Discussion of "Learning from Inflation Experiences" by Ulike Malmendier and Stefan Nagel

Monika Piazzesi Stanford & NBER

Spring EFG 2012

Summary

- What explains age-dependent inflation forecasts in the Michigan survey?
- Age differences are due to learning from experience
 - = adaptive learning with
 - (i) gain that depends on age,
 - (ii) data sample since birth
- Consistent with "Depression Babies", Malmendier & Nagel (2010): stock return forecasts in the UBS/Gallup survey depend on "stock returns experienced over the lifetime" computed with weighing scheme which is approximately equal to weighing scheme in adaptive learning with age-dependent gain

Discussion

- Review the raw facts
- Alternative explanation: differences in consumption bundles
- Learning specification and fit
- Reasons why these age-differences matter for macro

Raw facts on age-dependent Inflation Forecasts

- Michigan survey asks households about age & inflation expectations
- Vissing-Jorgensen (NBER Macroannual 2003):
 - check whether inflation forecasts are age-dependent
 - regressions of expected inflation rates on year dummies and on age interacted with year dummies,
 - ▶ find significant age-coefficient for all years 1980-1987
- Small differences across cohorts during low inflation episodes (1960s/early 1970s, late 1980s/1990s/2000s), largest differences in 1980s right after Great Inflation

Alternative explanation – differences in consumption bundles

Hypothesis: inflation experience depends on consumed bundle

- Vissing-Jorgensen (2003)
 Michigan survey asks about past inflation rate on items bought
 In early 1980s: young households report *lower* past rate than old households in early 1980s.
 Goes the wrong way.
- This paper checks with experimental CPI index data for the elderly
- ⇒ Cannot explain age-dependence in expectations

Learning from Experience

ullet recursively estimate AR(1) dynamics, with more weight on recent data

$$\pi_t = \alpha + \phi \pi_{t-1} + \eta_t$$

- benchmark: constant gain learning
 - geometrically decaying weights for past observations
 - captures time varying parameters α , ϕ and $var(\eta_t)$
 - often used to describe structural change
 - e.g., 1980s changes in inflation persistence (and comovement with consumption), Piazzesi & Schneider 2006 NBER MA
- Here: learning from experience
 - = adaptive learning with (i) age-dependent gain and (ii) data sample since birth
 - gain = const/age (why?) young have higher gains/faster decay young use shorter sample

Estimation strategy

- ullet survey forecasts $\pi_t^e\left(\mathrm{age}\right)$
- adaptive learning algorithm generates forecast

$$au_t \left(\mathsf{age}, \mathsf{past} \ \mathsf{data}, \mathsf{gain} \ \mathsf{parameter} \ \theta \right)$$

- how to fit the gain parameter θ ?
- parsimonious approach (not in paper): minimize sum of squared

$$\pi_t^e (age) - \tau_t (age, data, \theta)$$

• paper adds time dummies: minimize sum of squared

$$\pi_t^e\left(\mathsf{age}\right) - \beta \tau_t\left(\mathsf{age},\mathsf{data},\theta\right) - \delta_t$$

choses β , θ and δ_t (less parsimonious, why?)

- ullet δ_t is flexible, common component of inflation forecasts
- success: matching age-specific deviations from δ_t , not levels of inflation forecasts

9 / 15

With learning from experience, expect to see

during inflation episodes:
 experience of the young is now dominated by high inflation
 young expect more inflation

With learning from experience, expect to see

- during inflation episodes:
 experience of the young is now dominated by high inflation
 ⇒ young expect more inflation
 data: yes!
- after inflation episodes: young overweigh recent observations more young revise expectations down faster

With learning from experience, expect to see

- during inflation episodes:
 experience of the young is now dominated by high inflation
 ⇒ young expect more inflation
 data: yes!
- after inflation episodes: young downweigh past observations more young revise expectations down faster data: not really

Why do age-dep. inflation expectations matter for macro?

- Piazzesi & Schneider 2011 "Inflation and the Price of Real Assets"
 OLG model, households can save in three assets: houses, stocks & nominal bonds
- Households save/borrow at the same nominal rate have different inflation expectations

 different perceived real rates
- Generally higher expected inflation: stocks less attractive
- Explains higher borrowing/lending, house price boom together with drop in stock prices (negative comovement in house & stock prices)