Towards autonomous adaptive behavior in a
bio-inspired CNN-controlled robot

P. Arena %, L. Fortuna 5, M. Frasca §, L. Patané §, M. Pavone *

* Scuola Superiore di Catania, Via S. Paolo 73, 95123 Catania, Italy

§Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi
Universita degli Studi di Catania
Viale A. Doria, 6 - 95125 Catania, Italy

Abstract— This paper describes a general approach for the
unsupervised learning of behaviors in a behavior-based robot.
The key idea is to formalize a behavior produced by a Motor
Map driven by an adaptive reward function. Aim of the adaptive
reward function is to select the most significant sensory inputs
and to use them in the best way. The greatest challenge is to keep
small the search space. Motor Map learning relies on the classical
Kohonen algorithm, while the structure of the reward function
is learnt through a non-associative reinforcement learning algo-
rithm. Simulation results on a six legged biologically-inspired
robot confirm the suitability of the approach. This methodology
allows the human designer to easily embody all the a priori
knowledge on the robot controller, while providing at the same
time a high degree of adaptability and robustness against the
sensory malfunctioning.

I. INTRODUCTION

Autonomy is the key concept in many robotics applications
such as humanitarian demining, volcano and space exploration,
pipe inspection or sewer maintenance. The major difficulty
encountered in the design of autonomous mobile robots is the
extreme variability of the robot environment; thus, a certain
degree of adaptability is needed: intelligent autonomous robots
should be able to extract information from the environment and
use their built-in knowledge in order to learn to effectively act
and adapt within that environment. How to confer adaptability
to a robot? Basically, according to [1], four classes of control
can be distinguished: reactive control, deliberative control,
hybrid control and behavior-based control.

Reactive control tightly couples sensory inputs and effector
outputs, to allow the robot to quickly respond to chang-
ing and unstructured environments, according to a biological
“stimulus-response” scheme. Its limitations, however, include
the fact that the robot does not have memory, internal rep-
resentations of the world and the ability to learn over time.
In deliberative control, the robot uses all of the available
sensory information and all of the internally stored knowledge
to reason about what actions to take, where reasoning is
typically in the form of a planning algorithm. Unfortunately,
this approach can rapidly become computationally prohibitive.
Hybrid control combines the real-time response of reactivity
with the rationality and optimality of deliberation. As a result,
the control system contains two different components, the
reactive and the deliberative ones. The interaction between

them require an intermediary, whose design is typically the
greatest challenge of hybrid systems. Finally, a behavior-
based system is based on a representational substrate, the
behaviors, which are observable patterns of activity emerging
from interactions between the robot and its environment. Like
hybrid systems, behavior-based systems may have different
layers, but the layers do not differ drastically in terms of time-
scale and representation used [1].

Behavior-based systems have been praised for their robust-
ness and simplicity of construction [2] and seem to be a really
suitable approach to autonomous robotics.

Basically, behavior-based systems are composed of a collec-
tion of “behavior producing” modules that map environment
states into low-level actions, and a coordination mechanism
that decides, based on the state of the environment, which
behavior has to be executed. The task of programming in each
individual behavior remains the burden of a human designer
since it requires a deep knowledge of the interactions between
a particular robot and its application to the environment,
typically not available if an exploration mission is considered
[2].

In this paper, we focus on the development of a learning
algorithm that allows a mobile legged robot, controlled by a
CNN-CentralPattern Generator, to learn single behaviors in a
initially unknown environment. The key idea is to formalize
a behavior as a Motor Map driven by an adaptive reward
function. This approach allows the human designer to easily
embody all its a priori knowledge on the robot controller,
while providing at the same time a high degree of adaptability.

Simulation results on a biologically-inspired legged robot
confirm the effectiveness of the approach in a complex case,
dealing with a bio-inspired robot endowed with a large number
of degree of freedom, controlled, at the low level, by a CNN
acting and a Central Pattern Generator.

II. BEHAVIOR FORMALIZATION

Different approaches have been proposed to implement
a behavior, like stimulus-response diagrams, mathematical
functional and finite state machines. Basically, a behavior is
such any mapping from possible stimuli to possible responses.
The difference with a reactive control is that behaviors do not



require a tight coupling between stimuli and actions in the
form of a look up table.

Since an adaptive mapping between stimuli and actions is
needed, we chose to formalize a behavior as a Motor Map.
For example, the behavior “Avoid obstacle” is translated into
a Motor Map whose input is the obstacle distance and whose
outputs are the motor commands that allow the whole structure
to perform the behavior considered. In this way it is possible
to learn a behavior through the classical Motor Map (MM)
learning algorithm. Motor Map Behaviors (MMB) are thus
adaptive and self organizing.

Since the robot is supposed to explore dynamic, hazardous
and unknown environments, the definition of the Motor Map
reward function for each behavior could represent a challeng-
ing task. Let us consider, for example, the “Pursuing target”
behavior and let us suppose that the robot measures the inten-
sity of two different chemicals: sensor performance could be
not known in advance for the target environment; moreover, in
case of sensor malfunctioning, the reward function could take
into account a wrong signal with detrimental consequences
for the behavior execution. As a consequence, the need of an
adaptive reward arises.

We therefore introduce a high level learning system for the
reward function of a MMB. To the best of our knowledge, it
is the first time that an adaptive reward is considered. Aim of
the adaptive reward function is to select the most significant
sensory inputs and to use them in the best way. The greatest
challenge is to keep small the search space.

In synthesis, we model a behavior as a Motor Map with
adaptive reward function; Motor Map learning algorithm is
the classical Kohonen algorithm, while the reward function
learning algorithm is the subject of the next section.

III. REINFORCEMENT LEARNING OF THE MMB REWARD
FUNCTION

A. Reward function set

Let us consider a behavior p 1. to this behavior we associate
a set .S of basic reward units ;. The S set induces a general
reward function R:

N
R=Y " —a;? (1)
J

where N is the total number of basic units and «; is a binary
weight (i.e. a; can take values O or 1).

Eq. 1 represents a set of reward functions. A particular
reward function is obtained by setting the o; weights to the
values 0 or 1; we will refer to a vector like (1,0,1,1...0) as
a reward function instantiation k and we will denote it as &.

One rule to follow, in order to avoid contradictory reward
functions, is the exclusivity rule: in a reward function instan-
tiation the direct basic reward unit (r;) and the inverse basic
reward unit (1/r;) can not be present at the same time.

IFor sake of clarity, henceforth we will suppress the index p.

Once the R set is formed, the leaning algorithm has to
determine the optimal reward function instantiation, i.e. the
reward function that best fits the environment.

S set definition could appear a difficult task. Nevertheless,
all sensory information available to the robot are known a
priori; what is unknown and has to be learnt is how to use all
sensory inputs relevant for the behavior considered. Therefore
the definition of basic reward units is indeed simple and can
be made in the design phase.

The key point is that the designer, based on the fact that he
knows which are the available information (the signals coming
from the sensors placed on the robot), can easily decide
generality and potentiality of the reward function set R; the
reward function learning system will find during the mission
the best choice for the unknown environment. Therefore, in the
design stage, the designer has to accomplish two competing
tasks:

« placing all his available a priori information in order to
minimize the search space;
o guaranteeing behavior adaptability.

B. Reward function learning algorithm

The learning of the reward function can be achieved with
a non-associative reinforcement learning, since the reward
function form does not depend on the particular learning
example, i.e. it does not make any difference if for the learning
of the reward function we consider, referring for example to
the “Climbing obstacle” behavior, an obstacle with height x
instead of an obstacle with height = + Ax.

Fig. 1 shows the basic components of a non-associative re-
inforcement learning. The learning system’s actions influence

Thsturbances
FProcess

l Critic -«

Remnforcement
signal

Rewrard functions

v
i'zﬁtning System

Non-associative reinforcement learning [3].

Fig. 1.

the dynamics of some process, which might also be influenced
by random or unknown factors (labelled “disturbances” in Fig.
1). A critic sends the learning system a reinforcement signal
whose value at any time is a measure of the “goodness” of the
current process behavior. Using this information, the learning
system updates its action-generation rule, generates another
action, and the process repeats [3]. In our framework, the
action is the reward function form and the signal critic is the
evaluation of behavior execution.



In order to test a specific reward function form, the underly-
ing Motor Map has to be trained. Thus, at each MMB reward
function learning step, the reward function learning system has
to:

o select a reward function form;

« train the Motor Map with the selected reward function;
« evaluate the critic signal;

o update reward-generation rule.

When a reward function appears to be appropriate, the
reward function learning stops and will start again only if a
failure happens.

At first glance, Motor Map training constitutes a prohibitive
obstacle, since it makes MMB reward function learning phase
excessively long. Indeed, learning is very fast: it is enough
to train the Motor Map just in one input configuration. This
happens coherently with the fact that a non associative learning
is used, therefore a reward function instantiation ¢y, can be
tested referring just to a particular learning example.

Suppose now that, on each trial, the learning system selects
an instantiation ay, from the set R of the M possible instan-
tiations according to a probability vector (p1(t),...,pa(t)),
where pi(t) = Pr(a(t) = ag(t)), i.e. the probability that at
trial ¢ the actual reward function instantiation is the &*" one.

The proposed learning algorithm performs the following
linear reward-penalty (Lr_p) method [3]: if instantiation &
is chosen on trial ¢ and the critic’s feedback is “success”,
then pi(t) is increased and the probabilities of the other
instantiations are decreased; whereas if the critic indicates
“failure”, then pg(t) is decreased and the probabilities of the
other instantiations are appropriately adjusted.

In detail, if a(t) = ax(t) and, after Motor Map training,
the critic says “success”, then

pr(t+1) = pi(t) + B(1 — pi(2))

p(t+ 1) = (- PApt), 14k @

If a(t) = ay(t) and, after Motor Map training, the critic says
“failure”, then
pe(t+1) = (1= 7)pr(t)

pilt+1) = 57 + = Dm(d),

3)

l#k
where 0 < S < 1land 0 <~ < 1.

In this way, after a transient, the most suitable instantiations
are detected.

C. Remarks

1) Uncertainty: Uncertainty plays a key role in non-
associative reinforcement learning through the selection of
the reward function instantiation. For example, if the critic
evaluated actions deterministically, then the problem would
be a much simpler optimization problem.

2) Critic: The critic is an abstract entity that evaluates the
learning system’s actions. The critic does not need to have
direct access to the actions or have any knowledge about the
interior workings of the process influenced by those actions.
The critic has just to measure the “goodness” of the current
behavior according to some criteria; clearly, critic criteria
depend on the specific robot behavior currently under learning.

3) Memory: The vector probability represents a kind of
memory of past actions; if the best reward function changes
structure over the time, for example due to sensory malfunc-
tioning or different environmental conditions, the new learning
phase is greatly facilitated by the memory of previous trials.

IV. SIMULATION SET-UP

We tested the effectiveness of the approach by considering
the control of a six legged robot. The dynamic model of the
robot was built in a C++ environment based on DynaMechs
library [4]. The control system architecture has a two-levels
hierarchical organization, as suggested by biological results
discussed in [5]. The low level control is based on a CNN-
based Central Pattern Generator (CPG), discussed in details in
[6]; the CPG provides the basic rhythmic signals needed for
locomotion. The high level is aimed to handle complex tasks.
We model the high level as a set of Motor Map behaviors. In
particular we focused on the learning of the “Pursuing target”
behavior.

We assume that there are two chemicals originating at the
target location. Let us suppose that the following information
are available to the robot:

e chemical 1 intensity /;;
o chemical 2 intensity /5.

The first step is to associate to the “Pursuing target”
behavior a Motor Map. The Pursuing Motor Map has:

e 12 neurons;

e 2 inputs (/; and I» intensity);

o 1 output (yaw angle).
In order to simplify the learning phase, we considered a
winner-take-all strategy by selecting unitary neighborhood
functions. The learning threshold value is a = 0.01, so that,
after the learning phase, a residual plasticity for a later re-
adaptation is guaranteed. The learning rate is n = 0.5 as a
trade-off between speed and accuracy of learning.

The second step requires the definition of the S set. We
define the S set for the Pursuing Motor Map as:

Sctimbing = {11, 12,1/11,1/12} 4)

From the S set we can easily derive the corresponding
R set, taking into account the exclusivity rule. Considering
a instantiation vector notation, the R set has the follow-
ing elements: (1,0,0,0), (0,0,1,0), (0,1,0,0), (0,0,0,1),
(0,0,1,1), (0,1,1,0), (1,0,0,1), (1,1,0,0).

The final step is to define the critic signal: trivially, the critic
for the Pursuing Motor Map indicates a “success” if, after an
evaluation time t,,,,, the distance from the target is below a
threshold dieshold-



The simulation is articulated as follows: at the beginning
the robot is placed in a starting position; an instantiation k
is selected and the Motor Map is congruently trained for a
fixed number of epochs (/N = 100) with the same particular
learning example (as a consequence of the non-associative
learning of the reward function). Each epoch lasts four times
the leg cycle time, i.e. in one epoch the robot performs four
steps. At the end of each epoch the robot is placed again at its
starting position. After 100 epoches the reinforcement signal
is evaluated. At this time thus the effectiveness of the given
reward is evaluated. In practice, this time is needed to evaluate
how the given reward function is performing: to do this, a
complete learning phase of the Motor Map (which requires 100
steps) should be accomplished. The value of the reinforcement
signal is then used to update the probability vector according to
equations (2) and (3). Then a new reward function instantiation
is randomly chosen according to its associated probability as
expressed by the probability vector. At each cycle of 100
epochs different robot initial conditions are chosen.

After some cycles, the reward function instantiations with
better performance are characterized by higher probabilities.
Thus, the simulation ends if a p, > 0.9 is found, i.e. if a
given reward function instantiation performs better. We set the
reward function learning constants to the values 3 = 0.5 and
v = 0.6.

V. SIMULATION RESULTS

Firstly we assume that chemical 1 follows a gaussian distri-
bution centered in the target location, while the chemical 2 is
constant, thus not providing any information. The evaluation
time iS ¢,,00 = 25 s.

It is easy to notice that the suitable reward instantiations are:
(0,0,1,0), (0,0,1,1), (0,1, 1,0). These instantiations, in fact,
induce a strategy that leads to a maximization of the chemical
1 intensity (in fact, if I; increases, 1/I; decreases and thus R
increases). Congruently, in simulation we obtain that all and
only these three instantiations are selected as suitable reward
function candidates.

In Fig. 2 the temporal evolution of the probability vector
is shown: violet bar refers to the selected instantiation. This
shows that at the end of the whole simulation the configuration
labelled as k = 6, i.e. (0,1,1,0), has became prevalent. In
fact, pg increases each time the reward instantiation k = 6 is
chosen. When, for instance, at the first simulation cycle, &k = 1
is chosen, since it does not correspond to a reward function
performing well, its probability p; is decreased.

In a second experiment we assume that both chemicals
spread with the same gaussian distribution, but the detector
of second chemical measures with some noise. The evaluation
time is again ¢4, = 25 s. Simulation results show that
the robot is able to learn to disregard the second chemical
and to just rely on the maximization of the first chemical
by selecting the instantiation 2. This last example shows the
effectiveness of the proposed high level control in case of
sensory malfunctioning.

Epoch1 Epoch2 Epoch3 Epoch4

0.5 0.5 0.5 0.5

0 0
12345678 12
Epoch7

o

me

2 3 56 7 8

4 45678
Epoch5

poch6

45678
poch8

me

05 05 05 0.5

2 67 8 123458678

Epoch10

2345678
Epoch11

45 12345678
poch9

Ll

0.5 0.5 05

0
12345678 123 45¢678 123458678

Fig. 2. Evolution of the probability vector.

VI. CONCLUSION

Adaptation in dynamic and unpredictable environments is
a very challenging problem. The goal of our approach is to
enable a robot to learn and dynamically utilize the interaction
with its environment from self-evaluation of its behavior. We
propose a general approach for the unsupervised learning
of behaviors in a behavior-based robot. The key idea is to
formalize a behavior as a Motor Map driven by an adaptive
reward function. The advantages of this methodology are
that the human designer can easily embody all its a priori
knowledge on the robot controller, while providing at the
same time a high degree of adaptability and robustness against
sensory malfunctioning. Much work remains to be done in the
temporal coordination of the behaviors.

ACKNOWLEDGMENT

The authors acknowledge the support of the European Com-
mission under the Project FP6-2003-IST2-004690 SPARK.

REFERENCES

[1] M.J. Mataric Learning in behavior-based multi-robot systems: policies,
models, and other agents. Journal of Cognitive System Research, 2(1),
pp. 81-93, 2001.

[2] F. Michaud and M.J. Mataric. Learning from History for Behavior-Based
Mobile Robots in Non-Stationary Conditions. Autonomous Robots, 5, pp.
335-354, 1998.

[3] O. M. Omidvar and D. L. Elliott. Neural Systems for Control. Academic
Press, 1997.

[4] S. McMillan, D. E. Orin and R. B. McGhee. A computational framework
of underwater robotic vehicle systems. J. Auton. Robots - Special Issue
On Autonomous Underwater Robots, 3, pp. 253-268, 1996.

[5] G. M. Shepherd Neurobiology. Oxford Univ. Press, 1997.

[6] M. Frasca, P. Arena, L. Fortuna. Bio-Inspired Emergent Control Of
Locomotion Systems. World Scientific Series on Nonlinear Science, Series
A - Vol. 48, 2004.



