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Abstract— One of the most common combinatorial problems
in logistics and transportation applications is the Stacker Crane
problem (SCP), where commodities or customers are associated
with a pickup location and a delivery location, and the objective
is to find a minimum-length tour visiting all locations with
the constraint that each pickup location and its associated
delivery location are visited in consecutive order. While vastly
many SCPs encountered in practice are embedded in road
or road-like networks, very few studies explicitly consider
such specific structure. In this paper, first we formulate an
environment model that captures the essential features of a
“small-neighborhood” road network, including a basic set of
road rules. Then, we formulate a sfochastic version of the
SCP on such road network model, where pickup/delivery pairs
are random points on network’s edges and nodes. Finally,
we provide an algorithm for such problem which: (i) is
asymptotically optimal, i.e., it produces a solution approaching
the optimal one as the number of pickups/deliveries goes to
infinity, almost surely; and (ii) is efficient in the sense that it
can be computed in time polynomial in n, where n is the number
of pickup/delivery pairs. Simulation results show that with a
number of pickup/delivery pairs as low as 50 the proposed
algorithm delivers a solution whose cost is consistently within
10% of that of an optimal solution.

I. INTRODUCTION

Pickup and delivery problems (PDPs) constitute an im-
portant class of vehicle routing problems in which objects or
people have to be transported between locations in a physical
environment. These problems arise in many contexts such as
logistics, transportation systems, and robotics, among others.
Broadly speaking, PDPs can be divided into three classes [1]:
1) Many-to-many PDPs, characterized by several origins and
destinations for each commodity/customer; 2) one-to-many-
to-one PDPs, where commodities are initially available at a
depot and are destined to customers’ sites, and commodities
available at customers’ sites are destined to the depot (this is
the typical case for the collection of empty cans and bottles);
and 3) one-to-one PDPs, where each commodity/customer
has a given origin and a given destination.

When one adds capacity constraints to transportation
vehicles, the one-to-one PDP is commonly referred to as
the Stacker Crane Problem (SCP). The SCP is a route
optimization problem at the core of several transportation
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systems, including demand-responsive transport (DRT) sys-
tems, where users formulate requests for transportation from
a pickup point to a delivery point [2], [3].

Literature overview. The SCP, being a generalization of the
Traveling Salesman Problem, is NP-Hard [4]. The problem
is NP-Hard even on trees, since the Steiner Tree Problem
can be reduced to it [5]. In [5], the authors present several
approximation algorithms for tree graphs with a worst-case
performance ratio ranging from 1.5 to around 1.21. The 1.5
worst-case algorithm, based on a Steiner tree approximation,
runs in linear time. Recently, one of the polynomial-time
algorithms presented in [5] has been shown to provide an op-
timal solution on almost all inputs (with a 4/3-approximation
in the worst case) [6]. Even though the problem is NP-hard
on general trees, the problem is in P on paths [7]. For general
graphs, the best approximation ratio is 9/5 and is achieved
by an algorithm in [8]. Finally, an average case analysis of
the SCP on trees has been examined for the special case of
caterpillars as underlying graphs [9].

Despite the importance of the SCP, current algorithms for
its solution are either of exponential complexity or come
with poor guarantees on their performance in the worst case.
Yet if the kinds of SCPs that arise in practice are actually
comparatively easy (as seems the case for, e.g. the Euclidean
TSP), then it should be valuable to find efficient algorithms
for such cases with better performance guarantees, e.g. op-
timality. With this view in mind, the authors have examined
the stochastic SCP in Euclidean environments [10], where
pickup and delivery points are generated according to a
ii.d. random process. In that work the authors were able
to produce a polynomial-time algorithm for the SCP that is
asymptotically 1-optimal almost surely.

While the former work demonstrates the plausibility of
searching for better guarantees for practical cases, it fails to
address the most prevalent usage cases of SCPs in modern
robotics and transportation contexts, which are usually set in
engineered environments characterized by systems of traffic
lanes and interchanges. While one might argue that the
Euclidean plane can represent such environments at a large
scale (e.g. city-wide), if one considers the SCP in smaller,
more densely traveled neighborhoods (e.g., the view of a
downtown area by taxi or courier service), such a model
may fail to capture the essential features of the transportation
system.

Contributions. Broadly speaking, the contribution of this
paper is two-fold: First, we formulate an environment model
that captures the essential features of a continuous ‘“small-
neighborhood” road network, including a basic set of road



rules (a vehicle constraints model). Despite the prevalence
of such environments in the vast majority of modern trans-
portation contexts, a mathematical formalization of such is
exceedingly rare. The inclusion of road rules in our model
introduces additional complexity in that the way to travel
from one set of system coordinates to another may depend
on the way a vehicle arrived to the present coordinates in the
first place (e.g. which direction the present road was traveled
in); this is a consideration not addressed, e.g., with single-
integrator vehicle models in R%. We embed the SCP within
a probability framework where origin/destination pairs are
identically and independently distributed random variables
within the proposed environment. Our random model is
general in the sense that we consider potentially non-uniform
distributions of points, including the case that the distribution
of pickup sites is distinct from that of delivery sites.
Second, we formulate the SCP over points in the en-
vironment as an optimization problem; the graph induced
by the origin/destination pairs does not have any specific
restrictions. The main contribution of the paper is to devise
an efficient strategy for solving the SCP—for an embedding
of the problem in our road network model—which has strong
probabilistic optimality guarantees, i.e. is asymptotically
optimal almost surely, and which can be computed provably
in polynomial time; we provide a preliminary such algorithm.
Organization: The rest of the paper proceeds as follows.
In Section [[I] we present background material for the paper.
In Section we formally state the goals of the paper, to
devise an efficient strategy to solve the SCP embedded in
a road network model. We present our road network model
in Section [IV] Then in Section [V] we provide model-specific
formulations of the SCP and a closely related combinatorial
optimization problem we call the Multi-Crane Problem. In
Section [VI| we present the main result of the paper, an
algorithm to solve the stochastic SCP; we prove almost sure
asymptotic optimality, and polynomial-time complexity. We
present simulation results in Section and offer conclud-
ing remarks and direction for future work in Section

II. BACKGROUND MATERIAL

In this section we present the background material for the
paper: we recall some basic geometric definitions, and we
present generalized geometrical forms of the Stacker Crane
Problem (SCP) and a closely-related problem we call the
Multi-Crane Problem.

A. Geometry

Definition 2.1 (Metric space): A metric space is the pair
of a set , called a point set, and a distance function |-, -|| :
Q x Q — Ry, satisfying for all zg,x1, 22 € 2

1) ||zo,z1|| =0 = x¢ = 21 (coincidence axiom),

2) ||zo, z1|| = ||z1, zo|| (symmetry), and

3) ||z, z1|| < ||zo, z2|| + ||z2, 21| (triangle inequality).
(A quasi-metric space is a space that satisfies all of these
axioms, except for possibly symmetry.)

Definition 2.2 (Curves, and Uniform Paths): Given a
(quasi-) metric space (€, ||-,||), a curve is a function

v : I — Q, from some non-empty interval I of the real
line to €. Given a continuous (quasi-) metric space, a
uniform path, or simply path, is a Lipschitz continuous
curve P : [0,1) — Q, for some [ € R, for which:

L IP@). P+ o)l
6—0t 1)

1 for all = € [0,1).

The scalar [ is referred to as the length of the path.
Definition 2.3 (Path Fragment): For any path P : [0,1) —
Q, a fragment of P is any path (function) resulting from
the restriction of P to some subinterval [a,b) of its domain
O<a<b<l).
Definition 2.4 (Path Constraints): Given a (quasi-) metric

space (€, ]|, -]]), a set P of paths over Q is a constraints set
if for any P € P, all of its fragments, i.e., P[a,b) for 0 <
a < b <1, are also in P. The tuple (%, ||-,-||,P) is called a

path-constrained metric space. For continuous metric spaces,
if P is the set of all uniform paths, then we simply write
(2, ||, +]|); we say that the space is unconstrained. For all
z,y € §, let ||z, y||p denote the infimum length over paths
{PeP : P fromz to y}.

B. The Stacker Crane Problem

Given a path-constrained metric space (€2, ||-,-||,P) (or,
“environment”), and sets X, := {x;}; and V,, := {y;}
of points in €2, the Stacker Crane Problem (SCP) is to find:

1) a sequential ordering S of all points with the property

that y; is ordered immediately after z; for all ¢+ =
1,...,n; we might interpret each pair (x;,y;) as the
pick and delivery site, respectively, of some object ;
we might interpret .S as the order in which the sites
are visited by a unit-capacity vehicle, with the intent
to pickup and subsequently deliver all such objects;

2) a cyclic path P € P passing through all points in

Q. = X, U)Y, in the order of S;

the overall objective of the SCP is to find a path of minimum
length satisfying these constraints. We will refer to any such
path as a stacker crane tour, and to the sequence S as the
visit sequence; we refer to any minimum length stacker crane
tour as an optimal stacker crane tour.

In general, this form of the Stacker Crane Problem is
NP-Hard, since its restrictions to various spaces—e.g. to
the nodes of a graph [8] or points in Euclidean R¢, d >
1—recover the traditional graph and Euclidean versions,
respectively, of the SCP, which are known to be hard. Like
the well-known traveling salesman problem (TSP), the SCP
is usually stated in contexts (e.g. the previous two) where
the optimal path through a sequence of points is simply the
joining of optimal paths between adjacent points along the
sequence. We say that such a space is “simple”. Our formu-
lation of the SCP does not make the restrictive assumption
of simple environments. That is, for a sequence of points
S = (x1,...,%,), and a set of paths {P; € P}Li‘fl where
each P; is a path between (z;,2;41), the path Py ... Pjg_;
need not be in P. For the TSP, the lack of such assumptions
results in the generalized TSP, or group TSP, (see [11], [12]).



In this paper, we are largely interested in a stochastic
version of the SCP, where the problem instance @, is a
random set {(X;,Y;)} ,, ie, X; and ¥;, fori=1,...,n,
are randomly distributed in a continuous environment 2. We
consider the case where all pairs are identically, indepen-
dently distributed according to a distribution with pdf ¢ :
Q2 x Q) — R>(. Throughout the paper we assume that density
@ is absolutely continuous. We refer to this construction
as the stochastic Stacker Crane Problem; henceforth, we
will refer to the stochastic SCP simply as SCP, with the
understanding that all pickup-delivery pairs are generated
randomly according to the aforementioned probability model.

C. The Multi-Crane Problem

The Multi-Crane Problem (MCP) is closely related to the
SCP. The instances of the MCP are the same as those of the
SCP; however, the objective is to identify:

1) a partition T of the pairs set {(x;,y;)}";; and,
2) for each set t € T, a stacker crane tour through ¢;

the overall objective is to find such a set of stacker crane
tours having minimum rotal length >, . L(P;), where P,
is the stacker crane tour through ¢ for each subset ¢t € T,
and L(-) gives the length of such a tour. Note that the trivial
partition, with a single stacker crane tour (e.g. a solution of
the SCP), is a feasible solution for the MCP.

The MCP is different from a problem—we might call it
m-SCP—having additional constraint |T'| = m. The m-SCP
arises in a pickup and delivery setting when a specific number
m of vehicles are available to provide service. The MCP then
is the version of the problem where the number of vehicles
is not fixed a priori, but instead is arbitrary.

III. PROBLEM STATEMENT

In this paper we are interested in the static and stochastic
SCP, when pickup and delivery points may be anywhere in
a road network (e.g. between interchanges); moreover, we
consider the case that vehicles are restricted to follow certain
road rules. Thus, we aim to embed the SCP in a metric space
which captures the essential features of a continuous road
network. Because an explicit mathematical formalization of
such a network, i.e. as a continuous metric space, remains
elusive, we aim first to describe the model used in this paper.

Second, given the geometric model, we aim to produce
network-specific formulations of the SCP and MCP, and to
provide simple reductions of our formulations to well-known
combinatorial optimization problems (e.g. TSP).

The ultimate goal of the paper is to find a polynomial-time
algorithm for the stochastic SCP which is asymptotically
optimal in the strongest probabilistic sense (almost surely);
that is, to find an algorithm A for the SCP, such that

lim La/Lic =1,

almost surely,
n—-+oo

where L4 is the length of the SCP tour produced by
algorithm A, and Lg is the length of the optimal SCP tour.

Fig. 1. A simple geometric network; comprises node points u and v, and
a single edge e of unit length.

IV. THE GEOMETRIC NETWORK

A geometric network is a metric space consisting of a con-
tinuous, one-dimensional network structure formalizing the
notion of a roadmap. The “edges” of the geometric network
are continuous segments corresponding to the “roads” of a
roadmap. The network “nodes” represent intersections. There
is a natural notion of distance between any two locations on
a network, which includes, but is not limited to, the notion
of distance between vertices on their traditional, graphical
representations.

The geometric network can be represented by an undi-
rected, non-negatively weighted multigraph (V, £, L), where
V is the vertex set, £ is the edge set, and L : £ = R>g
is a non-negative length mapping over the set of edges. In
the remainder of this section, we will provide the formalism
for the geometric network, a metric space, by generating the
tuple (€2, -, -]|) given its representation. The reader should
bear in mind that we are only putting into formal terms
the most natural understanding of a road network geometry.
While the development seems to require an unfortunate level
of notation, we maintain that the end result should be near to
one’s initial intuition. Nevertheless, we will make extensive
use of illustrations to guide the development.

A. The Point Set

The point set D of the network is composed of two
characteristically distinct sets: the node points, and the edge
points. We will refer to all such points in terms of their
“addresses” through a symbolic mapping p. Each node u €
V' corresponds uniquely to a single point in D, which we
denote p(u); w is the point’s address. Together, these are the
node points.

For example, in Figure [I| the points u and v are node
points. Each edge e € £ corresponds uniquely to some open
segment of length L(e) in D; in Figure [I| there is one such
segment, having length 1, which connects points u and v.
Then for each 0 < ¢ < L(e) we denote by p(e,t) a point
which will be understood to lie a distance ¢ away from p(u)
(toward p(v)) along the segment represented by e; (e, t) is its
address. Together, these are the edge points. Unfortunately,
the preceding informal notion of position for edge points is
made ambiguous by the equivalence of the edges (u,v) and
(v,u) in the undirected setting. For convenience we assume
there is an ordering < over the vertex set V, so that in writing
e = (u,v) it will be implicit that u < v. If e = (v,u) is
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Fig. 2. A ring network; comprises nodes points u and v, with edges e
and eg, of differing length, between them.

written instead, where v > u, then the appropriate distance
reference will be the reverse one. Assuming that u < v for
the network of Figure [I| then the point x can be written
as p(e,0.2), and y can be written as p(e, 0.8). Thus, the
network in Figure [T] is represented by a graph with V' =
{u,v} and € = {(u,v)}, with a length function L assigning
length 1 to the single edge (u,v).

Let min. e denote the smaller endpoint of e under the
given ordering; let max e denote the larger endpoint. For
all e € &, let

p(e,0) := p(min<e), and p(e, L(e)) := p(max<e). (1)

For example, in Figure [I] the point w can be written as
p(e,0), and v as p(e, 1), (since u < v). Thus, node points
generally lack a unique representation; whereas all points
described before had been distinct.

We will refer to any set

p(e, (a,b)) :={p(e,t) : t € (a,b)}, 2)

for e € &, as an interval (open). We refer to the interval
int(e) := ple, (0,L(e))) for e € & as the interior of
edge e. The closure cl(e) of edge e is defined as the
interior of e with its endpoints {p(min e), p(max<e)};
note that this definition, along with , respects closure
of the interval (0,L(e)) in the definition of interior using
the homeomorphism (2). We define the boundary bd(e) of
edge e as the set of endpoints {p(min e), p(max_ e)}; this
definition respects the general notion bd(-) = cl(-) — int(-).

B. The Distance Metric

The distance metric for D can be generated by combina-
tion of a set of basic metrics. For each edge e¢ € &, let

Iz, yll, :=min{[t —s| : z=p(e,s) and y = p(e,1)};

3)
the min in (3)) ensures a unique distance in the case of points
with multiple representations, i.e. node points. We maintain
the usual convention min{) = +oo; thus the metric |-, ||,
is finite for 2,y € cl(e), and infinite otherwise. Collectively,
we call these the edge metrics. As an example, in Figure [2]
llz,yll,, is equal to the distance from x to y in the clockwise
direction along e>. Meanwhile, ||z, z||,, is infinite, because
the points do not share e; as a common edge; note however,
that the distance ||z, ul|,, is finite, as well as the distance
lu, 2|, The idea is that for e € &, and z,y € int(e),

||I-,-]|, gives the distance metric on the restriction of D to
int(e).
We define the node equality metric as

0 ife=y=pu),ueV,
2, ylly = .
+o00  otherwise.

Then the distance metric on D is equal to
n—1
Iz, yllp = msin Z min {|5z7 sit1lly alglelg [ES Si+1||e} )

i=1

“)
where S = (s1,...,s,) may be any finite sequence of points
such that s; = = and s, = y; if equation () is finite, we
say the points are connected. If two points are connected in
the network, then a minimizing sequence for can always
be found where the subsequence (s, ..., S,—1) (Which may
be empty) is composed of only node points. Returning to
the example of Figure |2, one could show that ||z, z|, =
[, ull,, + llu, 2|, and thus is finite; one could also argue
that ||z, yllp = ||z, ull,, + u, v, +[lv,yll., (the counter-
clockwise path), and observe that ||z, y||, < ||z, yl|,,-

C. A Probability Model for Random Points

This paper is about the properties of a number of combina-
torial optimization problems whose instances are randomly-
generated sets of points on a geometric network. We use a
probability model with sample space D (the network), and a
set of measurable events given by the Borel o-algebra § over
node points and closed intervals on edges. For point random
variables with support only over edges, we describe probabil-
ity distributions by their probability density functions (pdf);
the notion of probability density extends in a straightforward
way from the notion of density over regular line segments,
ie. px(ple,y)) :==lima_oP[X € p(e, [y, y + A])]/A.

D. The Parisian Constraints Model

In this section we introduce a basic model of road rules on
geometric networks, which we call Parisian path constraints.
Such constraints are meant to represent abstractly the kinds
of driving restrictions that exist in real road networks; the
name is given in recognition of the model’s capturing the
essence of rotary interchanges (“round-abouts”), as prevalent
in the road systems of French cities and towns.

Definition 4.1 (Parisian path constraints): Given a geo-
metric network (D, ||-||p), the set F of Parisian paths is
defined recursively as follows.

1) All direct paths from endpoint to endpoint along a
single edge are in IF; i.e., P(¢) is defined over [0, L(e)
for some edge e; and P(t) = p(e,t), or else P(t) =
p(e. L(e) - 1).

2) All uniform paths formed by concatenation of paths of
the former type are in F;

3) To satisfy the main property of a constraints set, all
fragments of paths of the former types are in F.

The set of Parisian paths is distinct from the set of all

uniform paths only by the ordering of rules (2) and (3) of its
construction. The appropriate intuition about Parisian path



constraints is that once a vehicle begins to travel along an
edge in a given direction, it is constrained to complete the
traversal of that edge in the same direction, until it arrives
at the opposite endpoint; whereas the direction of travel
from node points is arbitrary. A Parisian path-constrained
environment (D, F) is not simple. For example, consider two
points z and y in close proximity along some network edge.
The shortest (Parisian) path from z to y is the direct one, as
is the shortest path from y to x, yet the shortest path through
the sequence (x,y,x) is different from their joining.

Definition 4.2 (State-space): Given a path constrained en-
vironment (Q,P), a state-space is a quasi-metric space
(X, |I-llx) with an projection function proj, : X — £,
having the property that the image of the set of uniform paths
over X, under projection projg, is equal to the constraints
set P over (2.

Given an environment (2, P), the motivation behind con-
structing a state-space X is to recover the desirable properties
of a simple environment. State-spaces by design enjoy a
Markov-like property: Given a path prefix Q' terminating
in state g, the set of allowable extensions of Q' is simply all
uniform extensions, i.e., it is independent of the prefix Q'.

We introduce the following realization of a Parisian state-
space (we call it F), given a geometric network D. Our
construction is based on sufficient statistics for satisfying the
Markov property: Specifically, to extend any Parisian path
it is sufficient to know the path’s endpoint and, if it is an
edge point, the current direction of travel. Thus, for each
u € V, let q(u) denote the (unique) state at point p(u) (no
direction). For each e € £, and 0 < t < L(e), let g* (e, t)
denote the state at point p(e, t) with travel in the increasing
direction (according to <); let g~ (e,t) denote the state at
the same point with travel in the decreasing direction. We
institute the familiar convention q* (e, 0) := q(mine), and
qt(e,L(e)) := q(max_e), for all e € &, i.e. node states do
not have a unique address. The state space is completed by:

1) distance quasi-metric |-, -|| » in the form of ()), derived
from edge quasi-metrics
: g=at(es)  g=q (es)
lgs Pl := min ¢ [t = s = h=q* (c.t)> OF h=a” (et
s<t s>t

for all e € £, and the same node equality metric;

2) projection function projp, such that projp(q(u)) =
p(u) for all u € V, and projp(q*(e,t)) = p(e, t) for
allee & and 0 <t < L(e).

V. THE SCP OVER GEOMETRIC NETWORKS WITH
PARISIAN PATH CONSTRAINTS

In simple environments, the SCP has a straightforward
reduction to the TSP. Given a SCP instance @),,, the ATSP
problem graph G = (V, A) contains one node for each
demand, and edge weights (i.e. distances) given by d,,i,; :=
lyi,zillp + l|zj, yjllp, for nodes u’,u/ € V corresponding
to demands ¢ and j, respectively; d,:,; is the length of
a minimum-length path through the sequence of points
(yi,5,y;) (a delivery-to-delivery tour fragment); The op-
timal TSP tour of G gives the visit sequence of the optimal

SCP through @,,; the SCP tour itself can be stitched together
from the optimal paths between points along this sequence.
Unfortunately, such stitching may not produce a valid path
for non-simple geometries.

SCP Formulation over Geometric Networks with
Parisian Path Constraints: For the (non-simple) geomet-
ric network with Parisian path constraints, we provide a
reduction of the SCP to the generalized traveling salesman
problem [11], or group TSP. The group TSP is, given a
possibly asymmetric distance graph, and a partition of the
graph nodes into disjoint subsets {S;}, or groups, to find the
shortest cyclic tour visiting exactly one element from each
group. The group TSP can be formulated in the style of [11]:

Let z;;, for all (i,j) € A, be the binary variables
indicating the presense (if = 1), or absense (if = 0), of
edge (4,7) in the group TSP tour. The group TSP polytope
can be described by:

Z Tik = Z Ty (k S V)
i (i,k)EA i (k,j)eA
&)
Z T = Z z;=1 (I=1,...,n)
(i,k)EA : kES, (k,j)EA : kES;
(6)
Yoo <71 7

(i,7)€A : i,jET
T CV,TNS; #0 for some but not all [.

The group TSP is to minimize Z(i,j)eA dijx;;, subject
to (3), (@), and (7), where {d;; : i,j € V'} are edge costs.
Given a SCP instance @), the problem graph contains one
group S; for each demand ¢. For each demand ¢, S; contains
one node for each element of {q*(z;)} x {q™ (v;)}; that is,
all pairs (g, h) such that a (state-space) path exists from z;
in state g, to y; in state h. The edge weights are given by

{duv = Hhuagv”]—' + ||gv;th]-‘ L uv € V}a (8)

where u and v are nodes in V' corresponding to pairs (g, /)
and (g,, hy), respectively; such weights are, by the Markov
property, the lengths of the optimal tour fragments through
sequences of the form (hy, g, hy).

The idea behind this reduction is that if a group TSP tour
visits group \S; by the node corresponding to state pair (g, k),
then the corresponding stacker crane tour will service the
demand 7 by performing the pickup at z; in state g, followed
by delivery at y; in state h (generally using the optimal path
to do so). The visit sequence of the optimal group TSP (an
ordering of groups), gives the visit sequence of the optimal
SCP (an ordering of demands). To show correctness, we
observe the following fact.

Lemma 5.1: If P is a (Parisian) stacker crane tour on a
geometric network, then there exists a TSP tour & on the
related instance of the group TSP that has cost no greater
than the length of P. Moreover, any group TSP tour can
be transformed into a stacker crane tour on the network of
length equal to its cost.



Proof: Let o be the visit sequence of cyclic Parisian
tour P, with a corresponding state-space curve Q. To con-
struct a TSP tour ¢ for the group TSP instance, we traverse
the cycle Q once, starting from some delivery point. (Let &
be initially an empty graph.) For each pair of demands, say
(i,4), that are adjacent in c—including the pair of the cycle
boundary—we will add an edge (u, v) to 6: The node u is the
graph node in \S; associated with a state pair (g;, h;), where
g; is the state by which Q visits x;, and h; is the state by
which Q visits y;; the node v is chosen in the same way for
demand j. Note that the total weight of edges added to & in
this way is bounded above by £(P): Between the delivery of
demand ¢ and that of demand j, Q traverses a path through
a sequence of states (h;, g;, h;). The edge weights (§) of G
are chosen as the lengths of optimal such paths. It remains
only to show that the subgraph & is a feasible group TSP
tour. Each demand is visited exactly once by Q, therefore
each group is visited exactly once by 4.

The second part of the proof is, roughly speaking, by
reversing the previous procedure. Let & be a group TSP tour
on GG. We traverse the tour once. For each arc (u,v), we add
to P an optimal delivery-to-delivery tour fragment through
the sequence of states (h;, g;,h;), where demands ¢ and j
(and states g;, h;, g; and h;) correspond to u and v in the
previous sense. The result is a Parisian stacker crane tour of
length equal to the cost of . [ ]

MCP Formulation over Geometric Networks with
Parisian Path Constraints: Recall the previous group TSP
formulation of the SCP; let us call it Problem A. Now, for the
geometric network with Parisian path constraints, we provide
a reduction of the MCP to another graphical optimization
problem. Let us consider Problem B, the relaxation of Prob-
lem A produced by neglecting the integrality constraints (i.e.,
all z;; € {0,1}), as well as the constraints of equation (7),
or the so-called subtour elimination constraints (see [11]).
All of the integer solutions of Problem B correspond to
subgraphs of G, where (i) the in-degree and out-degree of
every node are the same (equation (5)), and (ii) there is
exactly one edge entering (or leaving) each group S;, for
i=1,...,n (equation (6)). While the authors are not aware
of the existence of a specialized algorithm for the MCP, we
now show that the problem can be solved in polynomial time
by solving Problem B (a linear program).

Lemma 5.2: If {P;}icr is a solution to the MCP, i.e. a
set of |T'| stacker crane tours visiting all demands, then there
is a solution & to Problem B having cost no greater than the
total length ), . £(P;). Moreover, given a solution & to
Problem B, a solution to the MCP can be constructed with
total length equal to its cost.

Proof: The proof of the first part is by construction
of a feasible subgraph & of G, given any MCP solution.
(Let & be initially an empty graph.) For each stacker crane
tour P; (for ¢t € T'), we apply the procedure in the proof of
Lemma [5.1] (though keeping our “progress” in &). Using the
same argument, we have that the total weight of edges added
to & in this way is bounded above by >, ;- L(P;). It remains
only to show that & is a feasible solution to Problem B. Let

o+ denote the part of 6 contributed by the tour P, for each
t € T. Because the tours {P;}ser visit all the demands
disjointly, any group S; contains edges from exactly one 6.
By the properties of the procedure, any &, visits its assigned
groups exactly once, and each by a single node. Thus, each
group has a single incoming and a single outgoing edge
(satisfying (1)), and each node has equal in-degree and out-
degree; specifically, both = 1 if the node is visited, or = 0
otherwise (satisfying (ii)).

The second part of the proof is again by essentially revers-
ing the procedure from the first part; however, this requires
that a solution o of Problem B have integer components, i.e.
all z;; € {0,1}. Luckily, an extension of the Birkhoff-von
Neumann theorem [13] ensures that any feasible solution
of Problem B can be written as a convex combination of
integral solutions; any integral component of an optimal
solution of Problem B is itself an optimal solution. Focusing
then on such solutions, and combining (3)) and (6), we have
that exactly one node in each group has positive degree,
with one incoming edge and one outgoing edge. The positive
degree nodes of such a graph (one for each group) can be
partitioned to form a set of disjoint cycles. To construct a
feasible MCP solution, we produce one stacker crane tour
for each cycle, using the reverse procedure in the proof of
Lemma 3.1}

|

VI. AN ASYMPTOTICALLY OPTIMAL POLYNOMIAL-TIME
ALGORITHM FOR THE SCP

In this section we present the main result of the paper,
an algorithm for the stochastic SCP that is asymptotically
optimal almost surely. We proceed with a formal description
of the algorithm. Then we discuss the computational com-
plexity of the algorithm. Finally we prove its almost sure,
asymptotic optimality.

The key idea behind the algorithm is to service the de-
mands of the randomly-generated SCP instance by traversing
each of the stacker crane tours in the optimal MCP solution.
Unfortunately, the tours in the MCP are generally disjoint,
and so cannot be traversed by a single vehicle without adding
path segments of additional length. On the other hand, it
is easy to show that the MCP tours can be stitched into a
traversable path (stacker crane tour), where the total length
of additional segments is bounded above by a constant; this
constant is a function of the shape of the network only, and
does not scale with the size of the problem.

Suppose we have a finite-length closed-path P, visiting
every state in JF; F is one-dimensional and finite length
itself, so such a covering should exist. For example, in
Figure [3] a network is shown with five nodes arranged in
a regular pentagon. The closed Parisian tour drawn around
its periphery, i.e. (1,2,3,4,5,1,5,4,3,2,1), covers every
possible vehicle state; it traverses the entire ring once in the
clockwise direction, and then again in the counter-clockwise
direction. The (optimal) MCP tours can be transformed into
a single stacker crane tour using the following rule:
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Fig. 3. A ring network with five (5) evenly-spaced interchanges. A state-
covering tour (1,2,3,4,5,1,5,4,3,2,1) is drawn.

The Stitching Algorithm:

1) Traverse the closed-path P., from any starting point,
until some pickup is reached in a state g by which it is
visited by one of the optimal MCP tours (i.e. the first
such pickup).

2) Let P; be the visiting tour. Service all of the demands
on the closed tour P, (traversing it), returning eventu-
ally to state g.

3) Continue on P, from state g, servicing all of the
(remaining) unserviced MCP tours in the same way,
returning eventually to the starting state.

While the MCP can be solved in polynomial time, e.g.
using a general purpose LP solver for Problem B, it is
unlikely that it can be solved in time o(n®) without sig-
nificant effort: There is a straightforward O(n)-reduction
of the bipartite matching problem (BMP) to MCP, and the
fastest known BMP algorithm on general graphs [14] is
O(|V||A]), i.e. n®. In other words, an o(n?®) algorithm for
MCP would immediately improve the state of the art for
BMP. Thus, it is fairly certain that the time complexity of
the stitching algorithm is dominated by the construction of
the optimal MCP tours. Sorting the n pickup states by order
of occurence along P. can be achieved in time O(nlogn),
and constructing the final tour takes O(n).

Theorem 6.1: Let @, = {(X;,Y:)}_; be a stochastic
instance of the SCP in D with Parisian path constraints
F, where (X;,Y;) are identically, independently distributed
according to a distribution with density . Let L be the
length of the optimal stacker crane tour; let Lgitcn be the
length of the stacker crane tour generated by the stitching
algorithm. Then

lim Lgtiten/Léc = 1, almost surely.
n—oo

Proof: Let {P;}icr be an optimal solution to the MCP
over (Q,, i.e. a set of stacker crane tours collectively visiting
all points. Let P, be a finite-length state covering of the
network, used by the stitching algorithm. The stacker crane
tour generated by the stitching algorithm has length Lg;ch,
where

Lgc < Lyich = Zﬁ(Pt) + L(P.) < Lgc + L(Pe);
teT

we have the equality because the tour P. is traversed
exactly once to connect the MCP subtours; we have the last

inequality because the MCP is a relaxation of the SCP. Thus,
we have lim, o0 Lgitch/Lic < limp oo 1 + L(Pe)/Lic,
where L£(P.) is constant. Observing that the optimal stacker
crane tour has length that grows linearly in n (almost surely),
e.g. because E [||X;,Yi||5] > 0 (and applying Strong Law
of Large Numbers), we obtain the limit. [ ]

An Asymptotically Optimal Multiple Vehicle Makespan
Algorithm: 1t is worth noting that the asymptotically optimal
SCP algorithm of this paper can be used to solve another
related “Stacker Crane”-like problem. Let us call it the m-
Stacker Crane Makespan Problem (m-SCMP). The m-SCMP
is to find

1) apartition 7" of the pairs set {(z;,y;)}"_, where |T| =

m; and,

2) for each set t € T, a stacker crane tour through ¢;
the objective of the m-SCMP is to minimize the maximum
length (max;er £(P;)) among the set of stacker crane tours
produced; note that the objective differs from the fotal length
objective of the m-SCP. The approach to constructing an
asymptotically optimal m-SCMP algorithm (for fixed m)
using an asymptotically optimal algorithm for the 1-SCP,
is to break the resulting stacker crane tour into m equal-
length fragments (or approximately equal); this approach has
been described in [8]. The makespan version of the SCP is
particularly important in dynamic multi-vehicle versions of
the problem, as discussed, e.g. in [15].

VII. SIMULATION RESULTS

In this section we present an empirical study, through
randomized simulations, of the performance of the stitching
algorithm; we consider performance in the sense of quality
of the solution, as well as runtime of the algorithm. For
our experiments, we used the simple geometric network
shown in Figure [3| with Parisian path constraints. All points
(pickup and delivery) were sampled i.i.d. according to a
uniform distribution over the entire length of the network,
ie. p(x) =1/5 for all x € D.

Figure shows a plot of the ratios Lgiwch/ Y ;e L£(Pr)
observed for a set of random samples. We used twenty (20)
samples in each of a number of size categories. The fac-
tor plotted is an upper bound on the factor of optimality
Lgiweh/ Lic; for instances of the size considered, it is imprac-
tical for us to compute optimal stacker crane tours explicitly.
The plot shows a trend decreasing as O(1/n) (as expected),
and having sub-optimality consistently less than 20% for
> 30 demands, and just above 10% for = 50 demands.

Figure [A(b)] shows the total runtime of the algorithm, on
the same set of samples. The observed growth in runtime in-
dicates that our preliminary MCP algorithm, based on using
a general-purpose LP solver (GNU Linear Programming Kit
(GLPK) software, glpsol), has runtime of the order n~4.

Figure displays the factors Y, . L(P;)/n and
Lyiten/n—per-demand average tour lengths—for again the
same set of samples. Dashed lines are drawn through the
mean ratio of each size category. As n grows, such factors
must be bounded below almost surely by a constant C' >
E[||X;,Yil[p] = 1.75; our conjecture, which we leave to
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discuss in a future paper, is that the factors converge to C,
and that the inequality is strict.

VIII. CONCLUSION

In this paper we have formulated the Stacker Crane Prob-
lem in the stochastic setting for an environment model de-
signed to capture the essential features of the ubiquitous road
network. Given the model, we have provided a polynomial-
time algorithm, based on the Multi-Crane Problem, which is
asymptotically optimal for the SCP almost surely. We believe
that the MCP-based algorithm is a significant contribution,
because it has been non-trivial to produce efficient policies
having asymptotic optimality guarantees, even in the stochas-
tic case. There are a number of simple strategies for the SCP
that are constant-factor optimal, i.e. lim, oo L4/L§- = C
for some C' > 1, but whose constants C' are, provably, strictly
greater than one. One class of algorithms foremost among
such “naive” algorithms is the class of algorithms that ap-
proach the stacker crane problem by first determining optimal
paths from the pickup points to their matched delivery points
(to simplify the problem) and then constructing a stacker
crane tour from these fragments (e.g. by an algorithm [10]
based on bipartite matching). It can be shown that the set of
such paths are at best constant-factor optimal, with C' > 1;
we leave a detailed discussion for an upcoming paper.

While constant factor guarantees may suffice for small in-
stances in undemanding problem domains, a large body of re-
search is dedicated to dynamic vehicle routing problems [16]
for which they do not. For example, suppose we have a
spatial queuing system, with service of a pickup-delivery
type; demands arrive to the system over time, according to a
renewal process, say at rate A\, and a finite number of vehicles
are routed to provide service. The previous guarantees do not
lend themselves to proving conditions (e.g., bounds on the
arrival rate \) that are necessary and sufficient to ensure a
stable queueing system, nor to creating efficient stabilizing
policies. The guarantees provided by our algorithm have such
ability, which we will explore in future papers.
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