The neural basis of lightness constancy in the visual system

Peter J. Kohler, Sergey V. Fogelson, Eric A. Reavis, Peter U. Tse
Department of Psychological and Brain Sciences, Dartmouth College, New Hampshire, USA

Goal
Use multivariate methods to identify the neural correlates of lightness constancy in early visual cortex.

Methods

1. 4 experimental conditions:
 - (1, 2) Used contextual cues to make a target luminance appear lighter or darker\(^1\) (see above).
 - (3, 4) Subjects adjusted the actual luminance of a target in a different display to match the appearance of the two context-cued stimuli.

 fMRI parameters:
 - 2-second EPI sequence, 24 slices, 2 mm isomorphic voxels, covering most of visual cortex.
 - 8 runs, each with two 20-s blocks of each condition (random order) with 20-s ISIs.
 - ROI localizer runs (3):
 - A flashing Mondrian pattern identified voxels responsive to a region in the center of the target.

2. Data for each condition within localized ROIs in V1, V2 and V3 were averaged across TRs in a block.
3. 2-way classification was performed between conditions 1 and 2, using SVM.
4. Above-chance classification was possible in all early visual areas.

ROI localization
- Data mapped to flattened cortical surfaces.
- ROIs drawn on surface.
- Voxels in the intersection of the drawn ROIs and pre-mapped V1-V3 used in the analysis.

Conclusions
1. Our results support previous findings (Boyaci et al., 2007) that early visual cortex carries information about context-dependent variations in perceived lightness.
2. The data are inconclusive about the specific involvement of early visual cortex in processing perceived lightness, that give rise to this information.

1 Inspired by an illusion created by J. Gurney [http://gurneyjourney.blogspot.com]