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Abstract

We introduce LLM-Lasso, a novel framework
that leverages large language models (LLMs) to
guide feature selection in Lasso ℓ1 regression. Un-
like traditional methods that rely solely on nu-
merical data, LLM-Lasso incorporates domain-
specific knowledge extracted from natural lan-
guage, enhanced through a retrieval-augmented
generation (RAG) pipeline, to seamlessly inte-
grate data-driven modeling with contextual in-
sights. Specifically, the LLM generates penalty
factors for each feature, which are converted into
weights for the Lasso penalty using a simple,
tunable model. Features identified as more rel-
evant by the LLM receive lower penalties, in-
creasing their likelihood of being retained in the
final model, while less relevant features are as-
signed higher penalties, reducing their influence.
Importantly, LLM-Lasso has an internal valida-
tion step that determines how much to trust the
contextual knowledge in our prediction pipeline.
Hence it addresses key challenges in robustness,
making it suitable for mitigating potential inaccu-
racies or hallucinations from the LLM. In various
biomedical case studies, LLM-Lasso outperforms
standard Lasso and existing feature selection base-
lines, all while ensuring the LLM operates with-
out prior access to the datasets. To our knowledge,
this is the first approach to effectively integrate
conventional feature selection techniques directly
with LLM-based domain-specific reasoning.
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1. Introduction
Feature selection remains a cornerstone of statistical learn-
ing, enabling models to focus on the most relevant predictors
while reducing complexity and improving interpretability
(Guyon et al., 2007; Chandrashekar & Sahin, 2014; Li & Liu,
2015). Among the various methods for feature selection,
Lasso regression has gained widespread adoption for various
reasons. It delivers a feature selection approach while simul-
taneously building a predictive model. The Lasso approach
is interpretable and computationally efficient because it au-
tomatically selects a suitable linear model with a sparse
set of coefficients. Selection is performed by solving a
straightforward convex optimization problem that promotes
sparsity by penalizing the size of the regression coefficients
(Tibshirani, 1996; Bühlmann & Van De Geer, 2011; Hastie
et al., 2015). As with any supervised learning model, the
traditional Lasso approach is based only on the training data.
It is natural to consider expert knowledge to inform the fea-
ture selection task. However, this is challenging to do in a
systematic and scalable way that safeguards against intro-
ducing potential biases. The goal of this paper is to meet
this challenge. We do this by taking advantage of current
advances in generative AI.

The development of large language models (LLMs) trained
on a large scale of unstructured text offers a transformative
opportunity to augment traditional feature selection tech-
niques in systematic and scalable way. Transformer-based
pre-trained LLMs, such as GPT-4 (OpenAI, 2023b) and
LLaMA-2 (Touvron et al., 2023) have demonstrated impres-
sive abilities in encoding domain knowledge and contextual
relationships and generalizing to a wide range of unseen
tasks in a variety of domains (Vaswani et al., 2017; Brown
et al., 2020; Radford et al., 2019; Manikandan et al., 2023),
including various challenging reasoning tasks (Wei et al.,
2022; Lewkowycz et al., 2022; Suzgun et al., 2023), predic-
tion tasks that require domain-specific knowledge (Petroni
et al., 2019; Dinh et al., 2022; Chen & Zou, 2024; Theodoris
et al., 2023; Cui et al., 2024), and, more recently, feature
selection (Choi et al., 2022; Jeong et al., 2024; Li et al.,
2024; Liu et al., 2024; Han et al., 2024). Based on the
idea that LLMs might possess relevant knowledge for the
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task at hand, (Dinh et al., 2022) proposed fine-tuning an
LLM with training data, feature names, and task descrip-
tions and showed improvements in prediction performance.
Specific to feature selection, (Choi et al., 2022) introduces
the LMPriors framework, which selects features by analyz-
ing log-probability differences when generating “Y” (Yes)
or “N” tokens, effectively admitting or rejecting certain fea-
tures based solely on task descriptions, feature names, and a
few-shot examples. Based on this, (Jeong et al., 2024) and
(Liu et al., 2024) enable feature selection with proprietary
LLMs where internal token probabilities are inaccessible.
Specifically, (Jeong et al., 2024) proposes three prompting
strategies that rely only on textual information, bypassing
the need for data access, to directly utilize the output of
the generated text without further processing. Meanwhile,
(Liu et al., 2024) introduces a framework that leverages
LLMs for direct feature filtering based on test scores. These
methods for incorporating LLMs into feature selection have
demonstrated promising results, showing that LLMs can
rival leading statistical feature selection techniques, even in
zero-shot settings where they lack direct access to the data
(Choi et al., 2022; Jeong et al., 2024). Collectively, these
studies underscore the potential of LLMs to encode a rich
set of relevant, task-specific information, augmenting tra-
ditional supervised learning approaches and enabling their
application across a wide range of downstream tasks.

In this work, we build on these insights by introducing LLM-
Lasso, a novel framework for LLM-powered feature selec-
tion that integrates LLM-derived penalty factors into Lasso
penalty terms, allowing the seamless fusion of knowledge-
based insights with traditional data-driven supervised learn-
ing methodologies. LLM-Lasso focuses on feature selection
in the context of a specific family of models (the ones in
the Lasso framework). This strategy allows us to ensure
that the feature selection approach is effective for the down-
stream task of selecting a model in the family. Using other
feature selection approaches that are not aligned with the
downstream task of interest could result in features that are
not relevant to the task. For example, the use of random
forests could result in the choice of a feature that is per-
ceived relevant because of its non-linear interactions with
other features. But if the task at hand is to select a linear
model, such a feature may not be useful.

LLM-Lasso assumes black-box access to the LLMs and
utilizes an optional retrieval-augmented generation (RAG)
pipeline (Lewis et al., 2020; Shuster et al., 2022; Wu et al.,
2024; Siriwardhana et al., 2023) to extract domain-specific
knowledge via LLMs, which is then used to inform Lasso
regularization. This approach enables fine-tuning through
cross-validation, ensuring adaptability and robustness. Al-
though previous research on the adoption of LLMs for fea-
ture selection has shown promising results, these methods
face a major bottleneck: they rely solely on context de-

scriptions of the task and features to make standalone fea-
ture selection decisions, without incorporating data-driven
safeguards to ensure robustness against inaccuracies in the
generated responses. This limitation makes these meth-
ods vulnerable to LLM hallucinations, that is, fabricating
nonexistent facts, a common weakness even in the most
advanced LLMs (Huang et al., 2024; Yao et al., 2024). This
can also raise concerns about their reliability, particularly
in scenarios where the data is unexpected or errors have
occurred during data collection. All of the aforementioned
inaccuracies can be especially detrimental in fields such as
biomedicine, where precision and reliability are critical.

Main Contributions. In this paper, we address the key
bottleneck of robustness and demonstrate the effectiveness
of LLM-Lasso through experiments focused on various
tasks, including an unpublished biomedical dataset with
feature dimensions that are at least an order of magnitude
larger than those in previous studies. Focused on logistic
regression classification tasks, our results show that LLM-
Lasso outperforms standard Lasso in feature selection ac-
curacy and predictive performance. While biomedicine is a
key use case, our framework is broadly applicable to other
domains where external knowledge aids feature selection
and extends to general supervised learning methods. Our
main contributions are as follows.

1. We introduce LLM-Lasso, a scalable and robust frame-
work for LLM-powered feature selection that effec-
tively combines contextual knowledge with data-driven
insights, enabling the direct integration of LLMs into
traditional supervised learning methods.

2. We build into LLM-Lasso an internal validation step
that determines how much to trust the contextual knowl-
edge in our prediction pipeline. This validation step is
tested using adversarial examples.

3. We show that LLM-Lasso consistently outperforms
standard Lasso and other popular feature selection
methods across various datasets.

4. We demonstrate LLM-Lasso’s clinical applicability by
identifying key diagnostic factors distinct from those
selected by traditional Lasso or standard LLM-based
methods, enhancing precision and facilitating scientific
discovery.

The paper is structured as follows: Section 2 reviews Lasso,
RAG, and presents a schematic of our procedure. Section
3 details our methodology. Section 4 determines penalty
factor selection via simulations and exemplify robustness
of LLM-Lasso through adversarial experiments. Section
5 evaluates LLM-Lasso across diverse datasets and LLMs.
Finally, Section 6 summarizes our findings
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2. Preliminaries
2.1. Supervised Data-Driven Learning

We consider a generic data-driven supervised learning pro-
cedure. Given a dataset D consisting of n data points
(xi, yi) ∈ X × Y drawn from an underlying distribution
p(·|θ), our goal is to estimate parameters θ ∈ Θ through a
learning procedure, defined as f : (X ×Y)n → Θ that min-
imizes the predictive error on observed data. Specifically,
the learning objective is defined as follows:

θ̂f := f(D) = argmin
θ

L(θ,D), (1)

where L(·,D) :=
∑n

i=1 L(·, (xi, yi)), and L is a loss func-
tion quantifying the error between predictions and true out-
comes. Here, θ̂f is the parameter that best explains the
observed data pairs (xi, yi) according to the chosen loss
function L(·).

Feature Selection. Feature selection aims to improve
model f ’s predictive performance while minimizing redun-
dancy. State-of-the-art techniques fall into four categories:
(i) filter methods, which rank features based on statistical
properties like Fisher score (Duda et al., 2001; Song et al.,
2012); (ii) wrapper methods, which evaluate model perfor-
mance on different feature subsets (Kohavi & John, 1997);
(iii) embedded methods, which integrate feature selection
into the learning process using techniques like regulariza-
tion (Tibshirani, 1996; Lemhadri et al., 2021); and (iv) hy-
brid methods, which combine elements of (i)-(iii) (Singh &
Singh, 2021; Li & Ren, 2022). This paper focuses on embed-
ded methods via Lasso, benchmarking against approaches
from (i)-(iii).

2.2. Language Modeling

Language modeling aims to approximate the true distribu-
tion of natural language ptext(x) by learning pLM(x), a prob-
ability distribution over text sequences x = (X1, . . . , X|x|).
Modern large language models, trained on diverse datasets
(Gao et al., 2020), exhibit strong generalization across do-
mains, acquire contextual knowledge, and perform zero-
shot learning—solving new tasks using only task descrip-
tions—or few-shot learning by leveraging a small number
of demonstrations (Brown et al., 2020).

Retrieval-Augmented Generation (RAG). Retrieval-
Augmented Generation (RAG) enhances the performance of
generative language models by integrating a domain-specific
information retrieval process (Lewis et al., 2020). The
RAG framework comprises two main components: retrieval,
which extracts relevant information from external knowl-
edge sources, and generation, where an LLM generates
context-aware responses using the prompt combined with

context
data
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LLM 

semantic
search

vector
database

relevant
context

prompt+context
prompt

LLM

ℓ𝟏-norm weights

Lasso

feature matrix labels

feature names (no training data)

(e.g. gene list)

Figure 1. Retrieval Augmented Generation (RAG) based ℓ1-norm
weights (penalty factors) for Lasso. Only feature names—no train-
ing data— are included in LLM prompt.

the retrieved context. Documents are indexed through vari-
ous databases, such as relational, graph, or vector databases
(Khattab & Zaharia, 2020; Douze et al., 2024; Peng et al.,
2024), enabling efficient organization and retrieval via algo-
rithms like semantic similarity search to match the prompt
with relevant documents in the knowledge base. RAG has
gained much traction recently due to its demonstrated ability
to reduce incidence of hallucinations and boost LLMs’ reli-
ability as well as performance (Huang et al., 2023; Zhang
et al., 2023).

2.3. Task-Specific Data-Driven Learning

LLM-Lasso aims to bridge the gap between data-driven
supervised learning and the predictive capabilities of LLMs
trained on rich metadata. This fusion not only enhances
traditional data-driven methods by incorporating key task-
relevant contextual information often overlooked by such
models, but can also be especially valuable in low-data
regimes, where the learning algorithm f : D → Θ (seen
as a map from datasets D to the space of decisions Θ) is
susceptible to overfitting.

The task-specific data-driven learning model f̃ : D ×
Dmeta → Θ can be described as a metadata-augmented
version of f , where a link function h(·) integrates metadata
(i.e. Dmeta) to refine the original learning process. This can
be expressed as:

f̃(D,Dmeta) := T (f(D), h(Dmeta)),

where the functional T takes the original learning algorithm
f(D) and transforms it into a task-specific learning algo-
rithm f̃(D,Dmeta) by incorporating the metadata Dmeta.

There are multiple approaches to formulate T and h. For
instance, LMPriors (Choi et al., 2022) designed h and T
such that h(Dmeta) first specifies which features to retain
(based on a probabilistic prior framework), and then T keeps
the selected features and removes all the others from the
original learning objective of f . Note that this approach
inherently is restricted as it selects important features solely
based on Dmeta without seeing D.

In contrast, we directly embed task-specific knowledge into
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the optimization landscape through regularization by in-
troducing a structured inductive bias. This bias guides
the learning process toward solutions that are consistent
with metadata-informed insights, without relying on explicit
probabilistic modeling. Abstractly, this can be expressed as:

θ̂f̃ := f̃(D,Dmeta) = argmin
θ

L(θ,D) + λR(θ,Dmeta), (2)

where λ is a regularization parameter, R(·) is a regularizer,
and θ is the prediction parameter.

3. Methodology
In this section, we introduce the LLM-Lasso framework by
outlining its two key components: (i) the core statistical
model that integrates an LLM-informed penalty into Lasso;
and (ii) the general pipeline for training a task-specific LLM
on expert knowledge base. An overview schematic is shown
in Figure 1.

3.1. The LLM-Lasso

We focus on the supervised learning framework introduced
earlier in Section 2.1 with input feature X ∈ Rn×p and
response Y ∈ Rn. The Lasso is a shrinkage method that
places an ℓ1 penalty on the coefficient, which causes some
of the coefficient to be exactly zero. The objective function
of the Lasso is given by:

min
β

1

2

n∑
i=1

(yi − β0 − x⊤
i β)

2 + λ

p∑
j=1

|βj |

 . (3)

To incorporate prior knowledge of the relationship between
X and Y into the learning of a prediction model f : (X ×
Y)n → Θ, one can enhance the Lasso by assigning penalty
factors to each coefficient in the ℓ1 penalty (Zou, 2006). The
objective function of the Lasso with penalty factors is:

min
β

1

2

n∑
i=1

(yi − β0 − x⊤
i β)

2 + λ

p∑
j=1

wj |βj |

 . (4)

While penalty factors can be manually assigned based on
prior knowledge, this approach becomes impractical when
p is large. To address this, we leverage LLMs to streamline
the integration of task-specific knowledge by generating
LLM-informed penalty factors or importance scores for all
predictors using domain-specific insights. The key modeling
challenge is determining how best to effectively inform the
underlying data-driven shrinkage method. In the following,
we introduce two approaches for modeling LLM-informed
penalty factors, whose performance is evaluated through
simulation studies in Section 4.

Inverse importance penalty factors. First, simply taking
the inverse of the importance scores and their powers is
useful. In this case, the penalty factors would take the form
(Ij)−η, where Ij is the importance score for feature j and
the power η ≥ 0 would be determined via cross-validation.
A large η would indicate heavy reliance of the LLM-Lasso
on the importance scores, whereas a value of η close to 0
would indicate minimal reliance on the importance scores.

ReLU-form penalty factors. Another approach to defin-
ing the penalty factors involves interpolating between
penalty factors derived from the LLM and those used in
Lasso regression with equal ℓ1-norm weights by applying
a rectification operation. Specifically, we use a rectified
linear unit (ReLU) to achieve this. Suppose w̃(j) is the
penalty factor after ReLU-form processing of the jth most
important feature, as determined from the scores obtained
from the LLM. Here, the largest penalty factor (and there-
fore the penalty factor of the least important feature) would
be w̃(p), which is greater than 1. We can define w̃(j) as
w̃(j) = 1 + (j−(1−γ)p)+

γp · (w̃(p) − 1), where γ ∈ (0, 1) is
the ReLU threshold. The lower the importance of a feature,
the more likely its coefficient will be 0. The threshold γ can
be chosen via cross-validation.

3.2. Task-Specific LLM

To develop a task-specific LLM that provides accurate an-
swers grounded in rigorous and extensive domain knowl-
edge, we focus on two key aspects: prompt engineering and
knowledge-base embedding via RAG.

3.2.1. PROMPT ENGINEERING.

Prompting is an efficient and effective approach for adapting
pretrained LLMs to tackle new tasks not encountered dur-
ing training (Radford et al., 2019; Liu et al., 2023). In our
experiment, we employ a zero-shot approach for large-scale
experiment on biomedical dataset, where the acquisition of
ground truth is often infeasible, and a few-shot approach
for small-scale experiments. By default, we use greedy de-
coding—i.e., sampling with temperature T = 0—due to its
simplicity and deterministic behavior, making it well-suited
for replication and ablation studies. In addition, we incorpo-
rate chain-of-thought (CoT) prompting (Wei et al., 2022), a
technique shown to significantly enhance performance on
complex reasoning tasks.

For all classification tasks, our full prompt template consists
of three components—user, retriever (if RAG is used), and
system—and is defined as follows:

P full = prompt(Quser(A(ϕ, c)), Cretriever(k,R(ϕ, c)),Hsystem),

where (i). Quser stands for user query, which is comprised of
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Figure 2. An example task description (A) prompt.

A, a task description prompt that takes features ϕ and cate-
gories c as inputs; (ii). Cretriever represents the top k retrieved
contexts via a semantic similarity search of retrieval prompt
R(ϕ, c) with the retrieval knowledge base; and (iii). Hsystem

summarizes past queries and responses, enacted through a
conversational buffer. Under this framework, prompt engi-
neering consists of three components: A (task description),
and R (retrieval prompt). Component A follows the general
structure in Figure 2, where it is composed of a background
description of the dataset, the assigned the task, and format-
ting instructions. We refer the readers to Appendix B for a
more detailed description.

3.2.2. KNOWLEDGE-BASE EMBEDDING VIA RAG

We use the standard RAG pipeline to create an optional task-
specific knowledge base embedding for our prediction task.
We provide a brief overview of what RAG is and our specific
pipeline. RAG provides LLMs with informative contextual
information by selectively choosing the relevant documents
from a database. This is critical, as today’s LLMs still
struggle to handle very long contexts and generally cannot
take an entire database as part of the input prompt. We now
describe the specific RAG pipeline we use.

Preprocessing (Embedding and Indexing) Given a
knowledge base consist of N text documents, {Di}Ni=1, we
obtain their d-dimensional semantic embeddings {di}Ni=1 =
{E(Di)}Ni=1 via an embedding function E : Text → Rd.
Here, we use the OpenAI embeddings off-the-shelf (Ope-
nAI, 2024). Once the semantic embedding vectors are ob-
tained, we apply the the Hierarchical Navigable Small World
(HNSW) algorithm (Malkov & Yashunin, 2018), imple-

mented in chromadb, to enable sublinear complexity for
semantic similarity search.

Retrieval At retrieval time, given a query vector q ∈ Rd,
the semantic similarity between q and the stored embeddings
{di}Ni=1 is computed as Sim(q, di) =

qT di

∥q∥2∥di∥2
. The top k

documents with the highest similarity scores are retrieved
and supplied as context C.

Throughout the paper, we adhere to the following naming
convention: LLM-Lasso (Plain) refers to a pipeline
without RAG, while LLM-Lasso (RAG) denotes a
pipeline incorporating RAG. The performance of RAG in
our framework highly depends on the retrieval prompt and
the relevance of the retrieved documents. Figure 1 illustrates
LLM-Lasso (RAG). Due to space constraints, a detailed
discussion is provided in Appendix D.

4. Simulations
In this section, we aim to answer the following questions
through simulation experiments: (i). What is the optimal
penalty factor formulation for incorporating domain knowl-
edge from LLMs into Lasso? (ii). Is LLM-Lasso robust to
adversarial datasets where the features provided to the LLM
are uninformative with respect to the data, or where the data
itself is misaligned with the features presented?

4.1. Penalty Factor Form Simulations

We run simulations to find the adequate form of penalty
factors. Based on the simulations, we use the inverse im-
portance penalty factors to compare the LLM-Lasso to the
baseline models. We defer the details to Appendix A.

4.2. Adversarial Simulations

Figure 3. Adversarial simulation experiment using the DLBCL vs.
MCL dataset

To showcase the robustness of our method in scenarios in
which the LLM fails to produce meaningful results, we
perform adversarial data corruption simulations. As a base
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dataset, we use the myeloid cell leukemia (MCL) vs. diffuse
large B-cell lymphoma (DLBCL) task from the Lymphoma
dataset (Table 3). Of the 1592 gene features, we select the
800 most relevant based on presence in documents retrieved
from the OMIM (Online Mendelian Inheritance in Man)
knowledge base (see Section 5.4.1). We replace those genes
with random base64 strings, ensuring via OMIM that the
strings are not real gene names (see Figure 4).

We perform classification via LLM-Lasso and LLM-Score,
as described in Section 5.4, using the GPT-4o model. Both
methods are given the corrupted gene name list. For il-
lustrative purposes, we also include a random feature se-
lection baseline. The resulting misclassification error and
AUROC plots can be found in Figure 9. Though half the
genes names given to the LLM are corrupted, the accu-
racy of LLM-Lasso remains comparable to Lasso, whereas
LLM-Score performs noticeably worse than random feature
selection. We observe that for both LLM-Lasso and LLM-
Score, the LLM analysis of the corrupted genes is heavily
based on hallucinations, examples of which are in Figure
5. LLM-Lasso, however, remains robust to the corruptions,
while the accuracy of LLM-Score degrades substantially.

Figure 4. Gene name corruption for adversarial simulations.

**Z8ED**: 3.0
Reasoning: Possible weak connection to cellular proliferation processes affection
some cancers.

**PC6LOW**: 0.5
Reasoning: PC6LOW is involved in cell cycle regulation, which can be relevant
for distinguishing between DLBCL and MCL.

Figure 5. GPT-4o hallucination for corrupted gene names: an LLM-
Lasso penalty factor, followed by an LLM-Score importance score.
Even though both genes, Z8ED and PC6LOW are fake, the LLM
hallucinates justification for their relevance to the task.

5. Experiments
In this section, we demonstrate the effectiveness of our
proposed framework, LLM-Lasso, through a series of exper-
iments. These include small-scale tests (∼ 20 features) and
large-scale experiments (> 1000 features) which leverage

an unpublished biomedical dataset.

5.1. Model Details

For the experiment, we sample a combination of closed-
source and open-source LLMs:

1. o1 (OpenAI, 2024) −1,
2. GPT-4o (OpenAI, 2023b): −,
3. GPT-3.5 (OpenAI, 2023a): −,
4. DeepSeek-R1 (DeepSeek AI, 2025): 671B parameters,
5. LlaMa-3.1 (Meta AI, 2025b): 405B parameters,
6. LlaMA-3 (Meta AI, 2025a): 8B parameters,
7. Qwen Models (Alibaba DAMO Academy, 2025): 72B

parameters.

We use all GPT models via OpenAI API calling and
all open-source models via OpenRouter API calling
via cloud-based inference. We implement RAG using
the langchain-community (LangChain Community,
2024) code-base and a self-query retriver as our base method
for query construction via Chroma vectorstore.

5.2. Baselines

To robustly evaluate our model’s performance, we compare
it against baselines from both LLM-based feature selectors
and traditional data-driven feature selection methods, with
representatives chosen from each of the three main cate-
gories, that is, filter, wrapper, and embedded:

1. LLM-Score (Jeong et al., 2024).
2. Filtering by Mutual Information (MI) (Lewis, 1992).
3. Recursive Feature Elimination (RFE) (Guyon et al.,

2002).
4. Minimum Redundancy Maximum Relevance selection

(MRMR) (Ding & Peng, 2005).
5. Lasso (Tibshirani, 1996).
6. Random feature selection.

For standalone feature selectors such as LLM-Select, MI,
RFE, MRMR, and Random, we follow the evaluation pro-
cedures outlined in (Jeong et al., 2024) to ensure a fair
comparison: approximately 10% of the total features are
selected using each method, and their performance is eval-
uated by measuring the test performance of a downstream
ℓ2-penalized logistic regression model, with hyperparame-
ters chosen via grid search and cross-validation.

5.3. Small-Scale Experiments

We begin with a preliminary evaluation of our plain
LLM-based method against baselines using small-scale,
low-dimensional public datasets across various domains.

1We note that the official parameter counts for closed-source
OpenAI models have not been disclosed. Therefore, we omit the
model parameter counts.

6
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Figure 6. Large-Scale Experiments on Lymphoma Datasets: LLM-Lasso vs. Baselines and Model Ablation Across LLMs. The model
ablations display mean misclassification and (one minus) AUROC at 20 features, with error bars for the standard deviation. Lasso is
plotted for reference.

This includes three binary classification datasets (Bank,
Diabetes, Glioma) and two regression datasets (Wine
Quality, Spotify 2024∗). An asterisk (*) denotes a
dataset published after the pretraining-data cutoff for all
sampled LLMs (see Table 2), included to mitigate concerns
about pretraining-data memorization. A summary of the
datasets used can be found in Table 4. We follow the eval-
uation procedures outlined in Section 5.2 for standalone
feature selectors and in Section 5.4 for Lasso-based models.
To ensure a fair assessment in the presence of class imbal-
ance, we report the error rate across ten splits along with
the AUROC. As shown in Figure 7, GPT-4o-based LLM-
Lasso consistently outperforms all sampled datasets and
baselines, even when not using the best-performing LLM
(see Appendix E for a model ablation study on Spotify).

5.4. Large-Scale Experiments

Gene expression levels can aid in cancer diagnosis and pre-
diction. Moreover, identifying genes predictive of specific
cancers or subtypes enhances our understanding of cancer
pathophysiology and may facilitate drug discovery by prior-
itizing key predictive genes. To demonstrate the application
of our proposed framework and to show that the strong per-
formance of LLM-Lasso carries over to high-dimensional,
complex datasets, we consider the task of cancer diagno-
sis and classification with gene expression data as features
across a range of biomedical tasks using subsets of the fol-
lowing unpublished lymphoma dataset.

Figure 7. Small-scale experiments on public datasets using GPT-
4o for LLM-Lasso (Plain) and LLM-Score.

Lymphoma (Unpublished) Follicular lymphoma (FL) is
a relatively indolent form of lymphoma that usually does
not require intervention, but it could occasionally trans-
form into the more aggressive diffuse large B-cell lym-
phoma (DLBCL). Using an unpublished dataset of 1592
gene expression levels from 130 lymphoma samples, we
use LLM-Lasso to classify tumor samples into DLBCL and
FL. Though less clinically significant, we also perform the
task of classifying 161 lymphoma samples into DLBCL
and mantle cell lymphoma (MCL) and classifying 196 sam-
ples into DLBCL and classical Hodgkin lymphoma (cHL)
using 1592 gene expression levels. The datasets used are
summarized in Table 3.

7



LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization

5.4.1. BUILDING A KNOWLEDGE-BASE FOR RAG

We utilize OMIM (Online Mendelian Inheritance in Man),
an open-source database of human genes and their disease
associations, to build our RAG knowledge base. Using
the OMIM API, we extract gene symbols, preferred titles,
clinical synopses, and detailed genetic and phenotypic re-
lationships, storing the data in structured JSON format for
efficient retrieval. The JSON data is indexed, chunked using
a recursive text splitter, and ingested into Chroma database
to populate the vector store. See Appendix D for more
implementation details.

5.4.2. EVALUATION

Evaluation of LLM performance We evaluate the per-
formance of LLMs in two parts: (i). the performance com-
parison of the models surveyed in Section 5.1, and (ii). the
performance of RAG in of retrieval quality and relevance.

The histograms of Figure 6 display the average misclassi-
fication error and AUROC of LLM-Lasso at 20 features,
for the models listed in Section 5.1. Lasso is plotted as a
baseline. Larger and more powerful models generally per-
form better, especially with RAG. Some key exceptions are
LLaMa-3-8b, which achieves the second-lowest test error
without RAG, and DeepSeek-R1, for which RAG degrades
performance. We hypothesize that some models have more
nuanced abilities to parse the medical documents provided
by RAG, whereas others are harmed by the increased con-
text from the retrieved documents.

As shown in the misclassification error plots of Figure 6,
LLM-Lasso RAG outperforms the plain LLM-Lasso in all
tasks except DLBCL vs. FL. Appendix E.1 provides an il-
lustrative example justifying this, in which a RAG-enhanced
GPT-4o model cites concrete gene interactions. RAG, how-
ever, does not unilaterally improve performance. This can
result from the knowledge base being ill-suited to the task,
issues with long contexts, and retrieval of irrelevant infor-
mation, as is further discussed in Appendix E.1.

Scaling LLM generation of penalty factors to over a thou-
sand genes also presents unique challenges, as we discuss
in Appendix E.2.

Evaluation of Prediction Performance To test the pre-
diction performance of the LLM-Lasso, the data is centered
and split into the training set and the test set. On the training
set, we perform 10-fold cross-validation across the hyper-
parameter η ∈ (0, 1, 2, . . . , 10) for penalty factors of the
form I−η . Using the hyperparameter with the lowest cross-
validation misclassification rate, we evaluate model perfor-
mance (RAG LLM-Lasso, plain LLM-Lasso, and baselines)
on the test set. For each number of selected features, we
record the best misclassification rate, repeating the process

across 10 random splits and plotting the mean. The same
procedure is applied using test metric AUROC. Results from
large-scale experiments are shown in Figure 6, with a close-
up comparison of RAG-enhanced LLM-Lasso vs. Lasso in
Figure 8. RAG LLM-Lasso outperforms both the baselines
and plain LLM-Lasso, achieving lower misclassification
rates and higher AUROC with fewer selected genes.

Figure 8. Close-up comparison of Lasso vs. RAG-enhanced LLM-
Lasso on various Lymphoma datasets.

Feature Contribution In the experiments we run mul-
tiple LLM-Lasso regressions, and thus we are unable to
extract a single list of selected features and their coefficients.
For better interpretability, we introduce a feature contri-
bution metric that takes the proportion that each feature
appears across the full path of the number of features. A
feature contribution of 1 means the feature appeared in all
the models, while that of 0 means the feature appeared in
none of the models. We create heatmaps of the union of
genes with top 10 feature contributions for the Lasso, Plain
LLM-Lasso, and RAG LLM-Lasso, as well as the polarity
of the coefficients, represented as letters in the heatmaps
(“F” coefficients in the direction of FL and “D” for DLBCL)
(Figure 14). In the clinically relevant problem of classifying
FL and DLBCL, there are several genes with high feature
contributions that have relevance in cancer genomics and
hematology/oncology, especially in the GPT-4o LLM-Lasso
heatmap. For example, AICDA, BCL2, and BCL6, all of
which have high feature contributions in the RAG LLM-
Lasso, have been implicated in the transformation of FL to
DLBCL (Lossos et al., 2004; Green et al., 2013). In the o1
LLM-Lasso heatmap, although AICDA is included as the
top gene in the RAG LLM-Lasso, many of the other genes
are less relevant to the DLBCL literature (Pasqualucci &
Dalla-Favera, 2018).

6. Discussion and Conclusion
The LLM-Lasso is a simple, tunable model that incorporates
domain-specific knowledge from LLMs and outperforms
state-of-the-art feature selection models. The LLM-Lasso
achieves superior performance with a small number of fea-
tures, not only improving predictive performance compared
to baseline models but also providing clues to identify im-
portant features. The LLM-Lasso protects against potential
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inaccuracies or hallucinations from the LLM by tuning hy-
perparameters, as with the case with the FL experiment.
Furthermore, the cross-validated power of the hyperparame-
ter I−η allows us to tune the extent to which the LLM-Lasso
relies on the penalty factors provided by the LLM.

In the experiments conducted in this particular paper, the
identified genes had biomedical significance, suggesting
that the LLM-Lasso could provide important clues that can
lead to novel discoveries or confirm known feature-target
relationships in biomedicine or in any field. More empirical
investigations are needed to examine how well the LLM-
Lasso prioritizes features.

The implementation of the full LLM-Lasso pipeline is made
available at https://github.com/pilancilab/LLM-Lasso.
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A. Penalty Factor Simulations Details
We run simulations to find the adequate form of penalty
factors. Based on the simulations, we use the inverse im-
portance penalty factors to compare the LLM-Lasso to the
baseline models. The details can be found in A. using
datasets outlined in Table 1. The data are split into the
importance score-generating set and the cross-validation
set. The hypothetical importance scores are generated by
running a Lasso regression on the score-generating set and
assigning the absolute values of the coefficient of each fea-
ture is assigned to be the score of that feature. Then, the
hypothetical importance scores are scaled so that the max-
imum score was 1 and the minimum score is 0.1. On the
cross-validation set, we run the hypothetical LLM-Lasso us-
ing different forms of penalty factors: (i). the inverse of the
importance scores and their powers and (ii). ReLU penalty
factors with different thresholds. For ReLU penalty factors,
we set the maximum penalty factor such that the least im-
portant feature received a coefficient of 0 for all values of λ.
We perform 5-fold cross-validation across the hyperparam-
eter γ ∈ (0.1, 0.2, . . . , 0.9) for the ReLU penalty factors
and η ∈ (0, 1, . . . , 10) for penalty factors of the form I−η.
We obtain cross-validation misclassification rates across the
spectrum of regularization parameters λ with a λmin to λmax
ratio of 0.01. Cross-validation is performed such that the
difference in the area of the plot of the misclassification
rate across numbers of features with respect to the Lasso is
maximized. The best misclassification rate is obtained for
each number of features selected. We perform the above for
10 data splits and plot the mean of the best misclassification
rate for each number of features. The above procedure is
repeated for areas under the receiver-operating characteristic
curve (AUROCs) as the cross-validation metric.

Dataset n p

Cancer microarray (Ramaswamy et al., 2001) 52 1000
Small-round-blue-cell tumor (Khan et al., 2001) 83 1000
Lung cancer (Spira et al., 2007) 187 1000

Table 1. Summary of simulation datasets for penalty factor form.

The datasets we use in the simulations are summarized in
Table 1. In the simulations, we perform the task of classify-
ing samples into tumor tissue or healthy tissue (lung cancer
dataset) or cancer subtypes (cancer microarray dataset, rhab-
domyosarcoma vs others; small-round-blue-cell tumor (SR-
BCT) dataset, lymphoma vs leukemia) using gene expres-
sion levels. We select features with the top 1000 variances as
predictors. The simulation show an advantage of the inverse
importance penalty factors over the ReLU penalty factors,
as well as compared to the Lasso (Figures 9 and 10). Thus,
in the experiments, we use the inverse importance penalty
factors to compare the LLM-Lasso to baseline models.
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Figure 9. Test error in simulations

Figure 10. AUROC in simulations

B. Prompt Construction
Not only is prompting shown to be significant to the per-
formance of LLMs Throughout our experiment with the
biomedical dataset, we set the system message to the gen-
eration LLM as “assistant,” with instruction: “you are an
expert assistant with access to gene and cancer knowledge.”

As we recall in Section 3.2.1 that our full prompt follows
the following structure:

P full = prompt(Quser(A(ϕ, c)), Cretriever(k,R(ϕ, c)),Hsystem).

The design choice for the user therefore primarily resides in
(i). the construction of the task description prompt A(ϕ, c)
and (ii). the construction of a customized retrieval prompt
R(ϕ, c) in the case when RAG is used.

B.0.1. TASK DESCRIPTION

The general format of text description follows Figure 2.
However, there are many ways one can format each of the
three sections, that is, background description, a task de-
scription, and formatting rules. In the following, we go
through each component in depth.

Background Description. We include the following key
elements in our background description prompt:

• Meta-data of the dataset. This includes details on how
the data is collected, number of samples, and number
of features.

• User Intention. This includes a description of our goal
for data analysis. For conducting classification experi-
ments using LLM-Lasso, for instance, we remark: “We
wish to build a statstical (Lasso) model that classifies
samples into category diffuse large B-cell lymphoma
(DLBCL) and follicular lymphoma (FL).”

Task Description. The task section specifies the exact
request made to the generation LLM. For LLM-Lasso, this
involves a description of the penalty factors. As penalty
factors can be less intuitive to understand than the straight-
forward importance scores, through our experiments, we
experimented with a number of prompts to describe to the
LLM the meaning of “penalty factors” in an effort to boost
prediction performance by facilitating understanding. To
this end, we employ four prompting strategies—bayesian,
ReLU, adversarial, and o1-generated —to guide the in-
terpretation of the penalty factors. We found that this part
of the prompt has a direct and considerable impact on the
predictive ability of the LLM. We discuss each of the three
component in detail in the following.
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I. The Bayesian Approach for Prompt Construction.
The Lasso with penalty factors can be interpreted from a
Bayesian perspective, where the penalty factor serves as the
scaling parameter of a Laplace prior. A larger penalty factor
results in a tighter distribution around zero, encouraging
sparsity. Under this framework, the corresponding prompt
for the oncology prediction task is:

I would like you to provide penalty factors greater than
or equal to 0 to use on each coefficient of a Lasso esti-
mator based on domain knowledge for a regression or
classification task. Suppose βk is the regression coef-
ficient for feature k. We interpret Lasso with penalty
factors λk as yielding a maximum a posteriori estimate
under Laplace priors with parameters λk. This means
that, before observing the data, the ratio of log-tail prob-
abilities logP (∥βi∥ > t)/ logP (∥βj∥ > t) is equal to
λi/λj for each i, j and for all t. Therefore, the penalty
factors represent relative log-tail probabilities of coef-
ficients. For example, if feature A has a penalty factor
of λ and feature B has a penalty factor of 2λ, this im-
plies that the log-likelihood of the absolute value of the
regression coefficient for A exceeding any threshold is
twice that of B. Thus, the larger the penalty factor for a
coefficient, the less “important” the coefficient is.

II. The ReLU-form Approach for Prompt Construction.
Another prompting framework for interpreting the penalty
factor is to directly discribe the process which we code our
underlying Lasso model with penalty using the ReLU-form
penalty.

We plan to use your scores with a Lasso-regularized
multinomial classifier, implemented via the R pack-
age glmnet. The scores will generate penalty fac-
tors (weights on the ℓ1 norm), which will be used in
glmnet. Higher importance genes will be assigned
smaller penalty factors, while lower importance genes
will receive larger penalty factors.
Let xall denote the feature matrix (number of obser-
vations by number of genes) and yall the multinomial
class outcome. Similarly, let xtest and ytest be the
test set feature matrix and class outcome, respectively.
Let scores be the p-vector of gene importance scores
provided by ChatGPT.
The details of our plan are implemented in the following
R code: [omitted]

III. The Adversarial Approach for Prompt Construction.
The penalty factor can also be interpreted as part of an adver-
sarial game to enhance out-of-sample prediction robustness.
Here, the penalty factor scales the cost of perturbing covari-
ates under a weighted ℓ∞ norm. Larger penalty factors make
changes to a covariate more “expensive,” limiting adversar-

ial alterations, while smaller factors make them cheaper,
reflecting lower importance. The adversary operates within
a fixed budget, distributing total weights across covariates
to balance importance and vulnerability.

You are tasked with helping perform a what-if (adver-
sarial) analysis to improve out-of-sample prediction on
a logistic regression model for classification. Here is
how this analysis works: (1). For each sample, every
covariate (gene expression level) can be modified (in-
creased or decreased), but the cost of changing each
covariate is scaled by a weight that we assign now. (2).
The “size” of a change to a single sample is measured by
the weighted L∞ norm: if δi is the change to covariate
i, and wi is the weight for covariate i, then the size of
the change is: maxi(|δi| × wi). Across the dataset, the
average of these sizes is constrained by a fixed budget.
(3). A larger weight on covariate i makes changes to
that covariate more “expensive” to the adversary, lim-
iting how drastically it can be altered under the same
overall budget. A smaller weight makes it cheaper to
perturb that feature, which might be acceptable if the
gene is less important. (4). You must distribute a total of
100 weight units among all covariates:

∑
i wi = 100.

Given this setup, your job is to choose weights for each
predictor. Your goal is to provide a plausible weighting
scheme that balances the importance of each predictor
against potential adversarial changes.

IV. o1-Generated Approach for Prompt Construction.
In addition to using different theoretical angles to explain to
the generation LLM the notion of penalty factors, we consult
advanced LLMs, such as o1 from OpenAI for their advice
on constructing a prompt to explain the penalty factors in a
way that would be most conducive for an LLM to perform:

Provide penalty factors for each of the genes. These
penalty factors should be integers between 2 and 5 (in-
clusive), where: 2 indicates a gene strongly associated
with “category” (i.e., it should be penalized the least
by Lasso). 5 indicates a gene with minimal relevance
to “category” (i.e., it should be penalized the most by
Lasso).

We note that the range (2, 5) is arbitrary and can be chosen
by the user. It is noticeably that the o1-generated prompt
is significantly shorter and simpler than the other three ap-
proaches and focuses on direct instructions (i.e more im-
portant features should be penalized more) using use-case
examples rather than attempting to explain the intuition be-
hind the penalty factors. While the o1-generated prompt
seems to introduce no in-depth understanding of penalty
factors that the shallow level, empirically, we find that this
prompt consistently encourages better prediction perfor-
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mance across a range of LLMs from simple to advanced
on penatly factor production for feature selection. Overall,
our empirical findings suggest that: o1-generated prompt >
Bayesian prompt > ReLU prompt > Adversarial prompt,
where we use a descending order of performance.

Output Format Instructions. Our experiments revealed
that selecting appropriate output format instructions is cru-
cial not only for the accuracy of the score collection process
but also for maintaining the quality of the scores produced.
This is especially important for smaller models with fewer
parameters (e.g., llama-3-8b-instruct), which of-
ten struggle to follow prompt instructions and understand
the concepts and guidance provided.

In practice, we found that directly using text responses and
providing LLMs with clear text formatting rules is more
effective in regulating their behavior and ensuring a smooth
score collection process compared to requesting responses
in raw JSON format, as commonly used in LangChain’s
pipeline. For all LLMs, we attach a format instruction to the
end of every prompt, with slight modifications tailored to
the specific task. Below is an example of a format instruc-
tion used for the task of outputting penalty factors for gene
selection in cancer or lymphoma prediction.

Formatting Rules:

1. Score Representation: Use a direct floating-point
number (e.g., 0.5). Avoid scientific notation (e.g.,
10**(-2) or 1e-2) and additional formatting.

2. Include All Genes: Assign a penalty factor for
every gene in the input list, preserving the order of
input.

3. Reasoning: After each penalty factor, add a con-
cise reasoning about the gene’s role in predicting
{category}.

4. Consistency: Ensure uniform formatting. Exam-
ple:

AASS: 1
Reasoning: This gene is highly ex-
pressed in cancer pathways and has been
associated with {category}. Assigned a
low penalty factor.
BRCA1: 5
Reasoning: BRCA1 is not significantly
relevant for {category}. Assigned a high
penalty factor.

Do not include disclaimers about lacking full data; rely
on general cancer genomics and pathway relevance.

As outlined in the formatting prompt, three strategies were
found to be particularly effective:

1. Highlighting common errors: We include a list of fre-
quent formatting mistakes made by LLMs, identified
through trial and error. These include, for example,
using scientific notation instead of floating-point num-
bers, which complicates the score collection algorithm,
and applying inconsistent additional formatting to the
scores.

2. Providing examples: Examples demonstrating the de-
sired score and explanation format significantly im-
prove the LLMs’ understanding of the task. This
is particularly important when querying for penalty
factors instead of importance scores. While a dedi-
cated prompt explains the concept of penalty factors,
smaller models like llama-3-8b-instruct often
struggle with the counterintuitive nature of penalty
scores—where lower values indicate higher signifi-
cance and vice versa. Including examples of both low
and high penalty scores helps address this challenge
and ensures better compliance.

3. Using a firm tone: We employ strict language to en-
force adherence to the rules. Commands such as “Do
not say that it’s not possible to compute precise penalty
factors without access to the actual gene expression
values” and “Responses not following these guidelines
will be considered invalid” have proven effective in
ensuring LLMs behave consistently and follow the
guidance provided.

Figure 11 is an example of the full user prompt used in the
study of classifying patients into DLBCL and FL, which
employs o1-generated explanation of penalty factors.

B.0.2. RETRIEVAL PROMPT

The default pipeline in Langchain for retrieval query is
to directly perform semantic similarity search on the user’s
original prompt to the generation LLM. This becomes prob-
lematic, however, when the main user prompt is large and
overshadows the important information that sheds light on
what documents should be retrieved. As an example, when
passing in directly the full user prompt for retrieval in the
high-dimensional oncology classification tasks, semantic
similarity search sometimes retrieves information on the
description of the dataset, for example, contexts regard-
ing cfDNA fragmentation pattern and EPIC-Seq, instead of
what we are actually curious about, that is, the relevance of
certain gene, say AASS, with classifying lymphoma sub-
types, say, diffuse large B-cell lymphoma (DLBCL) and
follicular lymphoma (FL).

In order to pinpoint the retriever to the specific retrieval
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Figure 11. Example of a full user prompt for experiment study
DLBCL vs FL.

documents that are actually relevant to the task at hand,
we use a customized retrieval prompt. For the lymphoma
classification tasks using micro-array gene data, due to the
high-dimensional nature of the dataset, we batch process the
genes (see Appendix E for discussion) and use the following
prompt that takes each gene gi ∈ {g1, ..., gB} in each batch
of size B and the target classification category c:

Retrieve information about gene {g}, category {c}, es-
pecially in the context of {g}’s relevance to {c}.

An example prompt using this format is show in Figure 12.

Figure 12. Example of a completed retrieval prompt.

For each pass of retrieval search with gene and lymphoma
pair, we retrieve top k relevant documents. After collecting
the contexts for all the genes in the batch, we then filter
for the unique documents and then append them to the full
prompt in prompt component C. It turns out that the specific

implementation of this procedure is an art: we want to
strike a balance between overwhelming the generation LLM
with long-context and potentially minimally informative
documents and excessive cautious retrieval that does not
inform the LLM by much.

C. Experiment Details
C.1. Model Details

We provide more details of the LLMs sampled. Table 2
summarizes the cut-off dates in each LLMs in used.

C.2. Dataset Details

In this section, we give more details on the datasets used in
the Experiment Section.

C.2.1. SMALL-SCALE EXPERIMENT DATASETS

We source a wide range of small-scale datasets for feature
selection in classification and regression. We use * to in-
dicate the datasets that are released after the cutoff dates
for all models sampled (see Table 2 for an overview of the
model cutoff dates). For all small-scale datasets, we remove
features whose values are not numerical and not categorical
and remove rows and columns with missing values. We
remark that the purpose of the small-scale experiment is not
meant to demonstrate performance on the specific task but
rather to show case the ability of the feature selector candi-
date, even in the absence of some potentially informative
features and data.

Figure 13 describes the model ablation study on the spo-
tify regression dataset for feature selection. As we can
see, the GPT-4o model we used in Figure 7 is not the top
performing model, yet we still outperformed the sampled
feature selection baselines. This demonstrates once again
the strength of our method. In addition, as we have seen
in Figure 6, Deepseek r1 continues to dominate in perfor-
mance against other models and smaller models such as
LlaMa-3-8b-instruct and GPT-3.5 has worse performance
comparing to their more advanced model counterparts.

C.2.2. LARGE-SCALE EXPERIMENT DATASETS

The datasets used in the large-scale experiments are outlined
in Table 3, where n, p denotes resp. sample size and number
of features. We note that the dataset has not been published
and is currently confidential. Therefore, we do not disclose
further details.
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Model Name Company Cut-off Date Source

GPT-3.5 (Turbo) OpenAI 2021.09 Source
GPT-4o (2024-08-06) OpenAI 2023.10 Source
o1 OpenAI 2023.10 Source
Llama-3-8B Meta 2023.12 Source
Llama-3.1-405B Meta 2023.12 Source
DeepSeek-R1 DeepSeek 2024.07 Source
Qwen Models-72B Alibaba 2023.09 Source

Table 2. Surveyed LLMs Cutoff Dates Overview

Figure 13. Model ablation on the Spotify dataset with test error
rate computed at 25% of total features.

Dataset n p

Lymphoma (FL vs DLBCL) 130 1592
Lymphoma (MCL vs DLBCL) 161 1592
Lymphoma (cHL vs DLBCL) 196 1592

Table 3. Summary of large-scale experiment datasets.

C.3. Supplemental Experiment Results

C.3.1. FEATURE CONTRIBUTIONS

Figure 14 shows heatmaps of feature contributions in the
FL vs DLBCL experiment for GPT-4o and o1 RAG LLM-
Lasso. Although the o1 model performs very well in terms
of misclassification error and AUROC (Figure 6), the genes
selected by GPT-4o may align more with the oncology lit-
erature, as per the discussion in the Feature Contribution
paragraph of Section 5.4.2.

Dataset Year n p Source

Spotify∗ 2024 4600 29 Source
Wine 2009 6497 11 Source
Diabetes 1998 768 8 Source
Bank 2012 45211 51 Source
Glioma 2022 839 23 Source

Table 4. Summary of small-scale experiment datasets.

Figure 14. Heatmaps of feature contributions in the FL vs DLBCL
experiment for GPT-4o and o1 LLM-Lasso, with and without
RAG.

C.3.2. DEFERRED PLOTS

In this subsection, we present the deferred plots in the large-
scale experiment section. Figure 15 illustrates the AUROC
performance of our model against various baseline across
the three high-dimensional lymphomal datasets. It is evi-
dent that the strong performance demonstrated by Figure 6
carries over to the AUROC metric.
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Figure 15. AUROC performance across 10 splits for the lymphoma datasets.

D. Implementation Details
D.1. Handling Token Limits in LLMs

Input and output token limits in closed-source pretrained
LLMs pose significant challenges, especially when query-
ing large sets of predictors, as they restrict the information
processed or returned in a single interaction. The absence
of memory retention further complicates output aggrega-
tion. This limitation affects both closed-source GPT models
via the OpenAI API and cloud-hosted open-source models,
which also lack persistent memory.

However, ensuring that an LLM has sufficient output tokens
is critical for its performance. For instance, (Wei et al., 2022)
showed that step-by-step reasoning improves effectiveness,
and we observe that LLMs struggle under tight token limits
or when limits are exceeded (see Appendix D). To handle
large feature sizes, batch-querying with an appropriate batch
size is necessary to stay within token limits. However, this
approach introduces challenges: without memory retention,
the LLM cannot access previously processed features or
their scores, leading to inconsistencies when aggregating
batch results and potential scale mismatches. To address
these issues and ensure accurate feature diagnoses while pre-
serving essential output tokens, we propose two strategies
that require no fine-tuning or parameter modifications.

Text-based Summary. A straightforward approach to ad-
dress this challenge is to batch-query the features while en-
abling memory retention in the LLM by augmenting the user
query Quser with a summarization of chat history Hsystem,
stored in a conversation buffer constrained by the max token
limit. Several open-source Python packages support this
functionality. In our implementation, we use LangChain’s
ConversationBufferMemory. While not ideal for
score-collection scenarios—since summarization often

omits full scores and context due to token constraints—we
find that including memory increases the likelihood of the
LLM assigning scores on a consistent scale and provides
marginal improvements in prediction performance (See Ap-
pendix D for more details).

Statistical Estimation. Another approach to address this
problem is to use statistical techniques to infer the true score
from batch scores without injecting memory into each batch.
We introduce the following method. We note that to balance
batch size and the number of queries, we heuristically select
a batch size of ⌈√p⌉, where p is the total number of features
and ⌈·⌉ is the ceiling notation.

Scaling. Given batch scores B1(s), . . . , B⌈√p⌉(s), the scal-
ing method involves selecting the maximum score from
each batch, smax,1, . . . , smax,⌈√p⌉, and passing these maxi-
mum scores as a new batch to the LLM for rescoring, yield-
ing s̃max,1, . . . , s̃max,⌈√p⌉. The final score is then computed
by weighting and concatenating the batch scores. Specifi-
cally, each batch Bi is weighted by s̃max,i∑

j=1⌈
√

p⌉s̃max,j
, which

is the normalized rescored maximum candidate from that
batch relative to the rescored maximum candidates across
all batches.

D.2. Score Collection

LLMs, especially smaller models can make formatting mis-
takes. For instance, they may not including all necessary
genes, or may include extra genes (e.g., ones mentioned in
retrieval context) as part of the genes to score. For OpenAI
models, we use structured outputs to directly receive the
scores as a Python object. In models where this stream-
lined score collection feature is not available, we rely on the
output formatting from the prompt (see Appendix B) and
search for floating point scores that immediately flow the
double-asterisk-colon sign (with or without space). If we
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fail to collect scores, we retry until the correct scores for the
batch are collected.

D.3. R implementation

Once the importance scores are obtained from the LLM,
the LLM-Lasso can be implemented in R (R Core Team,
2024). One can pass the penalty factors, transformed into
the form of choice, such as the ReLU-form or inverse im-
portance and their powers (I−η), into the cv.glmnet
function in the package glmnet (Friedman et al., 2010).
The penalty factors can be passed into an argument called
penalty.factor, which specifies the penalty factors to
be assigned to each feature.

D.4. Python Implementation

The full end-to-end pipeline of LLM-Lasso is implemented
in Python. The score collection is done via OpenAI APIs
for GPT models and o1, and via OpenRouter otherwise.
Langchain is used for the retrieval component of RAG.

For computing the data-driven baseline metrics (such as
mutual information and MRMR), we first produce a set
of randomly generated 50/50 train and test splits and save
them to CSV files. These splits are used for both LLM-
Lasso and each data-driven baseline. Then, baseline scores
can be computed via our Python implementations, relying
on scikit-learn.

The implementation of the LLM-Lasso model, given the
importance scores, is based on the package adelie (Yang
& Hastie, 2024). We have a custom fork of adelie that
adds AUROC and misclassification error metrics to the out-
put of adelie.cv.cv grpnet. For penalty factors, we
consider powers of the inverse importance (I−n, where n
is some small integer). Cross-validation, with folds deter-
mined internally by adelie, determines which power of
the inverse importance to use. Results are averaged across
the same folds as used to compute the baselines.

For more details, refer to our open-sourced Git Repository.

E. Experiment Supplements
E.1. Evaluation of RAG

To illustrate the benefits of RAG, we query GPT-4o with the
question “Can you concisely tell me about the gene BCL6?”
twice: once without RAG, and once with the OMIM RAG
pipeline described in Section 5.4.1. The corresponding out-
puts are displayed in Figure 16. Without RAG, the response
is more generic, whereas the RAG-enhanced response is
more detailed and scientific, specifically describing how
BCL6 is related to lymphoma and citing interactions with
proteins and other genes.

Prompt

Can you concisely tell me about the gene BCL6?

Without RAG

BCL6 (B-cell lymphoma 6) is a gene that encodes a transcriptional repressor
protein involved in the regulation of immune responses. It plays a critical role in
the development and function of B cells, particularly in the formation of germinal
centers where B cells mature and undergo antibody diversification. BCL6 is
crucial for processes like somatic hypermutation and class switch recombination.
Abnormal expression or translocations involving BCL6 are associated with
certain types of lymphomas, especially diffuse large B-cell lymphoma (DLBCL).
As a transcriptional repressor, BCL6 regulates the expression of genes involved
in cell cycle control, apoptosis, and differentiation

With RAG

The BCL6 gene encodes a 79-kD protein that functions as a zinc finger-
transcription factor, primarily involved in B-cell differentiation. It is predomi-
nantly expressed in the B-cell lineage, specifically in mature B cells and germinal
centers. BCL6 is implicated in the pathogenesis of certain B-cell lymphomas,
particularly diffuse large B-cell lymphoma (DLBL), where its expression may
be deregulated due to chromosomal translocations affecting the 3q27 region.
These translocations can lead to fusion with other genes, such as the Ikaros gene,
potentially contributing to lymphoma development by preventing normal B-cell
differentiation.

Figure 16. Output of GPT-4o responses, with and without RAG.

We, however, find that there are cases where RAG fails
to improve performance. There are several explanations
for this. In some cases, the RAG knowledge base is not
compatible with the downstream classification or regression
task. This can cause few documents to be retrieved, in which
case RAG can only marginally improve performance. For
some tasks, e.g., for DLBCL vs. FL, irrelevant documents
are retrieved. This harms performance by increasing the
context that the LLM has to parse, while requiring it to
sift through the context for relevant details. We also notice
that some models can be overly reliant on the documents
retrieved, assigning high penalty factors to relevant genes
and citing that the genes did not appear in the provided
context. This can be problematic in cases where the retriever
fails to return all relevant documents, or the knowledge base
lacks information about many genes.

E.2. Scalability of Our Method

In this section, we discuss challenges and insights related
to generating penalty factors for all 1592 genes in the Lym-
phoma dataset (Table 3). First, difficulties with long con-
texts (and context limits for some models) prevent us from
generating all scores with a single query (see Section D.1
for discussion). Instead, we generate scores in batches of 40
genes, where 40 ≈

√
1592 balances batch size with number

of queries. As a result, it is essential to ensure consistency
in the penalty factors produced across batches (i.e., that
a penalty factor of 5 corresponds to the same degree of
relevance across batches). Without explicit handling of con-
sistency, the LLM-produced penalty factors exhibit mean
shifts between batches, as well as differences in orders of

20



LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization

magnitude.

To this extent, we constrain the penalty factors to be in a
pre-determined range, which we encode in our prompt (see
Figure 2). Empirically, the range 2− 5 (inclusive) produces
good results for the tasks in Table 3. If the range is too small,
the penalty factors produced are close to those used in plain
Lasso, preventing a large improvement of LLM-Lasso over
Lasso. If the range is too large, some models (e.g., GPT-4o)
provide penalty factors too close to the extremes. This can
lead to convergence issues in the downstream algorithm,
and increase the impact of spuriously low or high scores.
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