings to invoke the browse procedure when space is typed, or to
exit when Control-q is typed.

- 11 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

Entire windowing applications can be written as scripts for wish, just as UNIX
commands can be written as scripts for sh or csh. For example, a simple directory
browser can be written as a 21-line wish script (see Figures 9 and 10). I plan to
enhance wish with drawing commands for shapes and text and a few other features;
once this is done it will be possible to code a large class of interesting applications
entirely in Tcl.

6. Programming Between Applications

In spite of the claims of the previous sections, Tk’s greatest benefit of all is not
within an application but rather the way it allows different applications to work
cooperatively. Currently, the only widely-available communication mechanism
between applications is a selection or cut buffer: the user selects information in one
application, then invokes a command in another application to retrieve the selection
and use it in some way. Besides being limited as a form of communication, this
approach is also tedious since the user must take some action for each transfer of the

Paste browse.ps here.

Figure 10. A screen dump showing the appearance of the browser produced by the script in
Figure 9. The three darkened items are selected. The window’s title bar was generated by
the twm window manager.

- 12 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

selection.

Given such weak communication, application implementors tend to lump func-
tions together into large monolithic applications. This occurs even when the func-
tions are mostly independent, just so that the functions can communicate in ways
other than the selection. For example, many debuggers contain built-in editors so
that they can display source code and highlight the current line of execution. Com-
mercial spreadsheet programs tend to be lumped together with chart packages, data-
bases, word processors, and communication packages in order to allow the different
functions to work together. The lumping results in unnecessary re-implementation of
functions: each spreadsheet contains its own chart package, each debugger its own
editor, and so on.

Tk solves the problem of poor communication with a Tcl command called
send. Send takes two arguments: the name of an application and a Tcl command.
Each Tk-based application has a unique name, and information about all existing
applications is registered in a special property on the root window of the display.
When send is invoked, Tk locates the target application by reading the registry pro-
perty. Then Tk forwards the command to the target application (using other window
properties). The Tk of the target application executes the command and returns the
result of the command back to the originating application. This allows any Tk-based
application to control any other Tk-based application on the same display. Any com-
mand that could be invoked within an application may be invoked by other applica-
tions using send, including commands to manipulate the application’s interface and
also commands to manipulate the application itself.

Send is a form of remote procedure call [2]; as such it provides a more general
and powerful form of communication than the selection. For example, Tk-based
debuggers and editors can be built as separate programs. The debugger can send
commands to the editor to highlight the current line of execution, and the editor can
send commands to the debugger to print the contents of a selected variable or set a
breakpoint at a selected line. A Tk-based spreadsheet might permit cells to contain
embedded Tcl commands. When such a cell is evaluated the Tcl command would be
executed automatically; it could fetch information from an independent database
package or from any other program in the environment. A Tk-based word processor
might permit embedded Tcl commands in the body of a document. When the docu-
ment is formatted, the Tcl commands would be executed; they could retrieve infor-
mation from spreadsheets, databases, or drawings.

Interface editing provides another example of the power of send. Existing
interface editors generally operate on application mock-ups. The editor displays
something that looks like an application and allows its interface to be edited, but the
thing being edited isn’t the actual application, so it isn’t possible to try out the inter-
face under ‘‘real-life’’ conditions. The interface editor produces an interface descrip-
tion file, which must then be compiled and linked with the application before it can
actually be tested. With Tk and send it becomes possible for an interface editor to
work on live applications, using send to query and modify the application’s inter-
face. The effects of interface changes can be tested immediately with the application.

- 13 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

When a satisfactory interface has been created, the interface editor can produce a Tcl
command file for the application to read at startup time to configure its interface in
the future.

The overall effect of send is that it makes it possible to program applications
to work together in powerful ways, so it will no longer be necessary to lump func-
tions into monolithic applications. This encourages the development of lots of small
specialized tools that can be programmed with send to work together in interesting
ways. The tools could be developed and maintained independently, yet be used in
many different ways. I believe that this could result in much richer and more power-
ful interactive environments than we have today.

The combination of Tcl and Tk and send also allows hypertext and other
kinds of active objects to be implemented easily. All that an individual application
needs to do is to allow Tcl command strings to be embedded in its internal structures
and provide a mechanism for invoking those commands at ‘‘interesting’’ times. Tcl
commands can then be written to extend and enhance the behavior of objects. For
example, in the spreadsheet envisioned above, commands may be stored in
spreadsheet cells; they will be executed whenever the spreadsheet is evaluated. The
embedded Tcl commands allow the spreadsheet to ‘‘reach out’’ and retrieve fresh
data values from databases or other applications. Or, a hypertext system can be
implemented by associating Tcl commands with pieces of text or graphics in an edi-
tor; when a mouse button is clicked over an item then the associated commands are
executed. A hypertext ‘‘link’’ can be produced by writing a Tcl command that opens
a new view and associating that command with some piece of text or graphics. A
hypermedia link can be produced using a Tcl command that sends a ‘‘play’’ com-
mand to an audio or video application.

7. Status and Measurements

Development of Tcl began in early 1988, and it has been distributed publicly
since 1989. The Tcl distribution does not include Tk or any other windowing sup-
port. Based on mail I have received about Tcl, I estimate that about 50 Tcl-based
applications exist or are under construction.

I began implementing Tk in late 1989. At present the intrinsics are complete,
although they are evolving rapidly as I gain experience using them to implement
widgets. I have built a number of Motif-compatible widgets, including panes, labels,
buttons, check buttons, radio buttons, messages, listboxes, scrollbars, and scales.
Two major widget types, entries and menus, are still left to be implemented (I hope to
complete both of these before this paper is published). I expect to begin distributing
Tk in early 1991. As with Tcl, the code will be freely distributed without any licens-
ing restrictions.

Table I shows the sizes of Tk and Tcl in lines of code and in compiled bytes,
and compares them to the sizes of corresponding portions of the Xt toolkit and the
Motif widget set. Tk and Tcl together have only three-quarters the compiled size of
Xt, even though they provide more flexibility and power. Tk’s widgets and geometry

- 14 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

manager are 2-5x smaller than the corresponding Motif modules. As Tk’s widgets
mature I expect them to grow slightly, but I believe that their final sizes will still be
substantially smaller than the Motif widgets.

Tcl simplified Tk and its widgets by making a single unifying language avail-
able everywhere in the system. Tk implements only a few key primitives, which can
then be composed with Tcl. In systems without a composition language, such as
Xt/Motif, all run-time needs must be predicted and addressed explicitly in the C code;
this increases the amount of code that must be written. In addition, the lack of a sin-
gle unifying language resulted in many different protocols and ‘‘little languages’’ to
handle different situations in Xt and Motif (examples are the ICCCM selection proto-
cols, the Xt translation manager, and Motif’s UIL interface description language).
These additional protocols add to the complexity of the system.

Table II gives a few sample performance numbers for the Tk toolkit. On a
machine with 10 MIPS or more, the Tcl interpreter is fast enough to execute many
hundreds of Tcl commands within a human response time; this permits relatively
lengthy Tcl scripts to be executed without noticeable delays. The send command
currently takes a few tens of milliseconds. At this speed, it is possible to paint with
the mouse in one application, have all the mouse motion events bound into Tcl com-
mands, which in turn use send to forward commands to another application in a
different process, which finally draws the painted object in its own window, and have
all of this take place with no noticeable time lag. Tk is fast enough to instantiate rela-
tively complex applications (many tens of widgets) in a fraction of a second. Tk has
not undergone any performance tuning yet; when it does there should be some
improvement in these numbers.

iii
Source Lines DS3100 bytesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Xt/Motif Tk Xt/Motif Tkii
Intrinsics 24900 15100 216400 92800
Tcl 9300 61100
Geometry Manager 2100 1000 17100 7400
Buttons 6300 1000 43700 8600
Scrollbar 3000 1200 24900 8000
Listbox 6400 1600 53100 10700iii
Total 42700 29200 355200 188600iiic
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Table I. A comparison between Tk and Xt/Motif based on lines of source code and bytes of
compiled object code (for the DECstation 3100) for selected modules. ‘‘Geometry
Manager’’ refers to the PanedW module in Motif and the ‘‘packer’’ geometry manager in
Tk; the packer is somewhat more general and flexible than PanedW. ‘‘Buttons’’ consists of
three files in Motif (Label, PushB, and Toggle); in Tk a single file implements labels, but-
tons, check buttons, and radio buttons. The totals reflect only the modules in the tables;
Both Tk and Motif contain additional widgets not reflected in the table.

- 15 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Operation Timeii
Simple Tcl command (set a 1) 68 µsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Send empty command 15 msiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Create, display, delete 50 buttons 440 msiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c

c
c
c
c
c

c
c
c
c
c

Table II. Execution times for selected operations in Tk. All times were measured on a
DECstation 3100 running Ultrix 4.2 and X11R4. In the bottom measurement of the table,
about half of the elapsed time was spent executing in the client and about half in the X
server.

8. Comparisons

Of the existing X11 toolkits, Tk is most similar to Xt [1]. The major facilities
provided by Tk were inspired by Xt and are similar to the corresponding facilities of
Xt. There are also similarities between Tk and the InterViews and Andrew toolkits
[5,9] in that all support some sort of widget-like notion to decompose applications.
However, InterViews and Andrew have more support for the underlying application
object structures whereas both Tk and Xt focus almost exclusively on the interface
aspects, with little support for the application structures.

The most significant difference between Tk and the other toolkits is the presence
of Tcl in Tk. Run-time languages are starting to appear in other systems, such as
Ness, which is used to embed executable programs into documents in the Andrew
toolkit [3], and UIL, which is used to specify interfaces in Motif [7]. However, these
languages have three disadvantages relative to Tcl. First, they are less dynamic. For
example, UIL programs must be compiled before being processed by a running appli-
cation, and Ness appears to require many decisions to be made statically. In contrast,
Tcl is interpretive, so any available operation can be invoked at any time. Second,
the other languages are less complete. For example, UIL does not include control
constructs such as if and while, and Ness functions are not first-class objects. In
contrast, Tcl is a complete programming language that even provides access to its
own internals (e.g. it is possible to retrieve the body of a Tcl procedure or a list of all
defined variable names). Third, the other languages are special-purpose: they only
control a portion of an application’s functions. In contrast, Tcl is used for virtually
all aspects of an application, which makes it possible to compose all of those aspects
to work together.

Another difference between Tcl and other toolkits is the send command for
inter-application communication. I know of no equivalent construct in other X toolk-
its. The closest existing facility is Microsoft Windows’ Dynamic Data Exchange pro-
tocol (DDE), which allows applications to communicate in several ways including
passing commands for remote execution [6]. However, for remote execution to be
most useful it must allow access to all the internals of the remote application. For
this to happen, the language used by the remote execution facility should be the same
as the language used to control the user interface and internals of the target applica-
tion, as it is with Tcl and Tk. Unfortunately, the Windows environment does not
include a universal command language. Although a standard syntax is suggested for

- 16 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

remote commands, there is no built-in connection between these remote commands
and the internals of the remote application. Each application must provide special
code to parse and execute all the remote commands it wishes to support. This will
probably limit the use of remote execution in DDE to a small set of functions. In
contrast, Tk’s send command provides access to all aspects of other Tk-basd appli-
cations without any extra effort on the part of the applications’ developers.

One final difference between Tk and other toolkits is object orientation. Inter-
Views, Xt, and Andrew are all strongly object-oriented with support for classes and
inheritance. In contrast, Tk is not strongly object-oriented. The widget commands
described in Section 4 give Tk an object-like feel, and Tk makes extensive use of pro-
cedure variables and callbacks, but there is no official class mechanism and no inheri-
tance among widget types. Instead of providing inheritance, Tk focuses on composi-
tion: mechanisms for assembling independent widgets into interesting arrangements.
In my opinion, composition is more important for a toolkit than inheritance. There
isn’t enough commonality between widgets for inheritance to provide much benefit,
and inheritance adds complexity (to understand one widget you must understand all
the widgets it inherits from). Inheritance mechanisms only benefit a small group of
people (widget implementors), whereas composition mechanisms allow any user to
create new interface elements out of existing widgets. Further support for this view
comes from the InterViews system: although it is written in C++ and claims to be
object-oriented, the primary benefit claimed for the system is its support for composi-
tion [5].

9. Conclusions

I believe that Tk provides a large increase in power and flexibility over existing
windowing toolkits. Tk’s power comes from two sources: the power of programming
and the power of building interchangeable tools. The use of Tcl within Tk (and
within Tk-based applications) means that a single programming language is available
at run-time to control all aspects of an interactive application, from its look to its feel
to its function. This in turn makes it possible to modify and extend all of these
aspects of an application at any time. The second source of power is from composi-
tion: the ability to build independent units that can work together and be re-used in
many different ways unforeseen by their designers. Tcl acts as a composition
language both for composing widgets within an application and for making different
applications work together.

I hope that Tcl and Tk can do for interactive applications of the 1990’s what the
UNIX shells did for stream-based applications of the 1970’s. The UNIX shells
encouraged the construction of small tools that read from standard input, perform
some operation on the data, and write the results to standard output. The shells pro-
vided mechanisms for these ‘‘filters’’ to be hooked together in many different ways
to perform interesting functions. I hope that Tcl and Tk will encourage the develop-
ment of many small specialized windowing tools that present simple Tcl interfaces.
Tk permits the tools to work together by sending commands to each other. With this
approach I hope it will become possible to build more powerful interactive

- 17 -

An X11 Toolkit Based on the Tcl Language December 4, 1990

applications with much less effort than is needed today.

10. Acknowledgments

The work described here was supported in part by NASA and the Defense
Advanced Research Projects Agency under Contract No. NAG2-591, and in part by
Digital Equipment Corporation. Joel Bartlett, Mike Kupfer, Joel McCormack, and
Ken Shirriff provided numerous suggestions that improved the presentation of the
paper. The design of Tk benefited from discussions with Joel Bartlett and Joel
McCormack; I am grateful for their stimulating comments and criticisms.

11. References

[1] Asente, P. and Swick, R., with McCormack, J. X Window System Toolkit: The
Complete Programmer’s Guide and Specification. Digital Press, 1990.

[2] Birrell, A. and Nelson, B. ‘‘Implementing Remote Procedure Calls.’’ ACM
Transactions on Computer Systems, Vol. 2, No. 1, February 1986, pp. 39-59.

[3] Hansen, W. ‘‘Enhancing Documents With Embedded Programs: How Ness
Extends Insets in the Andrew Toolkit.’’ Proc. 1990 International Conference on
Computer Languages, March 1990.

[4] Libes, D. ‘‘expect: Curing Those Uncontrollable Fits of Interaction.’’ Proc.
USENIX Summer Conference, June 1990, pp. 11-15.

[5] Linton, M., Vlissides, J., and Calder, P. ‘‘Composing User Interfaces with
InterViews.’’ IEEE Computer, Vol. 22, No. 2, February 1989, pp. 8-22.

[6] Microsoft Windows Software Development Kit, Guide To Programming, Version
3.0. Microsoft Corporation, 1990.

[7] OSF/Motif Programmer’s Guide, Revision 1.0. Prentice Hall, Englewood
Cliffs, NJ, 1990.

[8] Ousterhout, J. ‘‘Tcl: An Embeddable Command Language.’’ Proc. USENIX
Winter Conference, January 1990, pp. 133-146.

[9] Palay, A., et al. ‘‘The Andrew Toolkit − An Overview.’’ Proc. USENIX Winter
Conference, February 1988, pp. 9-21.

[10] Scheifler, R., and Gettys, J., with Flowers, J., Newman, R., and Rosenthal, D. X
Window System: The Complete Guide to Xlib, X Protocol, ICCCM, XLFD
(Second Edition). Digital Press, 1990.

- 18 -

