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Abstract

We propose a model of banks’ exposure to movements in interest rates and their
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aversion is higher than one, banks’ optimal dynamic hedging strategy is to take losses
when interest rates rise. This risk exposure can be achieved by a traditional maturity-
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1 Introduction

The banking system is highly exposed to monetary policy. An increase in nominal interest
rates creates large financial losses for banks, which typically have maturity-mismatched bal-
ance sheets with long-duration nominal assets (like fixed-rate mortgages) and short-duration
nominal liabilities (like deposits). This leaves banks with weakened balance sheets, amplify-
ing and propagating monetary shocks. Banking regulators and monetary policy makers are
naturally concerned with the effects of monetary policy on financial stability.

But why do banks choose such a large exposure to movements in interest rates? In this
paper we argue that it’s part of a dynamic hedging strategy. Banks are willing to take
large financial losses when interest rates rise because they expect higher profits since deposit
spreads rise. Our model can successfully explain banks’ average maturity mismatch, its time-
series properties, and the cross-sectional evidence. It provides a laboratory to understand
how monetary policy determines banks’ risk taking decisions.

Our baseline model is a flexible-price monetary economy where the only source of shocks
is monetary policy. The economy is populated by banks and households. The distinguishing
feature of banks is that they are able to provide liquidity by issuing deposits that are close
substitutes to currency, up to a leverage limit. Importantly, because markets are complete,
banks are able to choose their exposure to risk independently of their liquidity provision. In
particular, we don’t make any assumptions about what kind of securities banks hold.

We show that if relative risk aversion is high (larger than one) banks optimally choose
to sustain losses when interest rates rise. The endogenous response of banks’ balance sheets
amplifies the effects of monetary policy shocks on the cost of liquidity. This exposure to risk
can be achieved with a portfolio of long-duration nominal assets and short-duration nominal
liabilities, as in a traditional bank balance sheet.

The mechanism works as follows. Because deposits provide liquidity services, banks earn
the spread between the nominal interest rate on illiquid bonds and the lower interest rate
on deposits. If nominal interest rates rise, the opportunity cost of holding currency goes up,
so agents substitute towards deposits. This drives up the equilibrium spread between the
nominal interest rate and the interest rate on deposits, increasing banks’ return on equity.
Because risk aversion is higher than one, banks want to transfer wealth from states of the
world with high return on equity to states of the world with low return on equity. They
are willing to take capital losses when interest rates rise because spreads going forward will
be high. Since the supply of deposits is tied to banks’ net worth, the cost of liquidity rises
further, amplifying the effects of the monetary shock.
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We calibrate the model to match the observed behavior of interest rates, deposit spreads,
bank leverage and other macroeconomic variables. We find that an increase in the short-
term interest rate of 100 basis points produces losses of around 30% of banks’ net worth.
This endogenous response of banks’ net worth amplifies the effects of monetary shocks on
the cost of liquidity. An increase of 100 bp in interest rates has a direct effect on deposit
spreads of 62 bp, and an additional indirect effect through lower bank net worth and deposit
supply of 15 bp (an amplification by a factor of 1.25). The effect is non-linear, however. The
amplification through banks’ net worth is larger when banks’ net worth or interest rates are
high.

The model can match the level, time pattern, and cross-sectional pattern of banks’ ma-
turity mismatch. First, the model can account for the average maturity mismatch. In the
model, banks’ exposure to movements in interest rates can be implemented with an average
maturity mismatch between assets and liabilities of 3.9 years. We compare this to banking
data following the approach of English et al. (2012) and find an average maturity mismatch
for the median bank of 4.4 years. Second, the model reproduces the time pattern in the
data. Banks’ maturity mismatch rises during periods of low interest rates. While this may
look like “reaching for yield”, it is actually what our model predicts. The sensitivity of de-
posit spreads to interest rate movements is higher when interest rates are low, so banks’
dynamic hedging motive is larger at these times. The time-series correlation between the
model and the data is 0.77. Third, the model successfully accounts for the cross-sectional
evidence. Banks with a higher deposit-to-net-worth ratio should have a stronger dynamic
hedging motive and therefore choose a greater maturity mismatch. In the model, increasing
the deposit-to-net-worth ratio of a bank by one unit leads to an increase in the maturity
mismatch of 0.42 years. In the data, it leads to an increase of 0.43 years.

The baseline model with only monetary shocks is intended as a benchmark to examine
the mechanisms at play. We also study an arguably more realistic setting where the central
bank follows an inflation targeting policy. The economy is hit by real shocks that move the
equilibrium real interest rate and force the central bank to adjust the nominal interest rate
in order to hit its inflation target. The quantitative results are similar to the benchmark
model, with an average maturity mismatch of 4.7 years, a time-series correlation with the
data of 0.51, and an increase of 0.55 years in additional maturity mismatch per unit of
deposit-to-net-worth ratio.

There are several alternative explanations for banks’ exposure to interest rate risk. First,
one could conjecture that a maturity-mismatched balance sheet is inherent to the banking
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business and the resulting interest rate risk is an inevitable side effect. However, banks can
easily adjust the maturity of their assets; for example, by using adjustable-rate mortgages.
Moreover, there are deep and liquid markets for interest rate derivatives that banks can use
to hedge their interest rate risk. In fact, Begenau et al. (2015) show that banks hold positions
in these derivatives, but they use them to amplify their exposure. Here we assume complete
markets. Banks’ maturity mismatch, and the resulting interest rate risk, is an endogenous
choice.

Second, a traditional view is that maturity mismatch is a way for banks to take advantage
of the term premium. But in general equilibrium this explanation is insufficient, because
households are also able to take advantage of the term premium, for example, by investing in
long-term bonds. Our model does produce a term premium, and both banks and households
have incentives to take advantage of it. But in equilibrium the term premium simply reflects
the fact that periods with high interest rates are bad for everyone because liquidity is ex-
pensive. Banks have a natural hedge against this risk because they earn the deposit spread,
so in equilibrium they take interest rate risk and earn the term premium, while households
pay the term premium to insure themselves against high interest rates.

Third, interest rate risk could be evidence of risk-seeking behavior, which regulators
should be concerned about. Our findings suggest an alternative, more benign, interpretation.
Banks are essentially insuring against the underlying risk in their deposit taking business.
Our model provides a quantitative benchmark to assess whether banks are engaging in risk-
seeking. Large deviations from this benchmark in either direction would be indicative of
risk-seeking. In particular, if banks did not expose their balance sheet to interest rates at
all (for instance by having no maturity mismatch) they would in fact be taking on a large
amount of risk due to the sensitivity of deposit spreads to interest rates. Our quantitative
results show no evidence of risk-seeking by the aggregate banking sector: the size of banks’
exposure to interest rate risk is consistent with a dynamic hedging strategy by highly risk
averse agents.1

More generally, our theory provides a lens to understand banks’ risk exposures beyond
interest rate risk. It predicts that banks will choose exposure to risks that are correlated
with their investment opportunities. While in this paper we focus on banks’ role as providers
of liquidity, banks are also involved in the origination and collection of loans and earn the
spread between risky and safe bonds. The same logic implies that they should be willing to

1Of course, banks may very well be engaging in risk-seeking behavior on other dimensions. Also, the
aggregate evidence does not rule out risk-seeking by individual banks.
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take losses when this spread goes up because they expect a higher return on wealth looking
forward. In fact, Begenau et al. (2015) report that banks are highly exposed to credit risk:
they face large losses when the spread between BBB and safe bonds rises. In contrast, when
we add TFP shocks to the model, we find that these are shared proportionally by banks and
households. Our model therefore provides a theory not only of how much, but also what
type of risk banks take.

Our paper fits into the literature that studies the role of the financial sector in the prop-
agation and amplification of aggregate shocks (Brunnermeier and Sannikov (2014), He and
Krishnamurthy (2011), He and Krishnamurthy (2012), Di Tella (2016), Gertler and Kiyotaki
(2015)). Relative to this literature, the main innovation in our paper is that we model banks
as providers of liquidity through deposits. This allows us to study the role of the banking
sector in the transmission of monetary policy. An important question in this literature is
why the financial sector is so exposed to certain aggregate shocks. Our approach has in
common with Di Tella (2016) that we allow complete markets; the equilibrium allocation of
aggregate risk reflects agents’ dynamic hedging of investment opportunities. The economics,
however, are very different. Explicitly modeling the banking business allows us to understand
banks’ dynamic hedging incentives, which are different from other financial institutions, and
to assess them quantitatively.

An important ingredient of the mechanism is that the equilibrium spread between illiquid
bonds and deposits is increasing in the nominal interest rate. We find this stylized fact is
borne out by the empirical evidence. In our data, a 100 bp increase in interest rates is
associated with a 66 bp increase in the deposit spread (our model produces 62 bp). This has
been observed before. Hannan and Berger (1991) and Driscoll and Judson (2013) attribute
it to a form of price stickiness; Drechsler et al. (2014) attribute it to imperfect competition
among bank branches; Yankov (2014) attributes it to search costs. Nagel (2014) makes a
related observation: the premium on other near-money assets (besides banks deposits) also
co-moves with interest rates. He attributes this, as we do, to the substitutability between
money and other liquid assets. Krishnamurthy and Vissing-Jorgensen (2015) document a
negative correlation between the supply of publicly issued liquid assets and the supply of
liquid bank liabilities, also consistent with their being substitutes. Begenau and Landvoigt
(2016) study substitution between bank deposits and shadow bank liabilities. We choose the
simplest possible specification to capture this: substitution between physical currency and
deposits, but this literature suggests that the phenomenon is broader.

There is also a large theoretical literature studying the nature of bank deposits (Diamond
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and Dybvig (1983), Diamond and Rajan (2001), etc.) and money (Kiyotaki and Wright
(1989), Lagos and Wright (2005), etc.). We make no contribution to this literature, and
simply assume that currency and deposits are substitutes in the utility function. Relative to
this literature, the contribution of our work is to derive the implications for equilibrium risk
management in a model where the underlying risk is modeled explicitly. It is worth stressing
that there is no necessary link between liquidity provision via maturity transformation and
exposure to interest rate risk. A bank could, for example, issue demand deposits backed by
illiquid, long-term, variable rate loans: maturity transformation without interest rate risk.
Interest rate swaps are another way of achieving the same outcome.

Other studies have looked at different aspects of banks’ interest rate risk exposure.
Rampini et al. (2015) provide an alternative explanation for why banks fail to hedge the
exposure to interest rate risk that arises from their traditional business. They argue that
collateral-constrained banks are willing to give up hedging to increase investment, and pro-
vide empirical evidence showing that banks who suffer financial losses consequently reduce
their hedging. Our model explicitly abstracts from these considerations in the sense that all
banks are equally constrained and never face a tradeoff between hedging and investment.
Landier et al. (2013) show cross-sectional evidence that exposure to interest rate risk has
consequences for bank lending. Haddad and Sraer (2015) propose a measure of banks’ ex-
posure to interest rate risk and find that it is positively correlated with the term premium.
English et al. (2012) use high-frequency data around FOMC announcements to study how
bank stock prices react to unexpected changes in the level and slope of the yield curve,
and find that bank stocks fall after interest rate increases. Drechsler et al. (2017) report
that the response of banks’ net interest margins to changes in interest rates, cumulated over
four quarters, is approximately zero, which they interpret, consistently with our findings, as
evidence that banks’ interest rate risk exposure is in fact a form of hedging.

2 The Model

Preferences and technology. Time is continuous. There is a fixed capital stock k which
produces a constant flow of consumption goods yt = ak. There are two types of agents:
households and bankers, a continuum of each. Both have identical Epstein-Zin preferences
with intertemporal elasticity of substitution equal to 1, risk aversion γ and discount rate ρ:

Ut = Et
[∫ ∞

t

f (xs, Us) ds

]
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with
f (x, U) = ρ (1− γ)U

(
log (x)− 1

1− γ
log ((1− γ)U)

)
The good x is a Cobb-Douglas composite of consumption c and liquidity services from money
holdings m:

x (c,m) = cβm1−β (1)

Money itself is a CES composite of real currency holdings h (provided by the government)
and real bank deposits d, with elasticity of substitution ε:2

m (h, d) =
(
α

1
εh

ε−1
ε + (1− α)

1
ε d

ε−1
ε

) ε
ε−1 (2)

Formulation (2) captures the idea that both currency and deposits are used in transactions,
so they both provide liquidity services. Substitution between these types of money will
determine the behavior of deposit interest rates.

Currency and deposits. The government supplies nominal currency H, following an
exogenous stochastic process

dHt

Ht

= µH,tdt+ σH,tdBt

where B is a standard Brownian motion. The process B drives equilibrium dynamics. The
government distributes or withdraws currency to and from agents through lump-sum trans-
fers or taxes.

Deposits are issued by bankers. This is in fact the only difference between bankers and
households. Deposits pay an equilibrium nominal interest rate id and also enter the utility
function according to equation (2). The amount of deposits bankers can issue is subject to
a leverage limit. A banker whose individual wealth is n can issue deposits dS up to

dS ≤ φn (3)

where φ is an exogenous parameter. Constraint (3) may be interpreted as either a regulatory
constraint or a level of capitalization required for deposits to actually have the liquidity
properties implied by (2). This constraint prevents bankers from issuing an infinite amount
of deposits, and makes their balance sheets important for the economy.

2Throughout, uppercase letters denote nominal variables and their corresponding lowercase letter are real
variables. Hence h ≡ H

p and d ≡ D
p where p is the price of consumption goods in terms of currency, which

we take as the numeraire.

7



Monetary policy. The government chooses a path for currency supply H to implement
the following stochastic process for the nominal interest rate i on short-term, safe but illiquid
bonds:

dit = µi (it) dt+ σi (it) dBt (4)

where the drift µi (·) and volatility σi (·) are functions of i. Shocks B are our representation
of monetary shocks, and they are the only source of risk in the economy.

There is more than one stochastic process H that will result in (4). Let

dpt
pt

= µp,tdt+ σp,tdBt

be the stochastic process for the price level (which is endogenous). We assume that the
government implements the unique process H such that in equilibrium (4) holds and σp,t = 0.
Informally, this means that monetary shocks affect the rate of inflation µp but the price level
moves smoothly.

Markets. There are complete markets where bankers and households can trade capital
and contingent claims. We denote the real price of capital by q, the nominal interest rate by
i, the real interest rate by r, and the price of risk by π (so an asset with exposure σ to the
process B will pay an excess return σπ). All these processes are contingent on the history
of shocks B.

The total real wealth of private agents in the economy includes the value of the capi-
tal stock qk, the real value of outstanding currency h and the net present value of future
government transfers and taxes, which we denote by g. Total wealth is denoted by ω:

ω = qk + h+ g

Total household wealth is denoted by w and total bankers’ wealth is denoted by n, so

n+ w = ω (5)

and we denote by z ≡ n
ω
the share of the aggregate wealth that is owned by bankers.
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2.1 Discussion of assumptions

Risk averse bankers. The assumption that bankers and households are separate agents
deserves some discussion. After all, many banks are publicly held and their shares are
owned by diversified agents. Bankers in this model represent bank insiders - managers or
large investors - who have large undiversified stakes in their banks through either share
ownership or incentive contracts. The risk aversion of bankers in the model is meant to
represent the attitude to the risk embedded in these undiversified claims. We purposefully
assume that bankers and households have the same preferences; the mechanisms that govern
risk exposure in the model do not depend on differential attitudes towards risk.

Money and monetary policy. We model money in a highly stylized way, with a simple
“currency and deposits in the utility function” specification. In addition, we assume the
market for deposits is perfectly competitive, but bankers are limited in their ability to sup-
ply deposits by the leverage constraint. This prevents them from competing away deposit
spreads, effectively acting like market power for bankers as a whole. Our objective is not to
develop a theory of money nor to account for all features of deposit contracts or the deposit
market, but rather to write down the simplest framework where banks provide liquidity and
deposit spreads increase with the nominal interest rate.

In this model there is no real reason for monetary policy to do anything other than follow
the Friedman rule.3 The choice to model random monetary policy as the only source of risk
in the economy is obviously not driven by realism but by theoretical clarity. In Section 7 we
instead look at a variant of the model where monetary policy follows an inflation targeting
rule and only responds to real shocks that affect the equilibrium real interest rate, and show
that our results also hold in this more realistic monetary policy regime.

Complete markets. The assumption of complete markets is theoretically important. We
want to avoid mechanically assuming the result that banks are exposed to interest rate
risk.4 In our model, banks are perfectly able to issue deposits without any exposure to
interest rate risk, for example by investing only in short term or adjustable-rate assets, or
by trading interest rate swaps. More generally, banks are completely free to take any risk

3The CES formulation (2) implies that currency demand is unbounded at i = 0 but the Friedman rule is
optimal in a limiting sense.

4Even though markets are complete, there is no claim that the competitive allocation is efficient. Bankers’
ability to produce deposits is limited by their wealth, which involves prices. A social planner would want to
manipulate these prices to relax the constraint.
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exposure, independently of their deposit supply. Relatedly, while we specify deposit contracts
in nominal terms, this is without loss of generality because banks could trade inflation swaps.
One possible concern is that in practice households may not be able to trade interest rate
swaps or other derivatives that allow them to share interest rare risk with bankers. However,
households can share interest rate risk with bankers by adjusting the maturity of their assets
and liabilities, or using adjustable rate debt.

We also don’t make any assumptions on the kind of assets banks hold: both banks and
households can hold capital. In our model banks are not particularly good at holding long
term fixed rate nominal loans, or any other security. Finally, with complete markets it is
not necessary to specify who receives government transfers when the supply of currency
changes: all those transfers are priced in and included in the definition of wealth. Notice
also that while banks can go bankrupt (if their net worth reaches zero), this never happens
in equilibrium. Continuous trading allows them to scale down as their net worth falls and
always avoid bankruptcy.

3 Equilibrium

Households’ problem. Starting with some initial nominal wealth W0, each household
solves a standard portfolio problem:

max
W,x,c,h,d,σW

U (x)

subject to the budget constraint:

dWt

Wt

=
(
it + σW,tπt − ĉt − ĥtit − d̂t

(
it − idt

))
dt+ σW,tdBt

Wt ≥ 0

(6)

and equations (1) and (2). A hat denotes the variable is normalized by wealth, i.e. ĉ = pc
W

=
c
w
. The household obtains a nominal return it on its wealth. It incurs an opportunity cost

it on its holdings of currency. It also incurs an opportunity cost
(
it − idt

)
on its holdings

of deposits. Let st = it − idt denote the spread between the deposit rate and the market
interest rate. Furthermore, the household chooses its exposure σW to the monetary shock
and obtains the risk premium πσW in return.
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Constraint (6) can be rewritten in real terms as

dwt
wt

=
(
rt + σw,tπt − ĉt − ĥtit − d̂tst

)
dt+ σw,tdBt (7)

where rt = it − µp,t is the real interest rate.

Bankers’ problem. Bankers are like households, except that they can issue deposits
(denoted dS) up to the leverage limit and earn the spread st on these. The banker’s problem,
expressed in real terms, is:

max
n,x,c,h,d,dS ,σn

U (x)

subject to:
dnt
nt

=
(
rt + σn,tπt − ĉt − ĥtit +

(
d̂St − d̂t

)
st

)
dt+ σn,tdBt

d̂St ≤ φ

nt ≥ 0

(8)

and equations (1) and (2).

Equilibrium definition Given an initial distribution of wealth between households and
bankers z0 and an interest rate process i, a competitive equilibrium is

1. a process for the supply of currency H

2. processes for prices p, id, q, g, r,π

3. a plan for the household: w, xh, ch, mh, hh, dh, σw

4. a plan for the banker: n, xb, cb, mb, hb, db, dS, σn

such that

1. Households and bankers optimize taking prices as given and w0 = (1− z0) (q0k + h0 + g0)

and n0 = z0 (q0k + h0 + g0)

2. The goods, deposit and currency markets clear:

cht + cbt = ak

dht + dbt = dSt

hht + hbt = ht
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3. Wealth holdings add up to total wealth:

wt + nt = qtk + ht + gt

4. Capital and government transfers are priced by arbitrage:

qt = EQt
[
a

∫ ∞
t

exp

(
−
∫ s

t

rudu

)
ds

]
(9)

gt = EQt
[∫ ∞

t

exp

(
−
∫ s

t

rudu

)
dHs

ps

]
(10)

where Q is the equivalent martingale measure implied by r and π.

5. Monetary policy is consistent
it = rt + µp,t

σp,t = 0

Aggregate state variables. We look for a recursive equilibrium in terms of two state
variables: the interest rate i (exogenous), and bankers’ share of aggregate wealth z (endoge-
nous) which is important because it affects bankers’ ability to issue deposits and provide
liquidity. Using the definition of z = n

n+w
, we obtain a law of motion for z from Ito’s lemma

and the budget constraints:

dzt
zt

=

(
(1− zt)

(
(σn,t − σw,t)πt + φst − (x̂bt − x̂ht )χt + σw,t(σw,t − σn,t)

)
− zt

1− zt
σ2
z,t

)
︸ ︷︷ ︸

≡µz,t

dt

(11)

+ (1− zt) (σn,t − σw,t)︸ ︷︷ ︸
≡σz,t

dBt

while the law of motion of i is given by (4). All other equilibrium objects will be functions
of i and z.

Static Decisions and Hamilton-Jacobi-Bellman equations. We study the banker’s
problem first. It can be separated into a static problem (choosing c, m, h and d given x)
and a dynamic problem (choosing x and σn).
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Consider the static problem first. Given the form of the aggregators (1) and (2), we
immediately get that the minimized cost of one unit of money m is given by ι:

ι(i, s) =
(
αi1−ε + (1− α) s1−ε

) 1
1−ε (12)

the minimized cost of one unit of the good x is given by χ:

χ (i, s) = β−β
(
ι(i, s)

1− β

)1−β

(13)

and the static choices of c, m, h and d are given by:

c

x
= βχ (14)

m

x
= (1− β)

χ

ι
(15)

h

m
= α

(ι
i

)ε
(16)

d

m
= (1− α)

( ι
s

)ε
(17)

Turn now to the dynamic problem. In equilibrium it will be the case that id < i so
bankers’ leverage constraint will always bind. This means that (8) reduces to

dnt
nt

= (rt + σn,tπt − χ (ii, st) x̂t + φst)︸ ︷︷ ︸
≡µn,t

dt+ σn,tdBt (18)

Given the homotheticity of preferences and the linearity of budget constraints the problem
of the banker has a value function of the form:

V b
t (n) =

(ξtn)1−γ

1− γ

ξt captures the value of the banker’s investment opportunities, i.e. his ability to convert
units of wealth into units of lifetime utility, and follows the law of motion

dξt
ξt

= µξ,tdt+ σξ,tdBt

where µξ,t and σξ,t are equilibrium objects.
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The associated Hamilton-Jacobi-Bellman equation is

0 = max
x,σn,µn

f
(
x, V b

t

)
+ Et

[
dV b

t

]
Using Ito’s lemma and simplifying, we obtain:

0 = max
x̂,σn,µn

ρ (1− γ)
(ξtnt)

1−γ

1− γ

[
log (x̂nt)−

1

1− γ
log
(
(ξtnt)

1−γ)]
+ ξ1−γt n1−γ

t

(
µn + µξt −

γ

2
σ2
n −

γ

2
σ2
ξt + (1− γ)σξtσn

)
s.t.µn = rt + σnπt + φst − x̂χt

The household’s problem is similar. The only difference is that the term φst is absent
from the budget constraint. The value function has the form

V h
t (w) =

(ζtw)1−γ

1− γ

where
dζt
ζt

= µζ,tdt+ σζ,tdBt

and the HJB equation is

0 = max
x̂,σw,µw

ρ (1− γ)
(ζtwt)

1−γ

1− γ

[
log (x̂wt)−

1

1− γ
log
(
(ζtwt)

1−γ)]
+ ζ1−γt w1−γ

t

(
µw + µζt −

γ

2
σ2
w −

γ

2
σ2
ζt + (1− γ)σζtσw

)
s.t.µw = rt + σwπt − x̂χt

Total wealth, spreads and currency holdings. The first order conditions for x̂ in the
banker and household problem are both given by:

x̂t =
ρ

χt
(19)

Since the intertemporal elasticity of substitution is 1, both bankers and households spend
their wealth at a constant rate ρ independent of prices.
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Using (19) and the goods market clearing condition we can solve for total wealth:

ω =
ak

βρ
(20)

Hence in this economy total wealth will be constant. This follows because the Cobb-Douglas
form of the x aggregator implies that consumption is a constant share of spending (the rest
is liquidity services), the rate of spending out of wealth is constant and total consumption
is constant and equal to ak.

Using (15) and (17), the fact that deposit supply is φn and (19), the deposit market
clearing condition can be written as:

ρ(1− α)(1− β)ι(i, s)ε−1s−ε = φz (21)

Solving (21) for s implicitly defines bank spreads s (i, z) as a function of i and z. It’s easy to
show from (21) that the spread is increasing in i as long as ε > 1. If currency and deposits are
close substitutes, an increase in i, which increases the opportunity cost of holding currency,
increases the demand for deposits, so the spread must rise to clear the deposit market.
Likewise, (21) implies that the spread is decreasing in z. If bankers have a larger fraction
of total wealth, they can supply more deposits so the spread must fall to clear the deposit
market.

Finally, using (15), (16), (19) and (20), the currency market clearing condition simplifies
to:

h =
ak

β
α(1− β)ι(i, s)ε−1i−ε (22)

Having solved for s(i, z), (22) immediately gives the level of real currency holdings h (i, z).

Risk sharing. The first order conditions for bankers’ choice of σn and households’ choice
of σw are, respectively:

σn,t =
πt
γ

+
1− γ
γ

σξ,t (23)

σw,t =
πt
γ

+
1− γ
γ

σζ,t (24)

The first term in each of (23) and (24) relates exposure to B to the risk premium π; this is
the myopic motive for choosing risk exposure: a higher premium will induce higher exposure.
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Figure 1: Impulse response of bank net worth to a 100 bp change in interest rates, with and
without dynamic hedging.

The second term captures the dynamic hedging motive, which depends on an income and
a substitution effect. If the agent is sufficiently risk averse (γ > 1), then the income effect
dominates. The agent will want to have more wealth when his investment opportunities
(captured by ξ and ζ respectively) are worse.

Figure 1 illustrates the basic dynamic hedge from the point of view of a banker, based on
the calibrated model. It plots the evolution of a banker’s net worth after a 100 bp movement
in interest rates (up or down) starting from the steady state, under two possible strategies.
The dotted line represents a zero exposure strategy, σn = 0. The banker’s net worth is
not affected by the shock, but it’s return on wealth is because the deposit spread moves
with the interest rate. So after an increase in interest rates the banker’s net worth starts
to grow; after a fall in interest rates it starts to shrink. As a result, the banker’s net worth
is dynamically very volatile, and therefore so is his consumption. In contrast, the solid line
represents the optimal strategy. The bank realizes a financial loss when interest rates go
up, which is subsequently made up with higher returns. In exchange, after interest rates go
down the bank realizes a financial gain. Overall, the banker’s net worth and consumption is
less volatile.
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From (23) and (24) we obtain the following expression for σz:5

σz,t = (1− zt)
1− γ
γ

(σξ,t − σζ,t) (25)

The object σz measures how the bankers’ share of wealth responds to the aggregate shock.
The term σξ,t − σζ,t in (25) captures the relative sensitivity of bankers’ and households’
investment opportunities to the aggregate shock. How this differential sensitivity feeds into
changes in the wealth share depends on income and substitution effects. If agents are highly
risk averse (γ > 1) they will shift aggregate wealth towards bankers after shocks that worsen
their investment opportunities relative to households’, i.e. ξ

ζ
goes down. Notice that the

premium π does not appear in equation (25). Households and bankers are equally able to
earn any term premium, and have the same incentives to do so, so the level of the premium
does not affect their relative exposure.

It is worth stressing that we cannot understand banks’ risk taking behavior in isolation.
Some other agent needs to take the other side (households in our model), so what matters is
how monetary shocks affect their investment opportunities relative to households, as equa-
tion (25) shows. In other words, it is perfectly possible that neither banks nor households
prefer losses after interest rates increases (liquidity is scarcer and the economic environment
therefore worse for all agents), but banks dislike this less than households.

We can use Ito’s lemma to obtain an expression for σξ − σζ :

σξ − σζ =

(
ξz
ξ
− ζz
ζz

)
σzz +

(
ξi
ξ
− ζi
ζ

)
σi (26)

Notice that σz enters the expression for σξ − σζ : the response of relative investment oppor-
tunities to aggregate shocks depends in part on aggregate risk sharing decisions as captured
by σz. This is because in equilibrium investment opportunities depend on the distribution
of wealth z, so we must look for a fixed point. Replacing (26) into (25) and solving for σz:

σz =
(1− z)1−γ

γ

(
ξi
ξ
− ζi

ζ

)
1− z(1− z)1−γ

γ

(
ξz
ξ
− ζz

ζ

)σi (27)

5At this level of generality, this condition for aggregate risk sharing is analogous to the one in Di Tella
(2016). However, the economic mechanism underlying the response of relative investment opportunities to
aggregate shocks is specific to each setting.
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Implementation. With complete markets, there is more than one way to attain the ex-
posure dictated by equations (23) and (24). As long as σn is always negative the desired
exposure can be implemented with a “traditional” banking balance sheet: long-term nomi-
nal assets, deposits as the only liability, and no derivatives. To be concrete, we’ll imagine
a banker’s balance sheet with net worth n, φn deposits as the only liability and (1 + φ)n

nominal zero-coupon bonds that mature in T years as the only asset.
In the model, the price pB (i, z;T ) of a zero-coupon nominal bond of maturity T obeys

the following partial differential equation:

pBi µi + pBz µzz + 1
2

[
pBiiσ

2
i + pBzzσ

2
zz

2 + 2pBizσiσzz
]

pB
− pBT
pB︸ ︷︷ ︸

Nominal Capital gain

−i = π
pBi σi + pBz σzz

pB︸ ︷︷ ︸
Risk Premium

(28)

with boundary condition pB (i, z, 0) = 1 for all i, z. We use equation (28) to price bonds of
all maturities at every point in the state space. The exposure to B of a traditional bank
whose assets have maturity T is

σn = (1 + φ)σpB

= (1 + φ)
pBi (i, z;T )σi + pBz (i, z;T )σzz

pB (i, z;T )
(29)

We then find T (i, z) for each point in the state space by solving (29) for T , taking σn

from the equilibrium of the model. We also consider an alternative implementation with
geometric-coupon bonds.

4 Calibration

We make two minor changes to the baseline model to obtain quantitative results. First, we
let productivity follow a geometric Brownian motion:

dat
at

= µadt+ σ̃adB̃t

where B̃t is a standard Brownian motion, independent of Bt.
6 The economy scales with a

so this change does not introduce a new state variable. The main effect of this change is
6We assume that monetary policy is carried out so that the price level is also not sensitive to B̃, i.e.

σ̃p = 0.
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Parameter Meaning Value
γ Risk aversion 10
ī Mean interest rate 3.5%
σ Volatility of i 0.044
λ Mean reversion of i 0.056
ρ Discount rate 0.055
φ Leverage 8.77
α CES weight on currency 0.95
β Cobb-Douglas weight on consumption 0.93
ε Elasticity of substitution between currency and deposits 6.6
µa Average growth rate of TFP 0.01
σ̃a Volatility of TFP 0.073
τ Tax on bank equity 0.195

Table 1: Parameter values

to lower the equilibrium real interest rate. Second, in order to obtain a stationary wealth
distribution we add tax on bankers’ wealth at a rate τ that is redistributed to households as
a wealth subsidy. This tax can represent the administrative cost of running a bank.

We solve for the recursive equilibrium by mapping it into a system of partial differential
equations for the equilibrium objects and solve them numerically using a finite difference
scheme. Appendix A explains the modifications to the model and the numerical procedure
in detail.

Parameter values. Table 1 summarizes the parameter values we use. We set the risk
aversion parameter γ = 10, consistent with the asset pricing literature (see for instance
Bansal and Yaron (2004)). We also perform a sensitivity analysis with different values of
γ. EIS is 1 in our setting, in the interest of theoretical clarity and tractability, as explained
above. It is also close to values used in the asset pricing literature. We choose the rest of the
parameter values so that the model economy matches some key features of the US economy.
The details of the data we use are in Appendix C.

We assume interest rates follow the Cox et al. (1985) stochastic process, so that µi (i) =

−λ (i− ī) and σi (i) = σ
√
i. The concept of i in the model corresponds to a short term

rate on an instrument that does not have the liquidity properties of bank deposits. We
take the empirical counterpart to this to be the 6-month LIBOR rate in US dollars. We
choose ī = 3.5% to match the average LIBOR rate between 1990 and 2014. Estimating the
persistence parameter λ in a short sample has well known econometric difficulties (Phillips

19



and Yu 2009). This parameter is very important in the model, for two related reasons.
First, more persistence means that a change in interest rates has a long-lasting effect on
bank spreads, which drive bankers’ relative desire to hedge. Second, more persistence means
that a change in interest rates will have a large effect on the prices of long-term bonds, so the
maturity T needed to implement any desired σn shortens. We set λ = 0.056 and σ = 0.044 to
match the standard deviation of the LIBOR rate (2.4%) and 10-year Treasury yields (1.8%)
for the period 1990-2014.

We use equation (20) to choose a value for the discount rate ρ. The Flow of Funds
reports a measure of aggregate wealth. To be consistent with our model which has no
labor, we adjust this measure by dividing by 0.35 (the approximate capital share of GDP)
in order to obtain a measure of wealth that capitalizes labor income. We then compute an
average consumption-to-adjusted-wealth ratio between 1990 and 2014, taking consumption
as consumption of nondurables and services from NIPA data. This results in ak

ω
= 5.1%,

which, given the value of β set below, leads to ρ = 0.055.
We use data on bank balance sheets from the Flow of Funds to set a value of the leverage

parameter φ. In the model there is only one kind of liquid bank liability (“deposits”) whereas
in reality banks have many type of liabilities of varying degrees of liquidity, so any sharp
line between “deposits” and “not deposits” involves a certain degree of arbitrariness. We
choose the sum of checking and savings deposits as the empirical counterpart of the model’s
deposits, leaving out time deposits since these are less liquid and the spreads that banks
obtain on them are much lower. We set φ = 8.77 to match the average ratio of deposits to
bank net worth between 1990 and 2014.

We construct a time series for z using data on banking sector net worth and total wealth
from the Flow of Funds (total wealth is divided by 0.35 as before to account for labor income).
The Flow of Funds data uses book values, which is the right empirical counterpart for n in
the model (market value of banks’ equity includes the value of investment opportunities
which is not part of n). We then use the data from Drechsler et al. (2014) on interest rates
paid on checking and savings deposits and weight them by their relative volumes from the
Flow of Funds to obtain a time series for the average interest rate paid on deposits.7 We
subtract this from LIBOR to obtain a measure of spreads. We set β (the Cobb-Douglas
weight on consumption as opposed to money), α (the CES weight on currency as opposed
to deposits), and ε (the elasticity of substitution between currency and deposits) jointly to
minimize the sum of squared distances between the spreads predicted by equation (21), given

7The data ranges from 1999 to 2008. We thank Philipp Schnabl for kindly sharing this data with us.
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Figure 2: Spreads in the model as a function of i and z.

the measured time series for i and z, and the measured spreads. The data seem to prefer
very high values of α so we, somewhat arbitrarily, fix α = 0.95 (letting α take even higher
values does not improve the fit very much). Minimizing over β and ε leads to β = 0.93 and
ε = 6.6.

We set the growth rate of productivity µa = 0.01 and its volatility σ̃a = 0.073 for the
model to match the average real interest rate between 1990 and 2014, which was 1%. This
value of σ̃a is close to that used by He and Krishnamurthy (2012), who use σ̃a = 0.09.

Finally, we set the tax rate of bank capital to τ = 0.195 for the average value of z in
the model to match the average value in the data between 1990 and 2014, which is 0.56%.
Given φ = 8.77, this is equivalent to 2% of assets, equal to the administrative expenses ratio
reported by Drechsler et al. (2017).

Spreads. Since the behavior of deposit spreads plays a central role in the mechanism, it is
worth checking how our model accounts for them. Figure 2 shows the spread as a function
of i and z for our parameter values. As we know from equation (21), it is increasing in i

and decreasing in z. Furthermore, it is concave in i. When i is high, agents are already
holding very little currency, so further increases in i do not generate as much substitution
into deposits and therefore don’t lead to large increases in spreads.

These properties of s (i, z) are consistent with the data. Table 2 shows the results of
regressing spreads on interest rates and banks’ share of total wealth. The first column,
without a quadratic term, shows that a one percentage point increase in LIBOR is associated
with a 66 basis points increase in bank spreads, while a one percentage point increase in
banks’ share of total wealth is associated with a 99 basis points fall in bank spreads. The
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second column, including a quadratic term, shows that there is indeed evidence that bank
spreads flatten out as i increases.

(1) (2)
Constant 0.3% −0.3%

(0.22%) (0.44%)

i 0.66 0.98
(0.028) (0.17)

i2 − −4.07
(2.02)

z −0.99 −0.71
(0.25) (0.32)

R2 0.89 0.90
N 430 430

Note: The dependent variable is the spread. Newey and West (1987) standard errors are in parentheses.

Table 2: Spreads, interest rates and banks’ share of aggregate wealth.

The model is able to match the time series behavior of spreads quite closely. Figure 3
compares the time series for s (i, z) produced by the model with the time series of measured
spreads from the Drechsler et al. (2014) data. However, it is worth noting that in order to do
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this, the model requires a high value of α (i.e. a strong preference for currency) and a high
value of ε (i.e. a high elasticity of substitution between currency and deposits). This results
in a high and variable currency-to-deposit ratio, which is not what we observe. Still, the cal-
ibration does mechanically yield an average deposits-to-GDP ratio that matches the data,
which is what matters for the mechanism. Overall, we conclude that our microeconomic
model of bank spreads is probably too simplistic and the observed co-movement of interest
rates and bank spreads is also driven by imperfect competition between banks (Drechsler
et al. 2014), stickiness in deposit rates (Hannan and Berger 1991, Driscoll and Judson 2013),
search costs (Yankov 2014), or other factors. However, for the purposes of bank risk man-
agement, the exact microeconomic mechanism that drives spreads is not so essential. What
matters is how these co-move with interest rates and banks’ share of wealth.

5 Exploring the Mechanism

In this section we describe, quantitatively, how the model works. Banks are exposed to
interest rate risk as part of their optimal dynamic hedging strategy. After an increase in
interest rates banks face financial losses and are forced to reduce their supply of deposits,
amplifying the effects of the monetary shock on the cost of liquidity.

Aggregate risk sharing. Banks are highly exposed to movements in interest rates. The
top panels of Figure 4 show bankers’ exposure to interest rate risk. If the nominal interest
rate rises by 100 basis points, bankers’ net worth changes by σn

σi
percent. It is always negative,

so banks face financial losses after an increase in nominal interest rates. Quantitatively, the
effect is quite large. At the mean levels of i and z, if interest rates rise by 100 basis points,
banks lose about 30% percent of their net worth.8

To understand the mechanism, note that because aggregate wealth is insensitive to B,
σn = σz so movements in bankers’ net worth and in their share of total net worth are
equivalent. We know from (21) that an increase in the nominal interest rate raises the
spread s. Since bankers earn this spread and households don’t, bankers’ relative investment
opportunities ξ

ζ
improve when the interest rate i rises, as shown in the middle-left panel of

Figure 4. Equation (25) implies that z must fall in response, which further raises the spread
s, amplifying the effect of monetary shocks on the cost of liquidity. As a result, bankers’
relative investment opportunities ξ

ζ
improve even more, as shown in the middle-right panel

8This figure is consistent with banks’ leverage and maturity mismatch. See Section 6.
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of Figure 4, which amplifies bankers’ incentives to choose a negative σn (this is the reason
the denominator in equation (27) is less than one).

The hedging motive weakens at higher levels of i and z; σn
σi

is greater (in absolute value) for
low i and z. This reflects the behavior of spreads. As shown in Figure 2, the spread flattens
out for higher i and z. As a result, relative investment opportunities are less sensitive to i
when i or z are high, so bankers choose lower exposure. To see the link between flattening
spreads and lower exposure, we re-solved the banker’s problem replacing the equilibrium
s (i, z) by the linear form s (i, z) = 0.3%+0.66i−0.99z, which is the best linear approximation
to the data, as shown on Table 2. Since the sensitivity of spreads to i is constant in this
experiment, the banker’s exposure σn

σi
is almost constant as a function of i and z.9

It is worth stressing that we cannot understand banks’ risk taking behavior in isolation.
Some other agent needs to take the other side (households in our model), so what matters is
how monetary shocks affect their investment opportunities relative to households, as equa-
tion (25) shows. In other words, it is perfectly possible that neither banks nor households
prefer losses after interest rates increases (liquidity is scarcer and the economic environment
therefore worse for all agents), but banks dislike this less than households.

While banks choose a large exposure to interest rate risk, TFP shocks B̃ are shared
proportionally by both banks and households: σ̃n = σ̃w = σ̃a. The reason for this is that
these TFP shocks don’t affect the investment opportunities of banks relative to households,
so there is no relative hedging motive as in equation (26). Our theory therefore provides
not only an explanation for why banks are exposed to risk in general, but also why they are
exposed to interest rate risk in particular. A similar line of argument indicates that if banks
also earn a credit spread, dynamic hedging motives would explain why they choose to be
exposed to changes in this spread, as documented by Begenau et al. (2015).

Maturity mismatch. We can implement banks desired exposure to interest rate risk
σn with a traditional maturity-mismatched balance sheet as explained in Section 3. The
resulting maturity mismatch is shown on the third row of Figure 4. At the mean levels of i
and z, the maturity mismatch T needed to implement the desired exposure σn

σi
is 3.6 years.

T is decreasing in both i and z. This reflects the higher desired exposure when i and z are
low, which in turn results from the higher sensitivity of spreads to i in this region.10 Notice
that the increase in the desired maturity mismatch when interest rates are low may look like

9Available upon request.
10T depends on both the desired exposure σn and the sensitivity of bond prices σpB for each maturity;

the latter does vary with i but not by much, so the movement in T reflects mostly the movement in σn

σi
.
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Figure 4: Aggregate risk sharing.
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“reaching for yield”, but it’s precisely what risk averse agents should do to insure against
greater deposit spread risk.

Amplification. The endogenous response of bankers’ net worth to movements in interest
rates amplifies the effect of monetary shocks on the cost of liquidity. Low net worth limits
banks’ ability to supply liquidity, and drives up the equilibrium spread on deposits. As a
result, an increase in nominal interest rates has a direct effect on deposit spreads and an
indirect effect through weaker bank balance sheets z. We can decompose the response of
spreads to monetary shocks as follows:

σs
σi

=
∂s

∂i︸︷︷︸
Direct Effect

+
∂s

∂z

σzz

σi︸ ︷︷ ︸
Indirect Effect

If interest rates go up by 100 bp, the direct effect on the deposit spread is ∂s
∂i
× 100 bp, and

the indirect effect is ∂s
∂z

σzz
σi
×100 bp. In the calibrated model, the average (over the stationary

distribution) effect of a 100 bp increase in interest rates is an increase in deposit spreads of
77 bp. This is decomposed into a direct effect of interest rates of 62 bp and an indirect effect
through the the endogenous response of banker’s net worth of 15 bp.11 Banks’ exposure to
interest rate risk therefore amplifies the effect of monetary shocks on deposit spreads by a
factor of 1.25 on average.

The endogenous amplification is non-linear, however, as shown in Figure 5. The direct
effect of interest rates on deposit spreads is decreasing in both i and z because in both cases
currency becomes a smaller fraction of total liquidity. The strength of the indirect effect is
governed by two opposing forces. First, when i or z is high, deposits are a larger fraction
of total liquidity, so changes in their supply have a bigger effect on spreads. On the other
hand, banks’ hedging motive weakens for high i or z, so z itself is less sensitive to i. On
balance, the indirect effect is increasing in i and slightly decreasing in z. The amplification
factor is computed simply as the ratio of the total effect to the direct effect, and is increasing
in both i and z. For example, when nominal interest rates are 5.5% and z = 1%, a 100 bp

increase in interest rates has a total effect on deposit spreads of 57 bp, of which the direct
effect of interest rates is 35 bp and the indirect effect through banks’ balance sheets is 22 bp.
The amplification factor in this case is 1.62.

11The direct effect can be compared directly to the OLS coefficient on i from Table 2, which is 66 basis
points. The indirect effect can be compared to the OLS coefficient on z, which is 99 basis points, times the
average value of σzz

σi
, which is −0.16.
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Figure 5: Sensitivity of deposit spreads to interest rates through endogenous response of
banks’ net worth.

27



i

7
z

0 0:02 0:04 0:06 0:08 0:1

!0:2

!0:1

0

0:1

0:2

0:3

0:4

0:5

z = 0:2%
z = 0:5%
z = 0:8%

z

7
z

0 0:005 0:01 0:015 0:02

!0:15

!0:1

!0:05

0

0:05

0:1

0:15

0:2

0:25

0:3

i = 1:5%
i = 3:5%
i = 5:5%

i

<
z

0 0:02 0:04 0:06 0:08 0:1

!0:35

!0:3

!0:25

!0:2

!0:15

!0:1

!0:05

z = 0:2%
z = 0:5%
z = 0:8%

z

<
z

0 0:005 0:01 0:015 0:02

!0:45

!0:4

!0:35

!0:3

!0:25

!0:2

!0:15

!0:1

i = 1:5%
i = 3:5%
i = 5:5%

Figure 6: The drift of z, µz (upper panels) and its volatility σz (lower panels).

500

1000
150020002500

30
00

35
00

40
00

0 0:005 0:01 0:015
0

0:01

0:02

0:03

0:04

0:05

0:06

0:07

0:08

0:09

0:1

z

i

Figure 7: Stationary distribution over (i, z).

28



Dynamics. Agents’ endogenous exposure to interest rate risk leads to the equilibrium
dynamics shown in Figure 6. The upper panels show the drift of bankers’ share of aggregate
wealth z and the bottom panels its sensitivity to B. The drift of z is positive for small z
and high i, because in this region the spread is high.

On impact, banks take losses when interest rates rise. Since total wealth ω is fixed, their
share of aggregate wealth z falls. This is reflected in the bottom panels of Figure 6, where σz
is negative. Over time, higher interest rates mean higher spreads and bank balance sheets
strengthen. The resulting stationary distribution is shown in Figure 7.

6 Quantitative Evaluation

In this section we test the model by comparing its quantitative predictions to the empirical
evidence. The model can successfully account for the level, time pattern, and cross-sectional
pattern of banks’ maturity mismatch.

Measuring banks’ maturity mismatch. Following the methodology of English et al.
(2012), we construct an empirical measure of banks’ maturity gap. Using Call Reports data,
we record the contractual maturity (in case of fixed-rate contracts) or repricing maturity (in
case of floating-rate contracts) for each line of the balance sheet, take weighted averages of
assets and liabilities, and subtract. We then compute an aggregate measure by taking the
asset-weighted median across banks for each quarter.12 See Appendix C for details.

Time-series evidence. The model closely matches the empirical behavior of banks’ ma-
turity mismatch. Figure 8 compares the time series for T predicted by the model with the
data. For the model values, we simply plug in the measured time series of i and z into the
function T (i, z) produced by the model. This is a way to test the goodness of fit of the
function T (i, z) over the range of i and z in the data. The average T in the data is 4.4 years;

12The maturity gap measures the on-balance-sheet exposure, not the exposure through derivatives. English
et al. (2012) show that for the majority of banks, this makes no difference since they do not trade derivatives.
However, the evidence in Begenau et al. (2015) indicates that, especially for the largest banks, derivatives
amplify interest rate exposure, so just measuring the on-balance-sheet positions underestimates the maturity
mismatch. On the other hand, the option to refinance fixed-rate mortgages lowers their effective maturity.
Using the contractual maturity therefore overestimates the maturity mismatch.
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Figure 8: Maturity mismatch of banks in the data and in the model.

in the model, it’s 3.9 years.13,14 The model is less successful at the beginning of the financial
crisis in 2007, where it underpredicts T .

The model also reproduces the time pattern in the data. The correlation between the
model and the data is 0.77. To understand this time pattern, recall from Figure 4 that
the model predicts that banks’ maturity mismatch T should be larger during periods of low
interest rates because deposits spreads are more sensitive to movements in interest rates. This
basic correlation is borne out by the data. Table 3 shows the results of an OLS regression of
banks’ maturity mismatch T on i and z. A 100 bp increase in i is associated with decrease
in T of 0.12 years; a 100 bp increase in z is associated with a decrease in T of 0.019 years.
Higher maturity mismatch during periods of low interest rates may look like “reaching for
yield”. But it’s precisely what the dynamic hedging mechanism calls for.

13T and σn

σi
are alternative metrics for risk exposure. For example, at the mean of the stationary distri-

bution, where the model predicts T = 3.6, a 100 bp increase in interest rates results in a 3.2% fall in the
price of a 3.6-year bond. Amplified by leverage of φ = 8.77, this results in a fall in bank net worth of 31%,
consistent with Figure 4.

144.4 years is the time-series average of the asset-weighted cross-sectional median. The time-series average
of the asset-weighted cross-sectional mean is 4.5.
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(1)
Constant 4.4

(0.1)

i −11.7
(6.8)

z −1.9
(0.4)

R2 0.63
N 78

Note: The dependent variable is the asset-weighted cross-sectional median maturity mismatch T . Newey
and West (1987) standard errors are in parentheses. i and z are demeaned.

Table 3: Maturity mismatch of banks, interest rates, and banks’ share of aggregate wealth.

Cross-sectional evidence. We can use cross-sectional data to further test the mechanism
we propose. Although the model features banks with identical deposit-to-net-worth ratios,
its logic implies that banks with a larger deposit base (relative to net worth) should have a
larger maturity mismatch in order to hedge their larger exposure. This prediction is borne
out by the cross-sectional data.

First we compute the quantitative relationship between the deposit-to-net-worth ratio φ
and the maturity mismatch T predicted by the model. We re-solve the individual banker’s
problem for different values of the deposit-to-net-worth ratio φ, taking the model’s equilib-
rium prices as given. For each value of φ we then compute the time series of the maturity
mismatch T as above. We then compute a time-series average T for each φ. We find that a
unit increase in φ (i.e. increasing deposits by one net worth) is associated with an increase
in average T of 0.42 years. The relationship is almost linear.

We then measure the same relationship in the data. For each bank in our sample, we
compute the time-series average of the maturity mismatch and the deposit-to-net-worth
ratio. We then run an (asset-weighted) median regression of the maturity mismatch on the
deposit-to-net-worth ratio, on the cross-section of banks. The results are reported in Table
4. A unit increase in the deposit-to-net-worth ratio is associated with an increase in the
weighted median maturity mismatch of 0.43 years, which coincides almost exactly with the
quantitative prediction of the model. Table 4 also reports the results of an OLS regression;
a one unit increase in the deposit-to-net-worth ratio is associated with an increase in the
weighted average maturity mismatch of 0.26 years. The difference between the median and
OLS regressions is evidence that the distribution of the maturity mismatch is more right-
skewed for banks with higher deposit-to-net-worth ratio. Our model cannot speak to this
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Median OLS
Constant 2.6 3.6

(0.0023) (0.063)

φ 0.43 0.26
(0.0004) (0.013)

N 10, 351 10, 351
Note: The dependent variable is the time-averaged maturity mismatched. Standard errors are in parentheses.

Table 4: Maturity mismatch of banks and deposit-to-net-worth ratio

interesting fact, since we assume all banks with the same deposit-to-net-worth ratio to be
identical.

Term premium. A traditional argument for why banks take interest rate risk is that
they do so to take advantage of the term premium. In general equilibrium, this argument is
incomplete: the fact that there is a term premium cannot explain why banks choose to earn
it and households choose to pay it. Households could earn the term premium just as easily
as bankers (for example, by investing in long-term bonds), but in equilibrium choose not to.

Our model does produce a term premium, and banks do earn it, but it does not play any
role in determining their risk exposure. The equilibrium term premium reflects that states
of the world with high interest rates are bad for everyone because liquidity, which is part of
the consumption bundle, is expensive. Bankers’ deposit-taking business is a natural hedge,
so high interest rate states of the world are relatively better for bankers than for households.
This creates a relative hedging motive, so banks end up taking risk and earning the premium
while households are willing to pay the premium to partially insure themselves against high
interest rates.

This is reflected in FOCs (23) and (24). The premium π does appear on both of these
equations: both agents want to take advantage of the term premium. But the premium is
endogenous, the market has to clear. As a result π drops out of equation (25) for σz and
only the relative hedging motive matters.

Quantitatively, the premium in the model is significant but lower than in the data. We
can compute the excess return on a long term nominal bond simply as

ER = σpBπ

Piazzesi and Schneider (2007) report an average excess return on 5-year treasuries of 99 basis
points. In the model, this excess return is 22 basis points, so the forces in the model explain

32



about a fifth of the term premium.

The role of risk aversion and risk-seeking. Since the mechanism in this model is re-
lated to dynamic hedging, and more broadly to asset pricing, we use a value for the coefficient
of relative risk aversion γ = 10 in the range that has been found useful in matching asset
pricing data, as in Bansal and Yaron (2004) or more recently Bansal et al. (2009). However,
there is no consensus in the literature on the appropriate value for this parameter, and lower
values are more typical in macroeconomic models. We therefore perform a sensitivity anal-
ysis with γ = 3 , γ = 6 and γ = 20. In each case, we set the rest of the parameter values
to match the same targets and re-compute the time series for T predicted by the model.
The results are shown in Table 5. Even with γ = 3, we get a significant maturity mismatch
T = 2.6. Note that the maturity mismatch increases with risk aversion: banks take interest
rate risk to insure against their stochastic investment opportunities. The effect is therefore
stronger the higher risk aversion is. This can be seen in equation (25) (in particular, with
γ = 1 we would get T = 0).

A widespread concern among regulators is banks’ potentially risk-seeking behavior. Our
quantitative results show no evidence of risk-seeking by the aggregate banking sector, at least
with respect to interest rate risk. Banks’ exposure to interest rate risk is consistent with
a dynamic hedging strategy by highly risk averse agents. The main insight is that banks
have a large underlying exposure to movements in interest rates arising from the deposit
spread. If banks did not expose their balance sheet to interest rates at all (for instance by
having no maturity mismatch) they would in fact be taking on a large amount of risk due
to the sensitivity of deposit spreads to interest rates, as illustrated in Figure 1. A back-of-
the-envelope calculation shows that a 100 bp fall in interest rates would make banks lose in
net present value of future deposit spreads about 49% of their net worth.15 Their maturity
mismatch leads them to recover about 30% of net worth up front. This partially offsets the
underlying risk.

Alternative maturity structure. The model pins down banks’ exposure to interest rate
risk, but this exposure can be implemented in many ways. The baseline implementation has
a single zero-coupon bond of maturity T . This is a simple portfolio structure that is easy to
interpret. Another simple implementation uses bonds with a geometric maturity structure.

15A fall in interest rates of 100 bp results in a fall in spreads of about 66 bp and a fall in the return on
equity of φ× 66 = 579 bp. The NPV of 49% follows from applying a mean reversion rate of λ = 5.6% and a
discount rate of 6.4%.
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γ 3 6 10 20 data
Average T (zero-coupon) 2.6 3.5 3.9 4.3 4.4
Average T (geometric) 3.1 4.5 5.1 5.8 4.4

Table 5: Average maturity mismatch for different values of risk aversion and zero-coupon vs.
geometric bonds

A bond with coupon payments δe−δt has average maturity 1/δ. We can compute the value
of such a bond as a bundle of zero-coupon bonds,

pGB(i, z; δ) =

∫ ∞
0

δe−δTpB(i, z;T )dT

Then we find the δ(i, z) that implements the desired exposure to interest rate risk, σn =

(1 + φ)σpGB(δ), for every (i, z).
Table 5 summarizes the average maturity 1/δ(i, z) for different values of γ. The results

are very similar, but the average maturity mismatch is a little higher with geometric bonds.
The reason is that the duration of geometric bonds is lower than the average maturity of
their coupon payments, so a longer average maturity is necessary to obtain the same risk
exposure (with zero-coupon bonds, duration and maturity coincide). For example, with a
constant nominal interest rate, the duration of a geometric bond is 1/(i + δ) which is less
than its maturity 1/δ.

Evidence on net interest margins. Drechsler et al. (2017) study bank net interest
margins, measured according to bank accounting rules. They report that the response of net
interest margins to changes in interest rates, cumulated over four quarters, is approximately
zero. The predictions of our model are completely consistent with this finding, once we take
accounting rules into account. Our model is cast entirely in mark-to-market terms, in order
to reflect the underlying economic logic. However, accounting rules do not require marking
to market for the majority of long term assets held in the “banking” book.

Suppose a shock raises interest rates by 100 bp. In mark-to-market terms, banks expe-
rience an immediate capital loss because their long term assets lose value. Thereafter, they
accrue interest on these long-term assets at the new, higher, rate. According to Table 2,
they pass on approximately 34% of the rate increase to depositors, so spreads increase by
0.66 bp, and banks’ return on equity rises. This produces the pattern illustrated in Figure 1.

Under non-mark-to-market accounting, banks would keep their long-term assets on their
books at par, record no capital loss, and continue to accrue interest on them at the old rate.
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Since they pass on 34% of the rate increase to depositors, the measured net interest margin
would initially fall. As long-term assets mature and are replaced by new assets yielding the
new rate, the measured net interest margin would start rising, eventually exceed its initial
level and then level off as the interest rate mean-reverts.

Strictly speaking, the exact time pattern of the book net interest margin is undetermined
in our model. Banks can implement the equilibrium risk exposure in different ways that yield
different time paths for the book net interest margin. Consider first the implementation with
a geometric bond described above. One year after an interest rate increase, about 20% of
the geometric bond has matured (average δ = 0.21) and is reinvested at the new rate, so
the average book yield on assets has increased by about 20 bp and the book net interest
margin is below its initial level by (34− 20) bp. Alternatively, the bank can implement the
equilibrium exposure by holding 34% of assets in very short-term instruments and the rest in
a long-maturity zero-coupon bond, so that the overall risk exposure is the same. Now, when
the interest rate goes up, the yield on short term assets rises one for one with the interest
rate while the book yield on the long bond is unchanged, so the average book yield on assets
rises by 34 bp, and the book net interest margin is unchanged, as documented by Drechsler
et al. (2017). In fact, we find that is very close to what banks do: on average 37% of their
assets mature within the quarter.

7 Real Shocks under Inflation Targeting

Up to this point we have assumed that the only source of changes in interest rates is monetary
policy shocks. This benchmark was useful to examine the mechanisms at play without
confounding factors. In this section we look at the opposite case, where monetary policy
follows an inflation targeting rule and changes in interest rates are the result of real shocks.
There are many possible real shocks that could have an effect on equilibrium real interest
rates. We will focus on a simple case, where the only shock is a change in the expected
growth rate of TFP.

In particular, we assume that the growth rate of productivity µa is stochastic and follows:

dµa,t = −λ (µa,t − µ̄a) dt+ σ
√
µa,t − µmina dBt

This is a Cox et al. (1985) stochastic process for the growth µa,t − µmina . µ̄a is the mean
growth rate and µmina is a, possibly negative, lower bound.

Monetary policy consists of targeting a constant rate of inflation µ̄p (keeping σp = σ̃p = 0
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Figure 9: Maturity mismatch of banks in the English et al. (2012) data and in the model,
under inflation targeting.

as before). Therefore the nominal interest rate is just:

it = rt + µ̄p

where rt is the endogenous real interest rate.
Instead of shocks to monetary policy, changes in the interest rate reflect the central bank’s

endogenous response to changes in the equilibrium real interest rate, which is driven by
shocks to the expected growth rate. During booms when growth rates are high, equilibrium
real interest rates must be high to clear the goods market. In order to maintain constant
inflation, the central bank raises nominal interest rates.

The model can be solved along the same lines as the baseline model. The main difference
is that the state variables are now µa (exogenous) and z (endogenous). Appendix B shows
the details of the solution method.

Parameter values. Wemaintain most of the parameter values from the baseline model. In
particular, we keep the same values for γ, ρ, φ, α, β and ε. We again set σ̃a to match average
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real interest rates, which results in σ̃a = 0.073 and we set τ = 0.146 to match the average
level of z. We set the inflation target µ̄p = 2.53% to match average inflation for 1990-2014.
We set µ̄a = 0.01 as in the baseline model and set λ = 0.013 and σ = 0.024 to match the
standard deviation of LIBOR and the 10-year bond yield. This implies a very persistent and
volatile process for the expected growth of the economy, much more so than the data. The
goal is to match movements in both short and long interest rates that we observe, and which
are central to the mechanism; a full theory of why equilibrium real interest rates move so
much is beyond the scope of this exercise. The lower bound µmina = γσ̃2

a− βρ− µ̄p = −0.023

is set to ensure that it’s always possible to attain the inflation target.16

Results. Lower growth rates lead to lower equilibrium real rates and, since inflation is
constant, to lower nominal rates. Since holding currency is always an option, the nominal
interest rate is always positive. Banks’ exposure is always negative and quite large, as in
the baseline model. At the average values of µa and z, a change in the growth rate that
induces a 100 basis point rise in the nominal interest rate results in banks losing about 35%
of their net worth. The underlying mechanism is the same as in the baseline model and the
magnitude of the effect is similar.

Figure 9 compares the time series for T predicted by the model with the data. For the
model values, we take the measured time series for i and z and back out the level of µa in the
model that would generate the observed i given the observed z. We then plug in the imputed
µa and the measured z into the function T (µa, z) produced by the model. Again, the model
matches the behavior of T quite closely, both in terms of average levels and in terms of time
pattern. The average T in the data is 4.4 years; in the model, it’s 4.7 years. The correlation
between the model and the data is 0.51. We also compare the model predictions with the
cross-sectional evidence. In the model an increase of the deposit-to-net-worth ratio of a bank
is associated with an increase in the maturity mismatch of 0.55 years. In the data it’s 0.43

years.
We conclude from this that the explanatory power of the mechanism does not depend on

random monetary policy being the driver of interest rates. Real shocks under an inflation
targeting regime have approximately the same effect, as long as they imply similar movement
in nominal interest rates.

16Equilibrium requires a positive nominal interest rate i = r + µ̄p. If the expected growth rate µa is very
negative, the required equilibrium real interest rate could be too negative, r < −µ̄p for some (i, z), which
would force the central bank to miss its inflation target.
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8 Conclusion

Banks are highly exposed to movements in interest rates and play an important role in the
transmission of monetary shocks. We propose an explanation for banks’ exposure to interest
rate risk based on their role as providers of liquidity. Since the spread between (liquid)
deposits and (illiquid) bonds rises after the interest rate increases, their exposure to interest
rate risk is part of a dynamic hedging strategy. Banks are willing to take large losses after
interest rates increase because they expect better investment opportunities looking forward
(relative to households). This risk exposure can be achieved with a traditional banking
balance sheet with a maturity mismatch between assets and liabilities. Since banks’ supply
of deposits depends on their net worth, the endogenous response of banks’ balance sheets
amplifies the effects of monetary shocks on the cost of liquidity.

When we calibrate the model to US data, we find an average maturity mismatch of 3.9

years, compared to 4.4 years in the data. The model also reproduces the time and cross-
sectional patterns in the data. The maturity mismatch is larger during periods of low interest
rates, and for banks with higher deposit-to-net-worth ratios. This is true both when interest
rates are driven by monetary policy shocks and when they are driven by real shocks under an
inflation targeting regime. Seen through the lens of our model, banks’ exposure to interest
rate risk does not constitute risk seeking, bur rather a form of insurance, and increases with
risk aversion.

More generally, our theory has implications for banks’ risk exposure beyond interest
rate risk. Banks will choose exposure to risks that are correlated with their investment
opportunities. The approach in this paper can therefore be useful in studying not only how
much, but also what type of risks banks take.
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Appendix A: Modified Model and Solution Method

Modified model with taxes and stochastic productivity. Let σ̃ denote exposure to
the productivity shock B̃t and let π̃t denote the risk premium for exposure to this shock.
Since the model scales linearly with the level of a we redefine ω as total wealth divided by
a and likewise for h, g, k and q.

If τ is the tax rate on bankers’ wealth, the government budget implies that τ zt
1−zt is the

subsidy rate on households’ wealth. The budget constraints thus become, respectively:

dnt
nt

= (rt − τ + σn,tπt + σ̃n,tπ̃t − χtx̂t + φst) dt+ σn,tdBt + σ̃n,tdB̃t

dwt
wt

=

(
rt + τ

zt
1− zt

+ σn,tπt + σ̃n,tπ̃t − χtx̂t + φst

)
dt+ σn,tdBt + σ̃n,tdB̃t

and the HJB equations are, respectively:

0 = max
x̂,σn,σ̃n,µn

ρ (1− γ)
(ξtnt)

1−γ

1− γ

[
log (x̂nt)−

1

1− γ
log
(
(ξtnt)

1−γ)]
+ ξ1−γt n1−γ

t

(
µn + µξ,t −

γ

2
σ2
n −

γ

2
σ2
ξ,t + (1− γ)σξ,tσn −

γ

2
σ̃2
n −

γ

2
σ̃2
ξ,t + (1− γ)σ̃ξ,tσ̃n

)
s.t. µn = rt − τ + σnπt + σ̃nπ̃t + φst − x̂χt

and:

0 = max
x̂,σw,σ̃w,µw

ρ (1− γ)
(ζtwt)

1−γ

1− γ

[
log (x̂wt)−

1

1− γ
log
(
(ζtwt)

1−γ)]
+ ζ1−γt w1−γ

t

(
µw + µζ,t −

γ

2
σ2
w −

γ

2
σ2
ζ,t + (1− γ)σζ,tσw −

γ

2
σ̃2
w −

γ

2
σ̃2
ζ,t + (1− γ)σ̃ζ,tσ̃w

)
s.t. µw = rt + τ

zt
1− zt

+ σwπt + σ̃wπ̃t − x̂χt

The first order conditions (19), (23) and (24) are unaffected so formula (27) still applies.
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The first order conditions for σ̃n and σ̃w are:

σ̃n =
π̃t
γ

+
1− γ
γ

σ̃ξ,t

σ̃w =
π̃t
γ

+
1− γ
γ

σ̃ζ,t

The same steps that lead to (27) imply:

σ̃z =
(1− z)1−γ

γ

(
ξi
ξ
− ζi

ζ

)
1− z(1− z)1−γ

γ

(
ξz
ξ
− ζz

ζ

) σ̃i
and since, by definition, σ̃i = 0, this implies σ̃z = 0.

Its easy to see from the market clearing conditions that

ω =
k

βρ
(30)

h =
k

β
α(1− β)ιε−1i−ε (31)

and condition (21) still applies.
Using Ito’s lemma,

σ̃ξ =
ξi
ξ
σ̃i +

ξz
ξ
zσ̃z

This implies that σ̃ξ = 0 and similarly σ̃ζ = 0, so

σ̃n = σ̃w =
π̃t
γ

And since n = zaω, then σ̃n = σ̃z + σ̃a + σ̃ω = σ̃a. Therefore:

π̃t = γσ̃a (32)

Replacing the first order conditions in the HJB equations and simplifying, these reduce
to:

ρ log (ξt) = ρ log

(
ρ

χt

)
+ rt − τ − ρ+ φst + µξ,t −

γ

2
σ2
ξ,t +

γ

2
σ2
n,t +

γ

2
σ̃2
a (33)

ρ log (ζt) = ρ log

(
ρ

χt

)
+ rt + τ

zt
1− zt

− ρ+ µζ,t −
γ

2
σ2
ζ,t +

γ

2
σ2
w,t +

γ

2
σ̃2
a (34)
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The price of capital q follows the stochastic process:

dqt
qt

= µq,tdt+ σq,tdBt + σ̃q,tdB̃t (35)

but σ̃q,t = 0, because the TFP shock affects neither i nor z. Likewise for g and ψ below, we
have σ̃g,t = 0 and σ̃ψ,t = 0.

Arbitrage pricing implies:

1 + µaqt + µq,tqt − rtqt = πtσq,tqt + π̃tσ̃aqt (36)

Similarly, the value of government transfers g follows the stochastic process:

dgt = µg,tdt+ σg,tdBt + σ̃g,tdB̃t (37)

The real flow of transfers is dHt
pt

and since ht ≡ Ht
atpt

and σp = σ̃p = 0, arbitrage pricing of g
implies:

ht (µh,t + µa + it − rt) + (µg,t + gtµa)− gtrt = πt (σh,tht + σg,t) + π̃t (ht + gt) σ̃a (38)

where
dht
ht

= µh,tdt+ σh,tdBt + σ̃h,tdB̃t (39)

is the stochastic process followed by h.
Let ψ ≡ q + g follow the stochastic process:

dψt = µψ,tdt+ σψ,tdBt + σ̃ψ,tdB̃t (40)

Adding (36) and (38) and rearranging:17

[1 + ht (µh,t + µa + it − rt)] + [µψ,t + ψtµa]− rtψt = πt [σψ,t + σh,tht] + π̃tσ̃aω (41)

Solution procedure. The solution method finds endogenous objects as functions of state
variables. We divide the equilibrium objects into three groups. The first are the objects that
we can find statically before knowing the value functions: s, h, r and ψ. The second group

17Note that in expressions (36), (38) and (41), the stochastic processes for, g and ψ are expressed in
absolute terms, as set out by (37) and (40). The stochastic processes for q and h are expressed in geometric
terms, as set out by (35) and (39).
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consists of π, σn and σw. These variables can be solved statically if we know ξ and ζ. The
last group consists of the two value functions ξ and ζ. We’ll express these as a system of
differential equations and solve it backwards.

Objects solved statically. s (i, z) comes from (21). h (i, z) comes from (31). By defi-
nition, ψ = q + g = ω − h, so ψ (i, z) follows from subtracting h (i, z) from (30). Finally,
rearranging (41), using ψ = ω − h and using (32) to replace π̃ we obtain r:

r =
1 + hi

ω
+ µa − γσ̃2

a (42)

Solving for π, σn and σw given ξ, ζ, s, h, r and ψ Suppose we had found any function
X(i, z) that is a function of i and z. By Ito’s Lemma it follows that the law of motion of X
is:

dX (i, z) = µX (i, z) dt+ σX (i, z) dB (43)

where the drift and volatility are

µX (i, z) = Xz (i, z)µz (i, z) +Xi (i, z)µi (i)

+
1

2

[
Xzz (i, z)σ2

z (i, z) z2 +Xii (i, z)σ
2
i (i) + 2Xzi (i, z)σi (i) zσz (i, z)

]
σX = Xz (i, z)σz (i, z) z +Xi (i, z)σi (i)

or, in geometric form:
dX (i, z)

X (i, z)
= µX (i, z) dt+ σX (i, z) dB (44)

where the drift and volatility are

µX (i, z) =
Xz (i, z)

X (i, z)
µz (i, z) +

Xi (i, z)

X (i, z)
µi (i)

+
1

2

[
Xzz (i, z)

X (i, z)
σ2
z (i, z) z2 +

Xii (i, z)

X (i, z)
σ2
i (i) + 2

Xzi (i, z)

X (i, z)
σi (i) zσz (i, z)

]
σX =

Xz (i, z)

X (i, z)
σz (i, z) z +

Xi (i, z)

X (i, z)
σi (i)

Hence if we know µz (i, z) and σz (i, z) and we know the functions ξ, ζ, s, h and ψ and
their derivatives, we know their drifts and volatilities at every point of the state space.
Numerically, we approximate the derivatives with finite-difference matrices Di, Dz, Dii and
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Dzz such that for any set of values of ξ on a grid, the values of the derivatives on the grid
are:

ξi ≈ Diξ

ξz ≈ ξDz

ξii ≈ Diiξ

ξzz ≈ ξDzz

ξiz ≈ DiξDz

The variables π, σn and σw can be found as follows. First, in order to apply formulas
(43) or (44) we need to know µz (i, z) and σz (i, z). We get σz (i, z) from equation (27). Since
n = zaω and ω is a constant and σa = 0, we have that σn = σz. Using the FOC (23), we
can solve for

π = γσn − (1− γ)σξ

and using the FOC (24) we can solve for σw. Now, to obtain µz, note that

z

1− z
=
n

w

and therefore
µz = (1− z) [µn − µw + σw(σw − σn)]− z

(1− z)
σ2
z

which, using the FOCs, reduces to

µz = (1− z)

[
(σn − σw) π + φs− τ

1− z
+ σw(σw − σn)

]
− z

(1− z)
σ2
z

Solving for ξ and ζ. We need to solve (33) and (34). To do so, we define time derivatives
such that the equations hold exactly:

ξ̇ = −
[
ρ log

(
ρ

χ

)
+ r − τ − ρ+ φs+ µξ −

γ

2
σ2
ξ +

γ

2
σ2
n +

γ

2
σ̃2
a − ρ log (ξ)

]
ξ (45)

ζ̇ = −
[
ρ log

(
ρ

χ

)
+ r + τ

z

1− z
− ρ+ µζ −

γ

2
σ2
ζ +

γ

2
σ2
w +

γ

2
σ̃2
a − ρ log (ζ)

]
ζ (46)

The algorithm for finding ξ and ζ is as follows.

1. Guess values for ξ and ζ at every point in the state space
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2. Compute the derivatives with respect to i and z by a finite difference approximation

3. Compute values for π, σn and σw at every point in the state space given the guess for
ξ and ζ.

4. Compute ξ̇ and ζ̇ at every point in the state space using (45) and (46)

5. Take a time-step backwards to define a new guess for ξ and ζ. We use a Runge-Kutta
4 procedure.

6. Repeat steps 1-5 until ξ̇ ≈ ζ̇ ≈ 0.

The condition ξ̇ ≈ ζ̇ ≈ 0 is equivalent to saying that equilibrium conditions hold.

Finding the stationary distribution. Once we solve for the equilibrium, this defines
drifts and volatilities for the two state variables: µi (i, z), σi (i, z), µz (i, z), σ (i, z). The
density f (i, z) of the steady state distribution is the solution to the stationary Kolmogorov
Forward Equation:

0 = − ∂
∂i

[µi (i, z) f (i, z)]− ∂

∂z
[µz (i, z) f (i, z)] (47)

+
1

2

(
∂2

∂i2
[
σi (i, z)

2 f (i, z)
]

+
∂2

∂z2
[
σz (i, z)2 f (i, z)

]
+ 2

∂2

∂i∂z
[σi (i, z)σz (i, z) f (i, z)]

)
We solve this equation by rewriting it in matrix form.18 The first step is to discretize the
state space into a grid of Ni×Nz points and then convert it to a NiNz× 1 vector. Let vec(·)
be the operator that does this conversion. We then convert the differentiation matrices so
that they are properly applied to vectors:

Dvec
i ≡ INi ⊗Di

Dvec
ii ≡ INi ⊗Dii

Dvec
z ≡ M ′ (INz ⊗Dz)M

Dvec
zz ≡ M ′ (INz ⊗Dzz)M

Dvec
iz ≡ Dvec

i Dvec
z

18See Achdou et al. (2014) for details on this procedure.
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where ⊗ denotes the Kroenecker product and M is the vectorized transpose matrix such
that Mvec (A) = vec (A′).

Now rewrite (47):

−Dvec
i · (diag (vec (µi)) vec (f))−Dvec

z (diag (vec (µz)) vec (f))

+
1

2

[
Dvec
ii · (diag (vec (σ2

i )) vec (f)) +Dvec
zz (diag (vec (σ2

z)) vec (f))

+2Dvec
iz (diag (vec (σi)) diag (vec (σz)) vec (f))

]
= 0

and therefore
Avec (f) = 0 (48)

where

A = −Dvec
i · diag (vec (µi))−Dvec

z · diag (vec (µz))

+
1

2

[
Dvec
ii · diag

(
vec
(
σ2
i

))
+Dvec

zz · diag
(
vec
(
σ2
z

))
+ 2Dvec

iz · (diag (vec (σi)) diag (vec (σz)))
]

Equation (48) defines an eigenvalue problem. We solve it by imposing the additional
condition that f integrates to 1.

Appendix B: Solution of the Model with Shocks to the

Growth Rate

The steps that lead to equations (30) -(41) are unchanged, except for two differences. First,
all objects are functions of µa and z instead of i and z. For instance:

σz =
(1− z)1−γ

γ

(
ξµa
ξ
− ζµa

ζ

)
1− z(1− z)1−γ

γ

(
ξz
ξ
− ζz

ζ

)σµa
Second, since i is not a state variable, we need to solve for it. However, it can simply be
replaced by i = r + µp.

The solution procedure is also to divide the equilibrium objects into three groups. The
objects we can solve statically are: s, h, ψ and r. We can then find π, σn and σw if we know
ξ and ζ. We find ξ and ζ by solving a system of differential equations.

We use the market clearing condition for deposits (21), the market clearing condition for
currency (31), equation (42) for r and the definition ω = ψ + h to solve for h, s, r and ψ
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simultaneously. π, σn and σw are obtained in the same way as in the baseline model and the
differential equations (45) and (46) still apply and can be solved the same way.

Appendix C: Data Sources

• We take the weekly 6-month LIBOR rate (series USD6MTD156N) and 10-year bond
yields (series DGS10) from FRED.

• The wealth measure is “All sectors; U.S. wealth” (series Z1/Z1/FL892090005.Q) from
the quarterly Flow of Funds.

• Consumption is “Personal Consumption Expenditures, Nondurable Goods” plus “Per-
sonal Consumption Expenditures, Services” from NIPA.

• Total checking deposits and total savings deposits are, respectively “Private depos-
itory institutions; checkable deposits; liability” (series Z1/Z1/FL703127005.Q) and
“Private depository institutions; small time and savings deposits; liability” (series
Z1/Z1/FL703131005.Q) from the quarterly Flow of Funds.

• Total net worth of banks is the difference between “Private depository institutions;
total liabilities and equity” (series Z1/Z1/FL704194005.Q) and and “Private depository
institutions; total liabilities” (series Z1/Z1/FL704190005.Q) from the quarterly Flow
of Funds.

• The interest rates on checking and savings deposits are, respectively, the average rates
on “Interest checking 0k” and “Money market deposit 10k” reported by Drechsler et al.
(2014).

• Inflation, used to construct real interest rates, is the CPI inflation from the BLS

Maturity mismatch data In order to construct the measures of maturity mismatch, we
take data from the quarterly Reports of Condition and Income (“Call Reports”) filed by banks
regulated by the Federal Reserve System, Federal Deposit Insurance Corporation, and the
Comptroller of the Currency (almost all U.S. commercial banks) from 2001:Q1 to 2016:Q3.
We then follow the procedure used by English et al. (2012):

• The maturity mismatch measure Tjt for bank j in quarter t, is:

Tjt = ΞA
jt − ΞL

jt
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– ΞA
jt is the weighted average asset repricing/maturity period, calculated according

to:

ΞA
jt =

∑
k

mk
AA

k
jt∑

k

Akjt

where k indexes the 26 interest-earning asset categories with information about
maturity or repricing (RCFDA549-RCFDA562,RCONA549-RCONA562,RCONA564-
RCONA575). Akjt is the value of asset category k and mk

A denotes the estimated
average maturity of that category. These 26 asset categories account, on average
for 92.5% of the total interest-earning assets per bank. The underlying assump-
tion on this calculation is that the average maturity of those assets for which no
repricing or maturity information is available is the same as the average maturity
of the 26 categories.

– ΞT
jt is the weighted average liability repricing/maturity period, calculated accord-

ing to:

ΞA
jt =

∑
k

mk
LL

k
jt

LIEjt

where k indexes the 11 interest-earning liability categories with information about
maturity or repricing (RCON6810, RCON0352 RCONA579-RCONA582, RCONA584-
RCONA587, RCON2215). Lkjt is the value of liability category k and mk

L denotes
the estimated average maturity of that category. These 11 asset categories ac-
count, on average for 92.9% of total liabilities per bank.

– The estimated maturity of each asset and liability category (mk
L and mk

A) is set
to the midpoint of that category’s maturity or repricing range specified on the
Call Report. For example, RCFDA550, the asset category of US Treasuries from
3 months to 12 months, is assigned a maturity of 7.5 months. Long-term assets
with no endpoint are assigned the same maturity as English et al. (2012). That
is, asset and liability categories labeled as “three years and more” are assigned a
duration of 5 years, and those labeled as “fifteen years and more” are assigned a
duration of 20 years.

• From the original 475,220 bank-quarter observations extracted from the Call Reports,
all bank-quarter observations with zero loans and leases or zero liabilities were elimi-
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nated, leaving us 467,620 observations that form our bank-quarter data set.

• For the period 2001 to 2016, we compute an asset-weighted median Tt for each quarter
from 2001 to 2016. For 1997-2000 (where we don’t have detailed bank-level data), we
take the asset-weighted median measure directly from English et al. (2012), who kindly
shared their data with us.

• We construct the deposit leverage of each bank φj in the following manner:

– Bank’s net worth (njt) is the dollar value of total assets (RCON2170 for banks
that don’t have a foreign office and RCFD2170 for those that do) minus total
liabilities (RCON2948 and RCFD2948 respectively).

– Bank’s deposits (djt) is the sum of transaction accounts (RCON2215) and saving
accounts (RCON6810 and RCON0352)

– Deposit leverage φjt is just
djt
njt

– An extra filter was used to screen for extreme observations. We trimmed the vari-
able φjt above the 99th percentile and below the 1st percentile of its distribution
over the entire set of observations.

– For each of the 10,351 banks in the sample, we construct φj and Tj by taking the
time average over the period 2001-2016.
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