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Bond yields respond to policy decisions by the Federal Reserve and
vice versa. To learn about these responses, I model a high-frequency
policy rule based on yield curve information and an arbitrage-free
bond market. In continuous time, the Fed’s target is a pure jump
process. Jump intensities depend on the state of the economy and
the meeting calendar of the Federal Open Market Committee. The
model has closed-form solutions for yields as functions of a few state
variables. Introducing monetary policy helps to match the whole yield
curve, because the target is an observable state variable that pins down
its short end and introduces important seasonalities around FOMC
meetings. The volatility of yields is “snake shaped,” which the model
explains with policy inertia. The policy rule crucially depends on the
two-year yield and describes Fed policy better than Taylor rules.
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I. Introduction

Meeting days of the Federal Open Market Committee (FOMC) are
marked as special events on the calendars of many market participants.
FOMC announcements often cause strong reactions in bond and stock
markets. Indeed, a large literature on announcement effects has doc-
umented increased volatility of interest rates at all maturities, not only
on FOMC meeting days but also around releases of key macroeconomic
aggregates. Not only do markets watch the Federal Reserve, but the
reverse is also true. At its meetings, the FOMC extracts information
about the state of the economy from the current yield curve. This yield-
based information may underlie the FOMC’s policy decisions.

These observations suggest that models of the yield curve should take
into account monetary policy actions by the Federal Reserve. The ex-
tensive term structure literature in finance, however, builds models
around a few unobservable state variables, or latent factors, which are
backed out from yield data. This statistical description of yields offers
only limited insights into the nature of the shocks that drive yields.
Moreover, the fit of these models for yields with maturities far away from
those included in the estimation is typically bad. This is especially true
for short maturities, because most studies avoid dealing with the extreme
volatility and the large outliers at certain calendar days of short-rate
data.

The above observations also suggest that vector autoregressions
(VARs) in macroeconomics that try to disentangle exogenous policy
shocks from systematic responses of the Federal Reserve to changes in
macroeconomic conditions should take into account yield data. Finan-
cial market information, however, is usually not included in VARs, pre-
sumably because the usual recursive identification scheme does not work
with monthly or quarterly data. Does the Fed not react to current yield
data or do yields not react to current policy actions? Each FOMC meet-
ing starts with a review of the “financial outlook,” which excludes the
first option.1 And financial markets immediately react to FOMC an-
nouncements, which excludes the second.2

This paper attempts to kill these two birds with one stone. With high-
frequency data, I can use information about the exact timing of FOMC
meetings to improve bond pricing and to identify monetary policy
shocks. I therefore construct a continuous-time model of the joint dis-

1 Meyer (1998) takes a very interesting look inside these meetings.
2 For an excellent survey, see Christiano, Eichenbaum, and Evans (1999). Evans and

Marshall (1998) include long yields in a VAR and assume that the Fed does not take into
account any information contained in these yields, current or lagged. Eichenbaum and
Evans (1995) assume that the Fed conditions on exchange rates from last quarter and
ignores more recent exchange rate data. Bagliano and Favero (1998) assume that yields
do not react to current policy shocks.
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tribution of bond yields and the interest rate target set by the FOMC.
The model imposes no arbitrage and respects the timing of FOMC
meetings. Decisions about target moves are made at points in time,
resulting in a series of target values that looks like a pure jump process.
The arrival intensity of target jumps depends on the FOMC meeting
calendar and the state of the economy. The model has closed-form
solutions for bond prices, which are functions of a small number of
state variables.

Closed-form solutions open the door to estimation methods that ex-
ploit data on the entire cross section of yields as opposed to a single
short rate. Longer yields have the statistical advantage of providing im-
portant additional observations, especially in the context of rare policy
events. Long yields also have an economic advantage, because they turn
out to be inputs in the Fed’s policy rule—its systematic response to the
state of the economy.

To identify the rule, I rely on the fact that the policy decision is based
on information available right before the FOMC starts its meeting. This
short informational lag provides a recursive identification scheme. The
scheme turns the target forecast from right before the FOMC meeting
into a high-frequency policy rule and the associated forecast errors into
policy shocks. To see what we can learn from the arbitrage-free yield
curve model together with this new identifying assumption, I estimate
the model with data on short London Interbank Offered Rate (LIBOR)
and long swap yields. The model is estimated by the method of simulated
maximum likelihood (Pedersen 1995; Santa-Clara 1995), which I extend
to jumps.

There are four main estimation results. First, the model considerably
improves the performance of existing yield curve models with three
latent factors (such as Dai and Singleton [2000]), especially at the short
end of the yield curve. Intuitively, the target set by the Fed is an observable
factor in the model and provides a clean measure of the short end of
the yield curve. The use of target data avoids having to deal with calendar
day effects in very short rates, which typically require lots of parameters.
For example, Hamilton (1996) and Balduzzi, Bertola, and Foresi (1997)
use dummies in the mean and variance of the federal funds rate for
each day in the reserve maintenance period. These seasonalities, how-
ever, do not affect longer yields. For the purpose of modeling the whole
yield curve, they can therefore be thought of as seasonal measurement
errors. Of course, target data are also affected by seasonalities, those
introduced by the FOMC meeting calendar. But the empirical results
in this paper suggest that FOMC meetings affect the whole curve and
are therefore important for yield curve modeling.

Second, the estimated response of yields to policy shocks is strong
and slowly declines only with the maturity of the yield. This response
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is roughly consistent with regression results by Cochrane (1989), Evans
and Marshall (1998), and Kuttner (2001).

Third, the estimated policy rule describes the Fed as reacting to in-
formation contained in the yield curve. I find that the most important
information is contained in yields with maturities around two years, which
suggests that the Fed reacts to some medium-run forecast of the econ-
omy. The estimated policy rule displays interest rate smoothing: the
target level is autocorrelated. The rule also displays policy inertia: the
Fed only partially adjusts the target to its desired rate. Inertia leads to
positive autocorrelation in target changes, because one change is typi-
cally followed by additional changes in the same direction over a number
of FOMC meetings.

As a description of target dynamics, the estimated policy rule performs
better than several benchmarks, including estimated versions of the
Taylor rule (Taylor 1993). The reason is that yield data summarize mar-
ket expectations of future target moves. These market expectations are
based on a host of variables that are omitted from other rules. Also,
yield data are available at higher frequencies and are less affected by
measurement errors than macroeconomic variables.

Fourth, I document a snake shape of the volatility curve, the standard
deviation of yield changes as a function of maturity. Volatility is high
for very short maturities (the head of the snake), rapidly decreases until
maturities of around three months (the neck of the snake), then in-
creases until maturities of up to two years (the back of the snake), and
finally decreases again (its tail). The model explains this snake shape,
especially the back of the snake (already documented in Amin and
Morton [1994]), with inertia in monetary policy. I also document a
calendar effect in the volatility curve around FOMC meetings. The vol-
atility curve shifts up around these meetings, especially at short matur-
ities. The model matches this seasonality with monetary policy shocks,
which happen mostly at these meetings.

Related literature.—Papers on yield curve models back out low-dimen-
sional state vectors from yield data. Piazzesi (2004) provides a survey of
these models. To capture FOMC decisions, I use a model in the affine
class (Duffie and Kan 1996). Most empirical applications treat the factors
as latent (among others, Dai and Singleton [2000]), whereas the target
is an observable factor in this paper. Few papers in the term structure
literature capture aspects of monetary policy. Babbs and Webber (1993)
and Farnsworth and Bass (2003) write down theoretical models that do
not have tractable solutions for yields. Therefore, they do not take these
models to the data.

Most empirical papers on monetary policy focus on the short-rate
process alone (Das 2002; Hamilton and Jorda 2002; Johannes 2004). A
couple of papers estimate the short-rate process using data on short
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Fig. 1.—Daily data on target (step function), federal funds rate (one-day), LIBOR (six-
month), and swap yields (two- and five-year), 1994–98.

rates and then compute long yields using the expectations hypothesis
(Rudebusch 1995; Balduzzi et al. 1997). These models cannot match
the long end of the yield curve, because the estimation involves only
short-end data. Also, there is strong evidence against the expectations
hypothesis (Fama and Bliss 1987; Campbell and Shiller 1991). Finally,
these papers are not interested in the Fed’s policy rule. Kuttner (2001)
and others use federal funds futures data and again the expectations
hypothesis to define an expected target.

II. FOMC Decisions after 1994

The Federal Reserve targets the overnight rate in the federal funds
market. The FOMC fixes a value for the target and communicates it to
the Trading Desk of the Federal Reserve Bank of New York, which then
implements it through open-market operations (Meulendyke 1998). Fig-
ure 1 plots the federal funds target together with LIBOR and swap rates
from 1994 to 1998. (Section IV.A provides a description of the target
data used in this paper.) Looking at the figure, we can see two important
stylized facts about Fed targeting. First, the level of the target is persis-
tent. This fact is usually referred to as interest rate smoothing by the
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Fig. 2.—The graphs in the first row show the histogram of days since the last FOMC
meeting for any given target change between 1984–93 and 1994–98. In the first subperiod,
there have been a total of 100 target moves, and there were 14 in the second subperiod.
The graphs in the second row show the histogram of the size of target changes for the
two subsamples.

Fed. Second, target changes are often followed by additional changes
in the same direction. This second stylized fact is called policy inertia.

In 1994, the Fed drastically changed its operating procedures. This
change underlies the choice of sample period in this paper, which fo-
cuses on the policy framework in place today. Starting with the first
FOMC meeting of 1994, the Fed has been announcing the new target
at the end of each meeting. The Fed also changed the size and timing
of target moves. These latter changes in operating procedures can be
seen from figure 2.

The upper row of graphs consists of two histograms, pre-1994 and
post-1994, of the number of days between a target change and the
preceding FOMC meeting. If, in any given subperiod, the Fed had
moved its target only at FOMC meetings, there would be a single spike
at 0 in the corresponding histogram. One sees a definite change in 1994
of retargeting mainly at FOMC meeting days, with two exceptions (April
18, 1994, and October 15, 1998) during the data sample used in this
analysis and three more exceptions (January 3, April 18, and September
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17, 2001) after the end of the sample. The lower row of graphs in figure
2 shows the histogram of target changes for the two subperiods. While
pre-1994 target rate changes came in multiples of 6.25 basis points
(0.0625 percentage points), after 1994 the Fed used multiples of quarter
percentage points.

Under the new operating procedures, “Fed watching” has become a
different game. The FOMC meeting calendar has become very impor-
tant, and investors make forecasts for upcoming meetings. These fore-
casts are based on a wealth of information including macroeconomic
variables (such as consumer prices, gross domestic product, etc.) and
even statements by Fed officials themselves (such as U.S. Senate testi-
monies by the Fed chairman). Also, during a brief time period in 1999,
the Fed experimented with announcing its bias regarding future deci-
sions along with its current target decision. Any of this information about
future FOMC decisions will be reflected in bond yields, which are used
to back out the latent variables in the model. The conditional probability
of a target move at upcoming FOMC meetings depends on these latent
variables and therefore reflects this information.

The exact timing of intermeeting moves is difficult, if not impossible,
to predict. For some of these moves, we know the event that triggered
them, such as the Russian financial crisis or the terrorist attacks on
September 11. For other moves, it is even difficult to pinpoint the event
that triggered them. For example, some say that high car sales in March
1994 suddenly shifted the Fed’s assessment of market conditions. Others
say that the April 18 move was just a manifestation of authority by Alan
Greenspan, because no vote was held. These examples illustrate that it
makes sense to assign a small and constant probability to a target move
on any given business day.

III. Yield Curve Model with FOMC Decisions

A. Model

The state vector X is , where v is the federal funds target,lX p [v s v z ]t t t t t

is the spread between the short rate and the target, v is thes p r � v

volatility of s, and z captures other macroeconomic information the Fed
uses in setting the target. All variables except v are unobservable but
can be inferred from yields through the bond-pricing model. The dy-
namics of the state variables are

U Ddv p 0.0025(dN � dN ), (1)t t t

s�ds p �k s dt � v dw , (2)t s t t t
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v�¯dv p k (v � v )dt � j v dw , (3)t v t v t t

zdz p �k z dt � dw , (4)t z t t

where and are counting processes with stochastic intensitiesU D UN N l

and , respectively, and , , and are independent BrownianD s v zl w w w
motions.

Now I describe the state variables in more detail. Following the usual
convention, one year is an interval of length one, and yields are an-
nualized percentages (0.05 is 5 percent). Figure 1 shows that sample
paths of the target are step functions. The steps are multiples of 25 basis
points (bp), or 0.0025. In continuous time, the target is a pure jump
process given by (1). Target jumps up and down are counted by andUN

, respectively. Heuristically, the probability of a jump in duringD UN N
the interval conditional on information up to time t is given[t, t � dt]
by , and the conditional probability of a jump in is . TheU D Dl dt N l dtt t

conditional probability of, say, a target increase by 25 bp during [t,
is then . The econometrician has discrete ob-U Dt � dt] l dt # (1 � l dt)t t

servations only on the difference between and . This means thatU DN N
the econometrician gets to observe target moves of 0 bp, �25 bp, �50
bp, and so forth.

Figure 1 shows large spikes in the federal funds rate around certain
calendar dates, such as the end of the year or so-called settlement
Wednesdays. I treat these spikes as seasonal measurement errors. In
other words, these seasonalities do not affect the true short rate r or
the dynamics (2) of the spread s. Figure 1 also suggests that the short
rate reverts back to the target. The spread dynamics therefore pull s
back to zero at speed . To capture fat tails in the yield distributionks

between FOMC meetings, I use stochastic volatility (3). The parameter
is the mean volatility, is the speed of mean reversion, and controlsv̄ k jv v

the size of shocks to v.
By far the most interesting state variable is z. The process z enters the

model only through its influence on the jump intensities and ,U Dl l

which will be specified below. Its value at time t proxies for macroz t

information the Fed cares about when setting the target—information
that is not already contained in the other state variables. The model
implies a solution for yields at time t as a function of , so that thisX t

information can be backed out from yield data. The process (4) has
mean zero and is normally distributed.

1. Probability of Target Moves

The Fed sets the target in response to the value of X. The conditional
probability of a target move varies according to the FOMC meeting
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calendar. Outside of FOMC meetings, there is a small and constant
probability of a move. FOMC meetings are time intervals; the ith meeting
is . During any such interval, the intensities take the form[t , t ]i�1 i

U ll p l � l (X �X ),t X t

D ll p l � l (X �X ), t � [t , t ]. (5)t X t i�1 i

These intensities depend on the distance of from its mean . TheX Xt

intensities are, on average, equal to , and the parameters in Nl l � �X

control their time variation. The plus and minus signs in front of lX

make the intensities move in opposite ways over time. I shall deal with
negative values for intensities and target in Section IV.D.

2. Identification of the High-Frequency Policy Rule

To identify a structural equation that describes the Fed’s behavior, I
assume that the Fed reacts to information “right before” the FOMC
meeting. This is a natural assumption: FOMC members meet and discuss
data available up to that time, including bond market data, but not yield
changes during the meeting. The assumption amounts to a recursive
identification scheme. The scheme turns the expected value of the new
target conditional on the value of X at the beginning of the meeting
into a high-frequency policy rule, whereas unexpected target changes
are identified as policy shocks.

To write down the rule, I define monetary policy shocks UM p M �
, where is the compensated process fortD j j j jM M {M p N � l du; t ≥ 0}∫0t t u

. Heuristically, the conditional expected value of isjj p U, D dN 1 #t

, which implies that and are mean zero shock series withj jl dt dM dMt t t

a nonnormal distribution. Now I can write

dv p E [dv] � 0.0025dM , (6)t t t t

where the expected target change during an FOMC meeting3 is

l lE [dv] p �2l (X � X )dt p k [(a � b X ) � v]dt. (7)t t X t v t t

The second equality introduces the scalars kv, a, and the parameters in
. The last term can be interpreted as a partial adjustment of theNb � �

current target to a desired rate . The speed of this adjustmentlv a � b Xt t

is kv. To get the policy rule, we need to sum up expected target changes
(7) during an FOMC meeting and apply the law of iterated expectations.

3 I fix the arrival rates of target moves outside of FOMC meetings to their empirical
frequency. There has been one up and one down move outside of FOMC meetings during
the five years from 1994 to 1998, so I set outside of meetings. This impliesU Dl p l p 0.2t t

that outside of FOMC meetings.E [dv ] p 0t t
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3. Pricing Kernel

The pricing kernel is the product of marginal utility divided by the price
of consumption. I do not specify preferences together with processes
for consumption and prices. Instead, I specify the pricing kernel directly
as a function of state variables:

t

M p exp � r ds y, (8)( )t � s t
0

where

dyt lp �j (X )dw , (9)y t t
yt

and . The vector contains the market prices ofs v z lw p [0 w w w ] j (X )y t

risk for the various Brownian motions. I assume that it has the form

l� �j (X ) p [0 q v q j v q ] , (10)y t s t v v t z

where , , and are constants (as in Longstaff and Schwartz [1992]).q q qs v z

I do not allow the pricing kernel to jump.4

An alternative interpretation, which I shall refer to below, is to use
the process y as density to define a probability measure Q, under which
risk-neutral pricing applies. The expectation under the risk-neutral mea-
sure satisfies for any random variable Y known atQE [Yy /y] p E [Y ]t s t t

time for which this expectation exists. Under Q, a standard Brown-s ≥ t
ian motion solves . To see the dynamics of theQ Qw dw p dw � j (X )dtt t y t

state variables under the risk-neutral measure, we can simply insert
into (1)–(4).Qdw p dw � j (X )dtt t y t

B. Solving for Yields

Asset prices are expected future payoffs weighted with the pricing ker-
nel. Equivalently, asset prices are expected discounted payoffs under
the risk-neutral probability measure Q. From equation (8), the price

at time t of a zero-coupon bond that pays $1 at time T isP(t, T)
T

M yT TP(t, T) p E p E exp � r du( )t t � u[ ][ ]M yt t t

T

Qp E exp � r du . (11)( )t � u[ ]
t

4 Since the sample is short, the estimation of jump parameters for y is difficult. For
example, is estimated imprecisely even in the absence of jump risk prices.l
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The short rate r is the sum of v and s, which solve stochastic differential
equations (1) and (2), respectively.

The solution to (11) satisfies a partial differential integral equation
(PDIE) stated in Appendix A. The solution to this PDIE is an expo-
nential affine function in the state variables:

¯P(t, T) p exp [c(t, T) � c (t, T)v � c (t, T)s � c (t, T)vv t s t v t

� c (t, T)z ] (12)z t

for coefficients andc̄(t, T )
lc (t, T) p [c (t, T) c (t, T) c (t, T) c (t, T)]X v s v z

that solve ordinary differential equations (ODEs). The ODEs are stated
in Appendix A. Zero-coupon yields are linear:

ln P(t, T) y y l¯Y (t, T) p � pc (t, T) � c (t, T) X , (13)0 X tT � t

with and .y y¯ ¯c (t, T) p �c(t, T ) / (T � t) c (t, T) p �c (t, T)/(T � t)X X

Most models have yield coefficients that depend only on time to ma-
turity . By contrast, the yield coefficients and iny y¯T � t c (t, T) c (t, T)X

this model depend on the particular ordering of FOMC meetings be-
tween t and T and therefore on t and T separately. I therefore cannot
follow the usual procedure of computing the yield coefficients as a
function of by starting at zero time to maturity and solving theT � t
ODEs forward. Instead, I need to compute the coefficients for each
observation t in the sample and each yield maturity T in the data set
separately. This immensely increases the computational burden when
evaluating the likelihood function for a candidate parameter value, es-
pecially with long yields in the data set. Fortunately, the following al-
gorithm works and saves time. The algorithm matches only the exact
number of days until the next FOMC meeting, whereas subsequent
meetings are assumed to be equally spaced over the year. This is only
an approximation, because the actual calendar time between these
FOMC meetings varies. However, the errors due to this approximation
are virtually undetectable for the maturities of the yields used in the
estimation (six months and above).

The FOMC targets the federal funds rate, which pertains to interbank
loans. These loans are not default-free because they are not collater-
alized. As a result, the federal funds rate and its target are substantially
higher than short Treasury-bill rates (which are further depressed by
tax and liquidity effects). To estimate the model, I therefore use rates
on LIBOR and swap contracts, which are traded mainly between banks.
The time t swap rate is the fixed rate at which banks can borrow for t

years in exchange for floating payments that have a discounted present
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value of $1. The contract specifies that both the loan and the floating
repayment be paid in biannual installments. The time t swap rate Y(t,

is then determined as the rate that equalizes the present dis-t � t)
counted value of these installments at time t:

2tY(t, t � t)
1 p P(t, t � t) � P(t, t � 0.5j), (14)�

2 jp1

where the left-hand side is the $1 worth of floating repayments and the
right-hand side is the value of the biannual fixed loan payments (which
explains the division by two). Following Duffie and Singleton (1997), I
interpret the symbol r as the rate on short bonds of LIBOR and swap
quality. This means that r reflects the credit risk of interbank loans, just
like the Fed’s target.

IV. Estimation

The parameter vector g contains 14 parameters for the intensities ,l

, , , and ; the mean reversions , , and ; the means andl l l l k k k vv s v z s v z

; the volatility ; and the risk premia , , and . For a given parameterv̄ j q q qv s v z

vector g, the model maps the state vector into observables basedX Yt t

on equation (14). The vector of observables contains the target, the six-
month LIBOR, and the two- and five-year swap yields:

lY p [v Y(t, t � 0.5) Y(t, t � 2) Y(t, t � 5)] .t t

Section IV.A describes the data on .Yt

Ideally, the parameters would be estimated by maximizing the like-
lihood function of the observables over g. The likelihood function is
the product of densities conditional on the last obser-f(Y , tFY , t; g)t t

vation at some . The density f can be obtained by a change ofY t ! tt

variable from the conditional density of :f (X , tFX , t; g) XX t t t

f(Y , tFY , t; g) p f (g(Y , g), tFg(Y , g), t; g)F∇ g(Y , g)F, (15)t t X t t Y t

where is the function from the observables to the state vector,g(7, g)
in that . This function inverts the yield formulas (14).X p g(Y , g)t t

Now, three problems arise. First, the true density is not availablefX

in closed form. I therefore extend the simulated maximum likelihood
(SML) method of Pedersen (1995) and Santa-Clara (1995) to jump
diffusions (Sec. IV.B). Second, the function needs to be invertedg(Y , g)t

numerically for each observation t. To do this, I use a hill-climbing
method based on analytical gradients. As a by-product, I get the Jacobian
term analytically (Sec. IV.C). Finally, the function g does notF∇ g(Y , g)FY t

impose that intensities and the target need to be positive. To control
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the approximation accuracy of g, I experiment with constraining the
parameter space (Sec. IV.D).

A. Data

The sample period is January 1, 1994, to December 31, 1998. The target
series is taken from Datastream, except for the timing of the target move
in February 1994. Datastream assigns the move to February 3, whereas
the move was announced only on February 4 (Bradsher 1994). There
are eight FOMC meetings per year. The dates of these meetings come
from the Board of Governors of the Federal Reserve. Most meetings are
on Tuesdays. Two meetings per year (the first and the fourth) extend
over Tuesdays and Wednesdays. For solving yields and setting up their
likelihood function, the two-day meetings are dated on Wednesdays,
because target decisions are always announced at the end of the
meetings.

LIBOR data are taken from the British Bankers’ Association, whereas
swap rates are taken from Intercapital Brokers Limited. Both series are
obtained through Datastream. LIBOR rates are recorded at 11:00 a.m.
London time, and swap rates are recorded at the end of the U.K. busi-
ness day. Target changes are typically announced at 2:15 p.m. Eastern
time. These announcements affect swap and LIBOR rates recorded for
the next day. There have been a number of exceptions to the 2:15 p.m.
rule during 1994 and even after 1994. To make sure that FOMC an-
nouncements on Tuesdays or Wednesdays always affect LIBOR and swap
rates recorded for the same week, I construct a weekly data set with
Thursday (London time) observations of LIBOR and swap yields, to-
gether with Wednesday (Eastern time) observations of the target. When-
ever the respective day was a holiday, I used the observation of the
previous business day.

B. Density Approximation

The conditional density of the state vector solves a partial differential
integral equation that has a closed-form solution for only a few special
cases, such as Gaussian and square root diffusions. To overcome this
problem, I use SML. This estimation method attains approximate effi-
ciency. To fix notation, the state space is . The conditional densityND O �

of can be written, using Bayes’ rule and the Markov property of X,X t

as

f (X , tFX , t) p f (X , tFx, t � h)f (x, t � hFX , t)dx, (16)X t t � X t X t

D
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for any time interval h. (This is called the Chapman-Kolmogorov equa-
tion.) SML computes (16) by Monte Carlo integration, replacing the
density by the density of a discretization of X.ˆf (X , tFx, t � h) fX t X

Appendices B and C explain how to extend SML to jump diffusions.
The appendices also explain how to overcome the additional problems
associated with estimating the particular model presented in this paper.
For example, special care needs to be taken to accommodate stochastic
intensities that depend on calendar time. These intensities may become
very large to predict multiple target moves during an FOMC meeting.
Therefore, the interval h needs to be chosen carefully. Another difficulty
is that FOMC meetings may introduce discontinuities in the objective
function, when small changes in parameters do not change the number
of target moves across simulated samples.

C. SML Likelihood

The SML estimator maximizes the approximate likelihoodĝ

f̂(Y , tFY , t; g) p� t t
(t,t)�I

f̂ (g(Y , g), tFg(Y , g), t; g)F∇ g(Y , g)F, (17)� X t t Y t
(t,t)�I

where I denotes pairs of successive observation times in the data set.
The mapping from observables to state variables cannotg(7, g) Y Xt t

be inverted analytically. The reason is that the swap yield formula (14)
is nonlinear. To invert numerically for every observation t, I useg(Y , g)t

a hill-climbing procedure. To save time, the procedure uses analytical
derivatives:

dY(t, t � t)
p

dX t

2t2c (t, t)P(t, t � t) � Y(t, t � t)� c (t, t � 0.5j)P(t, t � 0.5j)X Xjp1
� .2t� P(t, t � 0.5j)jp1

The 4#4 Jacobian matrix contains these derivatives forldY /dXt t

, two, and five years in its last three columns. Its first column ist p 0.5
, where denotes a 3#1 vector of zeros. To getldv/dX p [1 0 ] 0t t 3#1 3#1

the Jacobian term for the density, I compute

1
F∇ g(Y , g)F p .Y t lFdY /dX Ft t
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D. Approximation Accuracy

The mapping approximates the true mapping of a model, ing(7, g)
which intensities and the target are always positive. The accuracy of this
approximation may be unacceptable when we replace g with the un-
constrained estimator . I therefore obtain another set of estimates byĝ

constraining the parameter space. Here, the space contains only those
parameters at which the observations are explained by a state realization

for which the intensities are positive. Formally, I define the setg(Y , g)t

l lA :p {x � D : l � l (x �X ) ≥ 0, l � l (x �X ) ≥ 0}.X X

The constrained estimator solvesĝc

ˆmax f(Y , tFY , t; g)� t t
(t,t)�Ig

subject to g(Y , g) � A for all t � I. (18)t

Appendix D checks the approximation accuracy of andˆg(7, g) g(7,
. This is done by computing the true function from factors to yieldsĝ )c

with Monte Carlo methods. The true mapping is then compared to g.
It turns out that the approximation errors are sufficiently small, for both
constrained and unconstrained parameter estimates. I shall there-ˆ ˆg gc

fore focus on unconstrained estimates in the rest of this paper.

V. Estimation Results

A. Parameter Estimates

Table 1 reports the unconstrained parameter estimates for the modelĝ

described in equations (1)–(5) and (10). Table 1 also reports the un-
constrained estimates for an interesting version of the model that sets
volatility of the spread constant: . It is important to note that¯v p vt

“constant volatility” here refers only to the spread; the variance of yields
still varies over time because of jumps. The constant volatility version
is easier to estimate because it has only two latent factors instead of
three. To break the resulting singularity, I assume that the two-year swap
yield is measured with error. I estimate the autocorrelation coefficient
and the variance of this error. Setting still economizes on param-¯v p vt

eters because lv, jv, kv, and are not needed.qv

Table 1 shows that the unconditional probability of a target move up
or down is estimated imprecisely; the t-ratio of is below two in bothl

versions of the model. The reason is that the intensities depend on
persistent variables, such as the target and stochastic volatility, and the
sample is short. To understand the values of the intensity parameters,
it is nevertheless useful to look at the point estimate of , which is 10.l
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TABLE 1
Simulated Maximum Likelihood Estimates

Model with Stochas-
tic Volatility

Model with Constant
Volatility

Estimate t-Ratio Estimate t-Ratio

Mean reversion:
ks 9.75 4.69 1.56 4.10
kv .04 .42 … …
kz .72 4.34 .29 3.03

Means:
v̄ .0522 … .0522 …
v̄ .000415 1.07 … …

Intensities:
l 10 .55 84 .40
lv �9,408.9 �4.18 �4,876.7 �4.30
ls 7,267 1.86 7,582 2.25
lv 548,315 1.63 … …
lz 237.6 17.87 119.5 18.63

Risk premia:
qs �47.62 �2.90 70.29 8.67
qv �2,537.5 �.81 … …
qz .1126 .18 �.2132 33.36

Volatility:
jv .0058 .78 … …
�v̄ … … .0089 12.50

Note.—The model with stochastic volatility refers to eqq. (1)–(5) and (10). The model with constant volatility sets
. The estimation of the constant volatility model assumes that the two-year swap yield is measured with error.v p v̄t

The autocorrelation of this error is estimated to be 0.955 (with a t-ratio of 15), and its volatility is estimated to be
0.002 (with t-ratio of 56). The parameter is fixed to the average target over the sample. Apps. B and C containv̄
practical details about the estimation. The sample is weekly from January 1994 to December 1998.

There are eight FOMC meetings per year, which leads to average in-
tensities of , roughly one jump every five years. This(l # 8)/365 p 0.22
estimate is low given the five down and seven up moves at FOMC meet-
ings during the five-year sample period, which suggests that (l #

should be above one. Again, the estimate is too imprecise to8)/365
hold this against the model. In the constant volatility model, the estimate
of is 84, implying 1.8 jumps per year. This point estimate is morel

reasonable.
The time variation in probabilities is driven by the state variables z

and v. The t-ratios of all other slope parameters in ll p [l l l l ]X v s z v

are below two. To understand the time variation induced by macro
information z, let us first look at the parameter estimates for the z-process
itself. The estimated speed of mean reversion in z is , whichk p 0.72z

amounts to a weekly autoregressive coefficient of exp (�k /52) pz

and a half-life of shocks to z of year. In0.986 � ln (0.5)/k p 0.96 ≈ 1z

the constant volatility model, the half-life of these macro shocks is es-
timated to be even longer, around 2.5 years. The estimate of is positivel z

in both versions of the model, so that a positive shock to z increases
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TABLE 2
Correlations of State Variables, Yields, and Target

ĝ LIBOR and Swaps
Target

v
(7)

r
(1)

z
(2)

v
(3)

6-Month
(4)

2-Year
(5)

5-Year
(6)

:ĝ
r 1 .54 �.03 �.07 �.12
z �.18 1 .44 .81 .65 .13
v �.01 .01 1 .37 .55 .76 �.03

:¯v pvt

r .67 .24 �.08 .56 .26 .14 .66
z �.24 .63 .78 .44 .89 .97 .07

Dai-Singleton:
r .57 -.90 .05 �.05 �.62 �.50 �.26
v �.16 .93 .34 .63 .96 .86 .29
v .02 �.19 .97 .19 .33 .59 �.21

Note.—This table computes the correlation of the first differences of model-implied state variables and data on yields
and target. Rows 1–3 use the state variables r, z, and v computed with the estimated parameter values from table 1.ĝ
Rows 4–5 use the variables r and z from the model with constant volatility . Rows 6–8 use the state variables r, v,v pv̄t

and v from the model by Dai and Singleton (2000) computed with their estimated parameters. The correlationsA (3)1 DS

are computed over the weekly sample January 1994 to December 1998. The correlations with the target in col. 7 are
computed using the subsample of FOMC meetings.

the conditional probability of an up move not only at the next FOMC
meeting but also at subsequent meetings. In other words, macro shocks
are likely to trigger many target moves in the same direction. Therefore,
these shocks induce positive autocorrelation in target changes or policy
inertia.

To understand what type of information the variable z proxies for, I
compute correlations between yield data and the time series of factorsYt

implied by the yield data at the estimated parameters . Rowsˆ ˆg(Y , g) gt

1–3 in table 2 report these correlations. Row 2 shows that the macro
information in z is closely related to the two-year swap yield. Rows 4–5
report correlations for the model with constant volatility . Here,¯v pvt

z is closely related to both the two-year and the five-year yields. This is
related to the fact that data on longer yields are more persistent and
that z is estimated to be more persistent in this version of the model.

The probability of a target move depends on the past target through
the parameter , which is estimated to be positive. If the target is higherlv

than its mean percent, there is a high conditional probabilityv p 5.22
of a target cut at the next FOMC meeting (and further meetings down
the road). If the target is lower than its mean, there is a high probability
of a target increase. Taken together, these effects induce mean reversion.
The mean reversion is slow, which captures interest rate smoothing.
Deviations of the short rate from the target are estimated to be short-
lived; they represent money market noise. The speed at whichk p 9.75s

shocks to the spread die out implies a weekly autoregressive coefficient
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of and a half-life of shocks to the spread ofexp (�k /52) p 0.83s

, less than one month.� ln (0.5)/k p 0.07s

The short rate is closely related to other short rates, as wer p v � s
can see from its 54 percent correlation with LIBOR. Rows 6–8 of table
2 report correlations for factors implied by the Dai and Singleton (2000)
model. In their model, the short rate is almost uncorrelated with the
six-month LIBOR rate; the correlation coefficient is even slightly neg-
ative: �5 percent. The short rate in this paper and the Dai-Singleton
short rate are thus very different; they are only 57 percent correlated.
This difference will be important for the performance of these models
when it comes to matching the short end of the yield curve (documented
in the next section). At FOMC meetings, the short rate in this model
and the Dai-Singleton short rate are both negatively correlated with the
target (col. 7 of table 2). Interestingly, the short rate in the constant
volatility model does not share this unattractive feature. This short rate
is even more closely related to LIBOR and strongly commoves with the
target at FOMC meetings. Again, this will show up in performance.

The stochastic volatility factor v is roughly comparable to volatility in
the Dai-Singleton model. Table 2 reports that the correlation coefficient
between the two variables is 97 percent. Volatility is highly persistent.
Its speed of mean reversion, , in table 1 is close to zero, im-k p 0.04v

plying a half-life of shocks of several years. This is also reflected in the
high correlation between v and the longest (and thus most autocor-
related) yield in table 2. The parameters related to volatility in table 1
are therefore estimated imprecisely. To keep the number of parameters
low, the model assumes that the Brownian motions , , and ares v zw w w
orthogonal. As we can see from table 2, this assumption does not seem
to miss important correlations in the state variables. The volatility factor
v is almost uncorrelated with the short rate and the macroeconomic
information contained in z.

B. Bond-Pricing Performance

By construction, the model explains yields used in the estimation with-
out any error. These yields are the six-month LIBOR and the two-year
and five-year swap yields. To get a sense of the cross-sectional fit of the
model, I look at how the model performs in matching yields not used
in the estimation. These are yields with maturities such as one and three
months or one, three, and four years. Table 3 reports mean absolute
pricing errors for these LIBOR and swap yields. Pricing errors are de-
fined as the difference between actual yields and model-implied yields,
which are computed by inserting model-implied factors into theˆg(Y , g)t

yield formulas (14). From the first row of table 3, we can see that the
four-factor model performs well across all maturities. The model mis-
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TABLE 3
Pricing Errors (in Basis Points)

1 Month 3 Months 1 Year 3 Years 4 Years

ĝ 25.7 11.0 3.2 1.8 1.8
¯v pvt 12.5 7.5 6.8 9.5 5.8

Dai-Singleton 237.3 66.2 9.9 6.4 5.7

Note.—This table computes mean absolute pricing errors in basis points over the weekly sample from January 1994
to December 1998 for three different models. The first row uses the model evaluated at the parameter values fromĝ
table 1. The second row uses a version of the model with constant volatility . The third row shows the meanv pv̄t

absolute pricing errors of the model by Dai and Singleton (2000) at their parameter estimates.A (3)1 DS

prices long bonds by only 2 bp. For shorter maturities, the pricing errors
are still small, around 26 bp.

The second row of table 3 reports pricing errors with constant vola-
tility: . This version of the model has three factors, but one of the¯v p vt

factors is a man-made variable and not a market yield. Therefore, the
model is less flexible in matching yields than a model with three latent
factors. Despite this, the model performs even better at the short end
than the full four-factor model, with pricing errors of only 13 bp. The
model makes somewhat larger errors at the long end, but its perfor-
mance is still pretty good. These results are surprising. Perhaps stochastic
volatility is not as important for matching the yield curve, at least not
during the last decade. Piazzesi (2004) reports that monthly yield
changes have become “more Gaussian,” in that they exhibit far less
excess kurtosis during the 1990s than during the entire postwar sample.

As a rough benchmark, the third row of table 3 reports pricing errors
for the Dai and Singleton (2000) model based on three latent factors.
These pricing errors are computed with parameters estimated using
different yields (same LIBOR and two-year swap, but a 10-year instead
of a five-year swap). They are also based on a sample that only partially
overlaps with the sample used in this paper (weekly data from April
1987 to August 1996 instead of January 1994 to December 1998). The
benchmark thus serves as only a rough indication of pricing errors rather
than as a detailed comparison. Keeping this in mind, we see that the
Dai-Singleton model misses the short end of the yield curve by over two
percentage points. When this number is compared to the errors made
by the three-factor constant volatility model, it seems that it helps to
convert one latent factor into the target. In other words, the target
appears to fix the short end of the yield curve at a good position. The
four-factor model with target performs better than the Dai-Singleton
model across the whole curve, but the improvement is most dramatic
at the short end.

The source of these performance differences is that the models imply
very different short rates. In particular, in this paper the short rate
behaves like other short rates, whereas the Dai-Singleton short rate does
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not look like any other rate. To start with sample means, the average
short-rate series in the four-factor model with target is 5.02 percent,
whereas the average Dai-Singleton short rate is �0.46 percent. Table 2
shows that the short rate and LIBOR are 54 percent correlated, whereas
the Dai-Singleton short rate is �5 percent correlated with LIBOR and
strongly negatively correlated with longer swap yields. As already men-
tioned, the short rate in the constant volatility model is even more closely
related to other short yields, which explains its better performance at
the short end of the curve.

C. High-Frequency Policy Rule

The high-frequency policy rule is the expected value of the target con-
ditional on information right before the FOMC meeting. More precisely,
the rule is equal to the first component in for , when-E [v ] E [X ] t ! ut u t u

ever u is the end of an FOMC meeting. The coefficients in the policy
rule are computed with the parameter estimates in table 1 for anyĝ

. The choice of depends on the frequency at which yield datat ! u u � t
are available. For example, with weekly data , we getu � t p 1/52

E [v ] p 0.0036 � 0.87v � 0.10s � 7.51v � 0.0033z . (19)t t�(1/52) t t t t

On the right-hand side, we have the last observation of the state variables
before the FOMC meeting.X p g(Y , g)t t

From the t-statistics on the intensity parameters in table 1, we know
that the slope coefficient on the variable z is estimated most precisely.
The macro information in z is backed out mostly from the two-year
yield, suggesting that the Fed reacts to a forecast of the economy over
the next two years. To interpret the size of the coefficient in front of z,
consider a one-standard-deviation shock to z. The standard deviation of
z is 0.47, so that the target moves up by bp. The0.0033 # 0.47 p 16
process z is autocorrelated, which leads to positive autocorrelated target
changes, or policy inertia. The second most important variable is the
target. The target coefficient of 0.87 induces persistence, or interest rate
smoothing. From the t-statistics in table 1, we know that the spread s
and the volatility v do not enter the policy rule significantly. Their
estimated coefficients are small, given their standard deviations of 42
bp and below 1 bp, respectively. A one-standard-deviation shock to these
variables shifts the target by fewer than 5 bp. These findings make sense
economically. The Fed does not seem to care about random fluctuations
of the short rate around the target or any heteroskedasticity in these
fluctuations.

The coefficient estimates in (19) are roughly consistent with ordinary
least squares (OLS) estimates. Unrestricted OLS runs the target at
FOMC meetings on model-implied factors . The resultingX p g(Y , g)t t
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Fig. 3.—Target, model-implied policy rule, original Taylor rule, and extended Taylor
rule at each of the 40 FOMC meetings (eight meetings per year) between 1994 and 1998.

intercept is 0.0015, and the slope coefficients are 0.89, 0.11, 9.04, and
0.0017.

While the factors are backed out from yield data, we cannot simply
run the target on yields , because the map g is nonlinear. But it turnsYt

out that not much is lost by ignoring this nonlinearity: the fitted values
of a regression on and a regression on differ maximally by 0.3 bpX Yt t

over the entire sample. To use the rule in practice, the Fed’s staff can
therefore run OLS with up-to-the-minute data on . The rule therebyYt

avoids Orphanides’ (2001) critique of policy rules that are not based
on real-time data (such as current GDP, which has yet to be released).

Figure 3 compares the policy rule (19) to Taylor rules. The left-hand-
side variable in these rules is the quarterly averaged federal funds rate
and not the target. But at this low frequency, the difference between
these two rates is negligible. The Taylor rule uses two right-hand-side
variables: inflation and the output gap. Inflation is measured as annual
log changes in the GDP deflator, whereas the output gap is the per-
centage deviation of real GDP from its trend (based on a Hodrick-
Prescott filter applied to quarterly data since 1947:1). The original Taylor
rule is based on the coefficients proposed by Taylor (1993): 3 �
1.5#inflation � 0.5#gap. The estimated Taylor rule is based on esti-
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mated OLS coefficients over the sample 1994–98. The extended Taylor
rule adds the lagged federal funds rate to the right-hand side and also
uses OLS to estimate the coefficients, following Clarida, Gali, and Gert-
ler (2000). To mimic the decision process of the Fed, the graph plots
the policy rule for each FOMC meeting given its value in the quarter
in which the meeting took place, leaving us with 40 data points. The
macro variables are taken from the current quarter, giving the Taylor-
type rules the best chance at explaining the target movements (I tried
various leads and lags).

By eyeballing, the model-implied rule seems to be a better description
of the actual target. This is confirmed by the mean absolute difference
between the actual target and the value of the target prescribed by the
policy rule. For the Taylor rule, based on original and estimated coef-
ficients, and the extended Taylor rule, the difference is 67, 43, and 22
bp, respectively. For the policy rule implied by the yield curve model,
the difference is only 10 bp. Moreover, when we estimate the policy rule
(19) using OLS, the difference is 9 bp, not much smaller.

From figure 3, we can see that the original Taylor rule does well as
a general indication of Fed policy. For example, it was high in 1994 and
low in 1998, even before the Fed moved the target. The same is true
for the estimated Taylor rule (not included in the figure). In terms of
mean absolute differences, the extended Taylor rule of course does
better because it uses an additional right-hand-side variable. However,
all Taylor rules lag behind, especially during times of repeated target
moves in the same direction. This suggests that yields seem to be useful
proxies for the information the Fed looks at.

D. Discrete Policy Choice Forecasts

Policy rules make continuous forecasts of target moves. To obtain dis-
crete forecasts of whether the Fed will move the target or not at the
next FOMC meeting, I also derive a discrete choice model using the
estimated parameters. According to this model, the Fed randomizes over
three possible policy choices at each FOMC meeting: up, down, or no
move. Forecasting a particular choice means that the choice has the
highest conditional probability. There have been only 40 FOMC meet-
ings, so these forecasts suffer from small-sample noise. They provide,
however, a device that helps to understand the model better. In partic-
ular, it is interesting to see whether the model tends to forecast moves
in the wrong direction or whether the model tends to generate false
positives by forecasting target moves when there is no move.

For each FOMC meeting, figure 4 plots the up and down probabilities
conditional on information available right before the meeting. These
probabilities are the empirical frequencies in 20,000 simulated samples.
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Fig. 4.—Conditional probabilities of up and down moves in the target at each of the
40 FOMC meetings (eight meetings per year) between 1994 and 1998. The solid line
shows up moves, and the dashed line shows down moves. The x-marks indicate the actual
target changes in percent.

The simulations start with the last observation on the factors ˆg(Y , g)t

before the FOMC meeting. Figure 4 shows that the conditional likeli-
hood of moves up is very high at the end of 1994, when in fact the Fed
increased the target in several steps, and again quite large around the
target increase in March 1997. The conditional probability of moves
down is high in 1995/96 and 1998, both years in which the Fed lowered
the rate on several occasions.

Table 4 computes forecasts of choices from these probabilities. For
example, the top-left number in the table means that there were four
FOMC meetings for which the model forecasted an up move and the
target really did go up. The bottom row shows that the forecasts from
the model were correct for 30 out of 40 FOMC meetings. This is an
overall correct forecasting percentage of 75 percent. The model never
got the sign wrong. Each time the model forecasted up or down, the
target either moved in that direction or did not move. Also, the model
generated only two false positives. In other words, the model did not
get 100 percent of the moves right because it tended to be “too cautious.”
It forecasted no move when there was a move, especially in the case of
down moves.
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TABLE 4
Forecasting Target Moves at FOMC Meetings

Actual

Forecast

Up No Down Correct Total

Up 4 3 0 4 7
No 2 26 0 26 28
Down 0 5 0 0 5
Total 6 34 0 30 40

Note.—The sample goes from January 1994 to December 1998.

E. Yield Responses to Shocks

Figure 5 plots the yield coefficients from equation (13) as ayc (t, T)X

function of maturity . These yield coefficients can be interpretedT � t
as instantaneous responses of yields to the various shocks, because ,sw

, and are orthogonal. The coefficients depend on calendar time,z vw w
so I set t to the end of an FOMC meeting. This choice allows me to
interpret the coefficient on the target as the yield response toc (t, T)v

monetary policy shocks at FOMC meetings. From figure 5, this response
is strong and falls with maturity only slowly. A one-percentage-point
shock to the target shifts the one-month yield by 90 bp, the one-year
yield by 60 bp, the two-year yield by 41 bp, and the five-year yield by 19
bp. These responses are roughly consistent with findings in Cochrane
(1989), Evans and Marshall (1998), and Kuttner (2001). Long yields
respond strongly to monetary policy shocks because shocks to the target
die out only slowly under the risk-neutral measure. But eventually they
do die out, so that long yields respond less than short ones. In the
language of Litterman and Scheinkman (1991), the target v is a “slope
factor.”

Figure 5 shows that the coefficient (multiplied by 100 to makeyc (t, T)z

it comparable in size to and ) has a hump at two years. A one-c cs v

standard-deviation shock to z shifts the one-month yield by 11 bp, the
one-year yield by 38 bp, the two-year yield by 44 bp, and the five-year
yield by 31 bp. The reason for the hump-shaped response of yields is
the long half-life of shocks z: one year under the risk-neutral measure.
A positive z-shock thus increases the risk-neutral probability of a rate
hike not only at the next FOMC meeting but also at future FOMC
meetings. Because of the anticipated cumulative effect of these hikes,
intermediate yields respond more to z-shocks than short yields. At suf-
ficiently long maturities, beyond two years, mean reversion in the target
and the variable z causes shocks to have smaller and smaller impacts on
longer and longer yields. The net effect is a hump-shaped coefficient
on z with a peak at two years, which makes z a “curvature factor.”

Figure 5 indicates that the response of yields to spread shocksyc (t, T)s
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Fig. 5.—Responses of yields to monetary policy shocks , money market shocksyc (t, T)v

, macroeconomic shocks , and volatility shocks . These coefficientsy y yc (t, T) c (t, T) c (t, T)s z v

are plotted as a function of maturity , with t fixed to be the end of an FOMC meeting.T � t

decreases very fast with maturity. A one-percentage-point shock to the
spread shifts the one-month yield by 77 bp, the one-year yield by 18 bp,
the two-year yield by 10 bp, and the five-year yield by 4 bp. In other
words, both s and v are “slope factors” but act on different parts of the
yield curve, since the impact of money market noise dies off much faster
with maturity (under the risk-neutral measure) than the impacts of
monetary policy shocks.

Finally, figure 5 plots the coefficient , which is flat as ayc (t, T)/100v

function of maturity. A one-standard-deviation shock to v shifts yields
up by around 30–50 bp. The reason is that the persistence of the volatility
factor v is extremely high under both measures. Shocks to volatility thus
affect yields at all maturities. In this sense, v is a “level factor.”

F. Snake-Shaped Volatility Curve

Figure 6 shows the volatility curve in the data, defined as the standard
deviation of yield changes over the sample as a function of maturity.
The curve connects the individual volatilities of various rates over a
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Fig. 6.—Snake shape and seasonality of the volatility curve. The four lines represent
volatility curves during weeks with FOMC meetings and the remaining weeks computed
from the data and the model as indicated.

weekly sample: Wednesday observations on the overnight repo rate and
Thursday observations on the one-, three-, six-, and 12-month LIBOR
rates and two-, three-, four-, and five-year swap rates. The curve is com-
puted for weeks with an FOMC meeting and for the remaining weeks.
The curve has a “snake shape”: volatility is high at the very short end,
rapidly decreases until maturities about three months, then increases
until maturities of up to two years, and finally decreases again. The back
of the snake, the hump at two years, has already been documented by
Amin and Morton (1994).

Figure 6 also shows the volatility curve in simulated data from the
estimated model. The 40,000 simulated samples are based on the actual
FOMC meeting calendar. The simulated curve reproduces the overall
snake-shaped pattern quite well. The model explains the back of the
snake with inertia in monetary policy. Intuitively, volatility is due to two
important types of shocks: macroeconomic shocks to z and money mar-
ket noise. Macroeconomic shocks enter the model only through their
impact on the conditional probability of a target move. These z-shocks
increase the probability of a target move not only at the next FOMC
meeting but also at subsequent meetings. Yields with medium maturities,
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around two years, respond immediately to the anticipated cumulative
effect of these pending target changes. We can see this from the hump
in the yield coefficient in figure 5. Money market noise is shocksyc (t, T)z

to the spread between the overnight rate and the target. From figure
5, we know that these shocks generate reactions only in very short yields.
The combined response of yields to these two types of shocks looks like
a snake. These shocks are important for yields, so the snake shape carries
over to the volatility curve.

Figure 6 suggests that volatility is higher during weeks with FOMC
meetings, especially at the short end of the curve. The volatility in sim-
ulated data from the estimated model is also higher during those weeks.
In fact, the simulated curve even overstates the seasonality somewhat
for maturities around six months. The model explains the seasonality
with monetary policy shocks. These are shocks to the target, which happen
mostly at FOMC meetings. The seasonality is stronger for short yields
because short yields respond more to monetary policy shocks than long
yields. Again, we can see this from the downward-sloping coefficient

in figure 5. Monetary policy shocks dominate other shocks inyc (t, T)v

weeks with FOMC meetings, which explains why the shape of the co-
efficient carries over to volatility.

VI. Conclusion

This paper shows that it helps to look at bond pricing and Fed policy
jointly. The model formulates the target and yield dynamics in a con-
sistent way. The estimation extracts information from both target and
yield data. Target data improve the fit of the yield curve model and
introduce important seasonalities around FOMC meetings. Data on long
yields, especially yields with maturities around two years, enter the Fed’s
policy rule. There are many ways to go from here. An immediate ex-
tension is to investigate jumps and a more flexible volatility coefficient
for the pricing kernel. Another extension is to include macroeconomic
variables in the policy rule. These macro variables may capture infor-
mation not contained in yields. Piazzesi (2001) takes first steps in this
direction. Finally, the model can be applied to other central banks. For
example, the European Central Bank and the Bank of England also
announce their policy decisions at regularly scheduled meetings. All
these extensions are left for future research.

Appendix A

Coefficients

To obtain the partial differential integral equation for bond prices, the following
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notation is useful. The state vector X lives in and solves the stochastic4D O �
differential equation

U DdX p m (X )dt � j (X )dw � J (dN � dN ), (A1)t X t X t t X t t

where is the drift, is the volatility, and4 4#4m : D r � j : D r � J p [0.0025X X X

is the fixed jump size.l0 ]1#3

The bond price function F satisfies at maturity, for all .F(X, T, T) p 1 X � D
For , the function solves two different PDIEs, depending ont ≤ T F(X, t, T)
whether t is within or outside an FOMC meeting interval. The difference between
these PDIEs arises because of the jump intensities. During FOMC meetings, the
intensities are (5). The resulting PDIE is

l0 p F(X, t, T) � F (X, t, T)[m (X ) � j (X )j (X ) ]t X X X y

1 l� tr[F (X, t, T)j (X )j (X ) ] � [1 0 ]XXX X X 1#2 1#22

l� [l � l (X �X )][F(X � J , t, T) � F(X, t, T)]X X

l� [l � l (X �X )][F(X � J , t, T) � F(X, t, T)],X X

where tr denotes trace and , , and denote partial derivatives. Outside ofF F Ft X XX

FOMC meetings, the intensity of target moves is constant. Their values are set
equal to their empirical frequency of one move per five years, or 0.2. The PDIE
is then

l0 p F(X, t, T) � F (X, t, T)[m (X ) � j (X )j (X ) ]t X X X y

1 l� tr[F (X, t, T)j (X )j (X ) ] � [1 0 ]XXX X X 1#2 1#22

� 0.2[F(X � J , t, T) � F(X, t, T)] � 0.2[F(X � J , t, T) � F(X, t, T)].X X

Guess a solution of the form . The PDIEsl¯F(X, t, T) p exp [c(t, T) � c (t, T) X ]X

must hold for all , which I assumed contains an open set, so that I canX � D
apply the usual method of undetermined coefficients, which equates the coef-
ficients of X and the constant terms to zero. The coefficients satisfy two systems
of ordinary differential equations (ODEs). During subintervals with FOMC meet-
ings, the ODEs are

¯dc 2 l¯p �c k v � c q � 0.5c � 2l � (l � l X ) exp (0.0025c )v v z z z X vdt
l� (l � l X ) exp (�0.0025c ),X v

dc v p 1 � l [exp (0.0025c ) �exp (�0.0025c )],v v vdt

dcs p 1 � k c � l [exp (0.0025c ) �exp (�0.0025c )],s s s v vdt

dcv 2 2 2 2p q c � (k � q j )c � 0.5c � 0.5c j � l [exp (0.0025c )s s v v v v s v v v vdt

� exp (�0.0025c )],v

dcz p k c � l [exp (0.0025c ) �exp (�0.0025c )],z z z v vdt
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where I suppress the dependence on t and T.
Outside of FOMC meeting intervals, the ODEs are

¯dc 2¯p �c k v � c q � 0.5c � 2 # 0.2 � 0.2 exp (0.0025c )v v z z z vdt

� 0.2 exp (�0.0025c ),v

dc v p 1,
dt

dcs p 1 � k c ,s sdt

dcv 2 2 2 2p q c � (k � q j )c � 0.5c � 0.5c j ,s s v v v v s v vdt

dcz p k c .z zdt

The computation of and is recursive. The algorithm divides thec̄(t, T) c (t, T)X

time between t and T into subintervals with and without FOMC meetings. The
algorithm starts at T with terminal conditions and andc̄(T, T) p 0 c (T, T) p 0X

works its way backward up to the present . Each time an FOMC meetingt ≤ T
starts or ends, the current coefficients turn into terminal conditions, and the
algorithm switches to the now-relevant ODEs. Some of these coefficients (such
as outside of meetings) can be easily solved analytically. Runge-Kuttac (t, T)v

methods solve the others numerically (in MATLAB, the relevant command is
“ode45”).

Appendix B

Simulations with Jumps

The state vector X contains the jump process v. Starting from x at time t, we
can simulate X given by (A1) with the scheme

x x x U Dˆ ˆ ˆ�DX p m (X )h � hj (X )e � J (h � h ),t�h X t X t t�h X t�h t�h

xX̂ p x, (B1)t

where is independently and identically distributed standard normal, andet�h

and are independent Bernoulli variables with probabilities andU D Uh h l ht�h t�h t

, respectively.Dl ht

The simulations determine target changes by a “three-sided die.” The three
sides are “up” (U, meaning ), “down” (D, meaningv � v p 0.0025 v � v pt�h t t�h t

), and “no change” (0, meaning ). Their conditional probabil-�0.0025 v p vt�h t

ities at time are approximatelyt � h

U U Dp p l h(1 � l h),t�h t t

D D Up p l h(1 � l h),t�h t t
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and
0 U Dp p 1 � p � p .t�h t�h t�h

In practice, I replace with for , D to make sure that thej jl h 1 �exp (�l h) j p Ut t

probabilities behave well across all simulations.
The choice of h is important, especially with time-varying probabilities. At

regular days, I set . At FOMC meetings, I need to further subdivideh p 1/365
the day, because jump intensities can become large. For example, and takeU Dl lt t

on values as high as 1,225 at the parameter in table 1. At these values, aĝ
Bernoulli approximation that allows for only one jump during one FOMC meet-
ing is not accurate. I therefore increase the number of Bernoulli trials during
an FOMC meeting so that . To economize on the number ofh ≥ (1/30)(1/365)
simulated steps (and thereby the computation time for the likelihood evalua-
tion), I subdivide the FOMC meeting day into intervals, where H is aH � 1
multiple of five. For t during five subintervals of length

H 1 1
h p ,( ) ( ) ( )5 H � 1 365

jumps are drawn from a Poisson distribution with constant parameter byjl ht
truncating the distribution at jumps. In the last subinterval of lengthH/5

, a Bernoulli discretization is applied. I set , which is equiv-h p 1/(H � 1) H p 30
alent to 31 Bernoulli trials (with appropriately chosen success probability).

Appendix C

Simulated Maximum Likelihood with Jumps

The vector denotes all variables in X other than the target v, so thatvX X pt

. For the moment, suppose that the jump intensities are always “active,”v l(v X )t t

equal to (5), so that there is no time dependency introduced by FOMC meetings.
The Monte Carlo approximation of the likelihood function in (17) is based on

J1
v x kˆ ˆ ˆf (X , tFx, t) p f(X , tFv , X [ j], t � h)p [ j]1 [j], (C1)� �X t t t t�h t k,tJ jp1 kp{U,D,0}

where is the Gaussian density of at time t conditional onxˆf(7, tFX [ j], t � h) Xt�h t

the value at time ; denotes the jth simulated path from thex xˆ ˆX [ j] t � h X [ j]t�h t�h

scheme (B1); is the indicator for the kth side of the die at time t in the1 [ j]k,t

jth simulation; and is based on . Let be the target componentk x xˆˆp̂ [ j] X [ j] vt t�h t�h

of . If the simulated target at time cannot reach the observed timex xˆX̂ v t � ht�h t�h

t value of the target in at most one jump, that simulation is assigned zero
likelihood.

For the case of time-dependent intensities that are “activated” only during
FOMC meeting day intervals , we can construct analogues of (C1) as[t , t ]i�1 i

follows. As long as the observation time t lies within a meeting day interval, in
that , the approximation (C1) itself still applies. If the observation timet ≤ t ! ti�1 i

t is made outside an FOMC meeting, however, then we need to replace the
Bernoulli density terms with an indicator function for sample paths leading up
to the actual value of the target at t:

J1
v xˆf (X , tFx, t) ≈ f(X , tFX [ j], t � h)1 . (C2)ˆx�X t t t�h v pv [ j]t t�hJ jp1
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In (C2), jumps in the target enter the SML objective function only through the
indicator function and the simulated values . This creates a serious prob-xX̂ [ j]t�h

lem when maximizing the objective: For a given (finite) number J of simulations,
a small change in the parameter value does not necessarily affect the average
number of jumps across simulations and may thus leave the value of the like-
lihood function unchanged. Only changes that are large enough to affect the
number of simulated jumps change the objective function, but possibly by a
large amount. In order to overcome this discontinuity, an alternative to (C2) is
constructed as follows. The joint conditional density of factors can be written
in the form

vf (X , tFx, t) p f (v , tFx, t)f (X , tFv , x, t). (C3)vX t v t X Fv t t

The first term of equation (C3) can be approximated by

S
f (v , tFx, t) ≈v t J

J1 xˆ≈ f (v , tFX [ j], t � h)� v t t �h iiJ sp1

J1 kˆ≈ p [ j]1 [j],� � t k,tiJ jp1 kpU,D,0

where S denotes the total number of simulated paths that resulted in the ob-
served value . In words, is the frequency of “correctly simulated” targetv S/Jt

values in the simulations (starting with ), and the expression in the lastx p X t

row weighs the simulated paths by their likelihoods. Small changes in the pa-
rameters now affect the conditional probability , so that the likelihood is nokp̂ti

longer discontinuous.
The second term in (C3) can be approximated by

f (X , tFx, t)X tvf (X , tFv , x, t) pvX Fv t t f (v , tFx, t)v t

J1
v xˆ≈ f(X , tFX [ j], t � h)1 .ˆx� t t�h v pv [ j]t t�hS jp1

To evaluate the likelihood function, I simulate paths of X. TheJ p 5,000
simulations use antithetic variates, which means that for each of the new pseudo-
random Gaussian and uniform , the antithetic variates ande[ j] u[ j] �e[ j] 1 �

are used as a subsequent scenario. Like any simulation-based technique,u[ j]
SML is computationally intensive. The numerical optimization procedure is
based on the Nelder-Mead simplex method, starting a gradient-based parameter
search only after the simplex algorithm has collapsed.

Appendix D

Accuracy Check

The model does not impose a positivity constraint on intensities or the target.
To check its approximation accuracy, I compute true zero-coupon yields Y (t,0

with Monte Carlo integration. Starting at some value x for the factors at timeT)
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TABLE D1
Approximation Errors (in Basis Points)

6-Month 2-Year 5-Year

ĝ
(1)

ĝc

(2)
ĝ

(3)
ĝc

(4)
ĝ

(5)
ĝc

(6)

Mean 2.1 2.6 1.7 2.2 1.9 1.5
Average standard error .7 .6 1.1 1.1 1.8 1.6

Note.—The first row in this table presents mean absolute approximation errors in basis points˜FY (t, T) � Y (t, T)F0 0

over the weekly sample from January 1994 to December 1998 using parameter values from table 1. The second rowĝ
reports average standard errors of the Monte Carlo approximation of true yields . They are obtained using theY (t, T)0

delta method by viewing the simulated bond price at time t as the estimated mean of an independently andP̂(t, T)
identically distributed population of random variables . The table reports the average standard errorsT�h ˆexp (�� r [j]h)iipt

over the sample.

t, the computation simulates J paths of the short rate for timesxr̂ i p t � h,i

. The true yield ist � 2h, … , T � h

ˆln P(t, T)
ˆY (t, T)p � ,0 T � t

where
J T�h1 xˆ ˆP(t, T) p exp � r [ j]h .� �( )iJ jp1 ipt

In the calculations, I set and and divide FOMC meetingJ p 20,000 h p 1/365
days further into 30 intervals. Given these choices, the standard errors of the
Monte Carlo approximation of the true yields for even the five-year yield (re-
ported in the second row of table D1) are sufficiently small, from 0.6 to 1.8 bp.

At the same value x, the model implies zero-coupon yields accordingỸ (t, T)0

to equation (13). The approximation errors are evaluated atỸ (t, T) � Y (t, T)0 0

typical x-values, which are the factors implied by the model at thex p g(Y , g)t

estimated g. The FOMC calendar may introduce seasonalities into these errors.
The first row in table 1 therefore reports average absolute approximation errors

over the entire sample. For each maturity, columns 1, 3,˜FY (t, T) � Y (t, T)F0 0

and 5 are based on unconstrained estimates and columns 2, 4, and 6 are basedĝ
on constrained estimates that solve (18). We can see that mean absolute errorsĝc

are only around 1–3 bp. Also, the approximation errors using unconstrained
estimates are not much different from those using constrained estimates.
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