Discussion of "Learning from Inflation Experiences" by Ulike Malmendier and Stefan Nagel

Monika Piazzesi
Stanford & NBER

Spring EFG 2012
Summary

- What explains age-dependent inflation forecasts in the Michigan survey?
- Age differences are due to *learning from experience*
 - adaptive learning with
 1. gain that depends on age,
 2. data sample since birth
- Consistent with "Depression Babies", Malmendier & Nagel (2010): stock return forecasts in the UBS/Gallup survey depend on “stock returns experienced over the lifetime” computed with weighing scheme which is approximately equal to weighing scheme in adaptive learning with age-dependent gain
Discussion

- Review the raw facts
- Alternative explanation: differences in consumption bundles
- Learning specification and fit
- Reasons why these age-differences matter for macro
Raw facts on age-dependent Inflation Forecasts

- Michigan survey asks households about age & inflation expectations
- Vissing-Jorgensen (NBER Macroannual 2003):
 - check whether inflation forecasts are age-dependent
 - regressions of expected inflation rates on year dummies and on age interacted with year dummies,
 - find significant age-coefficient for all years 1980-1987
(a) Expected Inflation, Next 12 Months
Alternative explanation – differences in consumption bundles

Hypothesis: inflation experience depends on consumed bundle

 Michigan survey asks about past inflation rate on items bought
 In early 1980s: young households report lower past rate than old households in early 1980s.
 Goes the wrong way.

- This paper checks with experimental CPI index data for the elderly
 Cannot explain age-dependence in expectations
Learning from Experience

- recursively estimate AR(1) dynamics, with more weight on recent data

\[\pi_t = \alpha + \phi \pi_{t-1} + \eta_t \]

- benchmark: constant gain learning
 - geometrically decaying weights for past observations
 - captures time varying parameters \(\alpha, \phi \) and \(\text{var}(\eta_t) \)
 - often used to describe structural change
 - e.g., 1980s changes in inflation persistence (and comovement with consumption), Piazzesi & Schneider 2006 NBER MA

- Here: learning from experience
 - adaptive learning with
 (i) age-dependent gain and (ii) data sample since birth
 - gain = const/age (why?)
 young have higher gains/faster decay
 young use shorter sample
Estimation strategy

- survey forecasts $\pi_t^e (\text{age})$
- adaptive learning algorithm generates forecast
 $$\tau_t (\text{age, past data, gain parameter } \theta)$$
- how to fit the gain parameter θ?
- parsimonious approach (not in paper): minimize sum of squared
 $$\pi_t^e (\text{age}) - \tau_t (\text{age, data, } \theta)$$
- paper adds time dummies: minimize sum of squared
 $$\pi_t^e (\text{age}) - \beta \tau_t (\text{age, data, } \theta) - \delta_t$$
 choses β, θ and δ_t (less parsimonious, why?)
- δ_t is flexible, common component of inflation forecasts
- success: matching age-specific deviations from δ_t, not levels of inflation forecasts
With learning from experience, expect to see

- during inflation episodes:
 experience of the young is now dominated by high inflation
 → young expect more inflation
(a) 1-year expectations
With learning from experience, expect to see

- during inflation episodes:
 experience of the young is now dominated by high inflation
 → young expect more inflation
 data: yes!

- after inflation episodes:
 young overweight recent observations more
 young revise expectations down faster
(a) 1-year expectations

![Graph showing 1-year expectations over time with different age groups indicated by lines and markers.](image)

- Red line: Age < 40 fit
- Blue dashed line: Age > 60 fit
- Red triangles: Age < 40 actual
- Blue circles: Age > 60 actual
With learning from experience, expect to see

- during inflation episodes:
 experience of the young is now dominated by high inflation
 \implies young expect more inflation
 data: yes!

- after inflation episodes:
 young downweigh past observations more
 young revise expectations down faster
 data: not really
Why do age-dep. inflation expectations matter for macro?

- Piazzesi & Schneider 2011 "Inflation and the Price of Real Assets"
 OLG model, households can save in three assets: houses, stocks & nominal bonds
- Households save/borrow at the same nominal rate
 have different inflation expectations \(\rightarrow\) different perceived real rates
- Early 1980s:
 Young households expect more inflation
 perceive lower real rates,
 \(\rightarrow\) borrow & buy houses
 Old households are happy to lend
- Generally higher expected inflation: stocks less attractive
- Explains higher borrowing/lending, house price boom together with drop in stock prices (negative comovement in house & stock prices)