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Abstract

In this paper, we aim to improve foundational model embeddings by explicitly
leveraging syntactic information. Present foundational models do not explicitly
model structural information, which can be problematic in certain domains such
as biochemistry. We model this syntactic information as a graph as in [1] to auto-
encode domain-specific information into the large model embeddings. Particularly,
we implement a Equivariant GNN version [2] of the SIWR model to further improve
downstream performance by considering a given sequence as a vector backbone.
We pose a generalized learning framework for Syntactically Aware Embeddings
(SAEs) that extend across learning domains. We pretrain SAE models using a small
amount of data (~30,000 samples) and test downstream performance on a variety
of learning domains and tasks. We test SAEs on the NLP (GLUE and CoNLL
benchmarks) and biochemical (SMP) domains. Across the NLP domain, the SAEs
outperform baseline embeddings on 10/11 tasks. In the biochemical domain, we
observe improvements in 11/20 tasks. SAEs show particular promise in settings
with limited fine-tuning when compared to baselines. 1
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1 Introduction

Embeddings have played a critical role in the advancement of deep learning application in many
domains such as Natural Language Processing. These embeddings provide a dense vector representa-
tion of word-meaning in numerical form, that has been empirically easier for models to understand.
Much of the work in deep learning based natural language processing tasks is dependent on having
high quality vector embeddings. Early methods such as Word2Vec [3] have often been static, with
a singular vector representation. However, recent works, like BERT [4] have shown the efficacy of
contextual word embeddings that are dependent on the local context to which a word is embedded.
Such models, dubbed Large Language Models (LLMs), do not incorporate syntactical information
and, instead, rely on training a large number of parameters (100s of millions) over huge data corpora.
Similar work leveraging large corpora of unsupervised data have been posed for other domains such
as biomolecular chemistry with efforts such as ProteinBERT and MolBERT.
Recent work has shown the propensity for using graph based architectures to improve these
static/contextual word embeddings by leveraging syntactic structures like part of speech tagging and
dependency trees [1], with a small amount of additional pre-training data. Our work builds upon [1]
by considering sentences as vector chains and applying a Equivariant Neural Network architecture
(EGNN) [2] in place of the standard GCN. This is motivated by existing work in the proteomics
space where proteins are modelled in a vector space invariant to translation, reflection, and rotation
operations. This allows the incorporation of vector features compared to just scalar ones, which is
an intuitive extension for word embeddings. If we consider the words in some latent vector space
defined by their embedding features, some operation composed of translations, reflections, and/or
rotations should not change the interpretation of the features overall.
In this paper, we present the Syntactically Aware Embeddings (SAE) as a generalized framework
for incorporating domain-specific syntactic information into otherwise syntactically-devoid dense
embeddings. Specifically, we utilize a light-weight EGNN as a pretraining model for existing
foundational model encoders. We test the SAE framework in the NLP and biochemical domains,
across a variety of tasks in each domain, to assess data and task generalizability. Across these settings,
SAE performs strongly in generating embeddings for downstream tasks and serving as a pretrainer
for the upstream FM.

2 Related Work

2.1 Word Embeddings

While there has been a desire to model language computationally, there has been a need to represent
words in numerical form. Representation as continuous vectors rather than one-hot elements of
a vocabulary have become dominant [3, 5, 6, 7, 8]. There has been a particular interest in using
Neural Networks to model such representations. Recent efforts into improving embeddings follow the
strategy of leveraging vast amounts of data against very large models to attempt to learn the breadth
of embedding space [4, 9, 10, 11]. While the performance of these models has been excellent, most
only present one embedding for a given word regardless of context. Further, they do not incorporate
any kind of explicit syntactical information. This information has been shown to be potentially
useful as obtained from dependency parsing tools [12, 13]. Given such dependency arcs, the natural
representation for such information has been in the form of a graph [1, 14].
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2.2 AI in Proteomics

Figure 1: In GCN architectures messages from each of a node’s neighboring nodes are pooled to get
the new hidden state at each layer. Repeating across all hidden layers gives output features at each
node. [15]

Graph Neural Networks (GNNs) have perform very well on protein-like structures due to the natural
sparsity of such structures lending to their representations as graph objects [16, 17, 15]. As a graph,
the protein structure is relationally in terms of inter-atom or inter-amino acid connections rather
than absolute physical positions [18]. As such, there is only an implicit understanding of the true
physicochemical context. Equivariant Neural Networks and 3D CNNs represent the opposite end of
the spectrum in the sense that they operate on explicit point spaces but are susceptible to perturbation
by geometric transformations [19, 20]. Combining these methods to represent a vector space in a
graph model is where Equivariant Graph Neural Networks (EGNN) comes into play as a way to
combine the important features of both of these methodologies [2, 18].
Straying from the above methods, there has been a desire to adopt foundational model architectures to
the field [21, 22]. These models come with the advantage of utilizing efficient unsupervised data for
training. However, compared to their NLP counterparts, they do not achieve tangible improvements
in performance within this domain. It stands to reason that in the proteomics space, structural
information serves as a strong prior for latent embeddings. However, structural information is hard to
generate (does not scale for large corpora) and may not be adequately treated by certain architectures
(lack of equivariance).
To address these issues, we introduce the SAE framework for incorporating syntactic information
into an existing FM.

3 Methods

In the SAE framework, we develop a mechanism that seamlessly encodes classical structural infor-
mation and modern dense vector information in a unified loss function. To achieve this, we consider
the following structure (Figure 2):
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Figure 2: Framework for SAE model. We take dense representation E and structural information S
from the FM and structural parser, respectively. We then construct graph embedding X to pass into
the EGNN, which gives output features M.

For unit w in the sequence c, we wish to construct a vector embedding vw|c. For some raw input
(sentence or molecule), we generate two complementary initial embeddings: dense representation
E from the FM that consists of a continuous vector representation for each unit in the sequence
and structural information S that contains domain-specific syntactic information. We then are able
to construct a graph embedding g(w, c) from the original document. Again, the graph builder is
domain-specific, which underlines the flexibility of the SAE framework as a generalized wrapper
around FM models of choice. Particular definitions for these components are provided in sections
3.1 and 3.2. For the NLP domain, we use BERT [4] as the FM. For the biochemical domain, we use
MolBERT [21]. In the MolBERT pipeline, we construct radius 1 Morgan fingerprints for each atom
in the molecule and use the hash of the footprint as "words" in the "sentence."
These graph features are then passed to an EGNN model. As we wish to make the model as efficient as
possible, we leverage a 2-layer architecture to give us a balance between expressivity and preventing
overparameterization. We then add pretraining heads as described in 3.3.
To train this model, we adapt the methodology from [1] as described in Section 3.4. While the SIWR
algorithm from [1] specifically trains on the edge-prediction task of the dependency arcs themselves,
we extend the loss by allowing for the prediction of any subset of edges specified by the graph.
We can then use this pre-trained model to generate improved, syntactic context-aware embeddings as
in Section 3.5 by stripping the model of the pretraining heads. These final embeddings differ from the
EGNN output as we are pooling information between GVP layers. Further, we can choose to discard
the EGNN head altogether as we propagate syntactic information back to the FM embeddings. Thus,
we also test the use of the pre-trained FM embeddings on downstream tasks.

3.1 NLP

3.1.1 Structural Parser

To generate linguistics-specific syntactic information, we leverage the SpaCy package and utilize a
variant of a non-monotonic arc-eager transition-system dependency parser [23] with pseudo-projective
dependency transformation [24]. We also generate part-of-speech (POS) tags for each word in the
sentence. This gives us information at both the node (POS) and edge (dependency arc) levels.

3.1.2 Graph Builder

To generate the improved embeddings, we start by first encoding the sentence as a graph. For node
embeddings, we use the original scalar features (of dimension 768) but also add forward and reverse
unit vectors in the direction between words: wi+1 � wi and wi � wi�1.
For edges, we take the construction in [1] and augment the edge features. We draw an edge from
vertex i to j if one of the following conditions is true: |j � i|  1 or there is a dependency arc
from i to j or vice-versa. Thus, we have five types: the prior word, the subsequent word, self-loop,
head of the dependency arc, and dependent of the dependency arc. For each edge, ei,j , we take the
following features: the unit vector in the direction of wj � wi, an encoding of the distance between
wi and wj in the form of Gaussian radial basis functions, and the sinusoidal positional encoding of
j � i as described by [25], consisting of the d

2 pairs [sin(wk · (i � j)), cos(wk · (i � j))], where
wk = 1

10000
2k
d

, 0  k < d = 16, 2|k. We also encode a one-hot representation of the five edge types
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above. These 37 scalar features are concatenated together to give the edge scalar representation. This
is summarized in Figure 3.

Figure 3: Summary of the NLP encoding process. Each node receives scalar embedding from the
BERT model. The remaining scalar and vector channels are established from these. Edges are
drawn between neighboring words, dependency arcs, and self-loops. Vector features are in bold for
convenience.

3.2 Biochemistry

3.2.1 Structural Parser

To generate biophysical structure information, we leverage the RDKit package/existing pose infor-
mation to generate a 3D representation of the molecule in space. For the pre-trianing task, we take
information at both the node (atom identity) and edge (bond type) levels.

3.2.2 Graph Builder

To generate the improved embeddings, we start by first encoding the molecule as a graph. For node
embeddings, we use the original scalar features (of dimension 300) but also add forward and reverse
unit vectors in the direction between atoms: ai+1 � ai and ai � ai�1.
For edges, we take the construction in [18]. We draw an edge from vertex i to j if the distance
between atoms ai, aj is less than some pre-set cutoff distance, representing the physical interactions
of that atom up to a particular distance. For each edge, ei,j , we take the following features: the
unit vector in the direction of aj � ai, an encoding of the distance between ai and aj in the form
of Gaussian radial basis functions, and the sinusoidal positional encoding of j � i as described
by [25], consisting of the d

2 pairs [sin(wk · (i � j)), cos(wk · (i � j))], where wk = 1

10000
2k
d

,
0  k < d = 16, 2|k. These 32 scalar features are concatenated together to give the edge scalar
representation. This is summarized in Figure 4.
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Figure 4: Summary of the biochemical encoding process. Each node receives scalar embedding from
the MolBERT model. The remaining scalar and vector channels are established from these. Edges
are drawn between all close atoms. Vector features are in bold for convenience.

3.3 Equivariant Graph Neural Network Model

If we wish for vector features to remain equivariant, we cannot use any off the shelf model, as in
the GCN used by Tran et al. [1]. Instead, we replace the two standard graph convolution layers
of the GCN with Graph Vector Perceptron convolution layers [2]. For each GVP layer, we make
updates to the scalar and vector features as shown in Algorithm 1. With g representing a successive
GVP layers for the message-passing layers and f representing b successive GVP layers for the
point-wise feed-forward, we have the following update for each GVP convolution, where h(i)

v is the
node-embedding at i and h(j!i)

e is the edge-embedding between j and i [18]:

h(j!i)
m = g (concat(h(j)

v , h(j!i)
e ))

h(i)
v  LayerNorm

0

@h(i)
v +

1

|j s.t. ei,j |Dropout

0

@
X

j s.t. ei,j
h(j!i)
m

1

A

1

A

We then do a feed-forward point-wise update at each node.

h(i)
v  LayerNorm

⇣
h(i)
v + Dropout

⇣
f
⇣
h(i)
v

⌘⌘⌘

.
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Algorithm 1 GVP update step. [2]
Input: (S, V )
Output: (S0, V 0)
GVP (h: hidden dim size):

V  WhV
Sh  ||V || . Taken row-wise
S  concat(sh, S)
Sm  WmS + bm
S0  ReLU(Sm)
V 0  Sigmoid(WgSigmoid(Sm) + bg)� V . Taken row-wise

Notably, [18] and [2] provide proofs for rotation invariance in three dimensions. We can easily extend
these proofs for n-dimensional vector embeddings by replacing the requisite rotation matrices with
their n-dimensional equivalents.

3.4 Pretraining Algorithm

Figure 5: Pretrain process for SIWR model from [1]. For a given sentence, the base embeddings
are used as node features for a word graph. These are then fed into a GCN to provide a new word
embedding for each word. For the POS task, these are then fed into a softmax classifier to predict the
POS for each word. For the dependency task, we use a biaffine attention mechanism to predict the
dual probability of every (head, dependency label) pair for each word. This work replaces the graph
features to include vector information and the GCN architecture with an Equivariant Graph Neural
Net.

We take the two subtasks of node prediction and edge prediction to generalize the tasks in Figure
5. For both subtasks, we take the output from l2 and project using a GVP layer [2] to get latent
vectors h

x, where x 2 {node, edge_start, edge_tail, label_start, label_tail}. h
node 2 Rdv and the

rest 2 Rde . We then get p(ynode_pred) = softmax(Whnode + b). Now to get the probability of all
edges, we first take p(yedge_pred) = softmax(Hedge_start

W
edgehedge_tail). Then for each edge label l, we

take sl = H
label_start

W
lhlabel_tail. Concatenating, we get p(ylabel_pred) = softmax(Concatlsl). Thus,

we have probability distributions for the arc and the label for the arc. We take the element-wise
product to get the combined distribution: p(yedge_label_pred) = p(ylabel_pred)� p(yedge_pred).
We utilize a L2 regularized loss combining the Negative Log Likelihoods of the node prediction and
the edge prediction across all required nodes (V) and edges (E). Thus we take:

JSAE = Jnode+Jedge+�||W||2 = �
X

v2V
log(p(ynode_pred

v )ynode_true)�
X

e2E
log(p(yedge_label_pred

e ))+�||W||2
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Thus, we not only encode the FM dense representation at nodes, but we also auto-encode the structural
edge features as that signal is incorporated into the original graph encoding. Accordingly, this loss
will backpropagate that structural signal back to the FM embeddings.

3.5 Constructing Embeddings

Let the two convolution layers be l1, l2 and the initial embedding be vo. Then we have vw|c =
vo + v1 + v2, where v2, v2 represent the scalar portion of the output from l1, l2 respectively. We have
v1 = scalar(l1(g(w, c))) and v2 = scalar(l2(l1(g(w, c)))). In this way, the output is a combination
of the initial base embedding and two layers of pooled embeddings that carry the signal of the
syntactic features.

4 Experiments

We construct experiments for both domains in a similar fashion. We first choose a pre-trained FM
model to provide base embeddings. We then pre-train the SAE model. Here we may choose to freeze
the FM model and only train the GVP layer of the SAE model (SAE only). After pre-training, we
may choose to use either the SAE embeddings (SAE) or the base embeddings (BERT). Finally, we
apply the models to downstream tasks by appending a final linear layer to the network. For these
final tasks we may fine-tune the whole framework (All), just the SAE network (SAE only), just the
FM (BERT) or just the final linear layer (None), giving us all the combinations in Table 1.

Table 1: Table of possible experimental combinations

Pretrain Embedding Finetune
All SAE All
All SAE SAE Only
All SAE None
All BERT BERT
All BERT None
SAE Only SAE All
SAE Only SAE SAE Only
SAE Only SAE None
None SAE All
None SAE SAE Only
None BERT BERT

4.1 Data

4.1.1 Pretraining

For NLP pre-training, we take sentences and then aim to predict the part of speech, dependency arc,
and dependency label for each word. Thus, we simply need corpora with sentences to construct the
semi-supervised task given that the labels are generated through the sentence parser. We take 30000
samples from the Billion Word Benchmark dataset for each of the train and validation sets. [26].
For the biochemical pre-training, we source 30000 from the Zinc20 dataset for each of the train and
validation sets. The Zinc20 [27] represents a large screening dataset of commercial chemicals.

4.2 Evaluation method

For the NLP domain, we utilize the GLUE [28] and CoNLL [29] benchmarks for downstream tasks.
The GLUE datasets test a variety of language-dependent sentence classification tasks (9 in total) that
are highly dependent on embedding quality. The CoNLL benchmark tests token-level Named Entity
Recognition (NER), which is also particularly dependent on embedding quality.
We now enumerate each dataset: The COLA task provides a binary classification of whether or not a
particular sentence is grammatically correct. Thus, this task tests a specific grammatical construction.
We measure performance using Matthew’s Correlation. The MNLI task is a complex prediction of
whether or not a premise hypothesis pair consists of entailment, contradiction, or is neutral. We
measure performance using accuracy. The MRPC task measures the semantic similarity between
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two sentences. We measure performance using F1. The QNLI task consists of asking whether or not
a given context sentence contains the answer to a given question. We measure performance with
accuracy. The QQP task measures the semantic similarity between two questions. Performance is
measured using F1. The RTE task test a binary classification of sentence entailment. In the SST2
task, the model must classify the binary sentiment of a movie-review. Performance is measured using
accuracy. The STSB task categorizes the relationship between pairs of text into one of 5 categories.
We report the Pearson R for this task as is standard. The WNLI task is a reading comprehension
task that tests the model to provide the referent for a given pronoun. We measure performance using
accuracy. As stated previously, the CoNLL tasks tests NER at a token level. We measure performance
using an F1 score taken across all tokens.
For the biochemical domain, we test on the SMP dataset from Atom3D [30]. The SMP task requires
predicting the physiochemical properties of small molecules, a common real-world task. The SMP
dataset provides labels for 20 tasks, and we provide comparisons across all tasks. Performance is
reported in terms of the cumulative mean absolute error (MAE) across the test set.

5 Results

5.1 NLP

Table 2: Table of results for NLP tasks (GLUE and CoNLL).

5.2 Biochemical

Table 3: Table of results for SMP dataset tasks.
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6 Discussion

6.1 NLP

In the COLA dataset, we note that pre-training dramatically improves performance and that embed-
dings are required to be task-specific. This is evidenced by the fact that the None fine-tuning setting
performs poorly across the board.
Further, the SAE methods with all layers fine-tuned perform the best (scores of 0.6207 and 0.6140).
This trend is generally consistent across the tasks (MNLI: 0.8373 and 0.8383 versus 0.6429, MRPC:
0.8967 and 0.8981 versus 0.7549, etc.). The only notable exception is WNLI. In this task, the model
does quite poorly over the pre-train setting, indicating that the pre-train task is somewhat orthogonal
to the task.
In STSB, notably, the two SSE Only fine-tuned models also perform admirably, showing there are
gains to be had in fine-tuning the SAE GVP layers (0.7664 and 0.7811). This effect is similar in the
CoNLL dataset showing there are gains to be had in fine-tuning the SAE GVP layers (0.7740 and
0.8599).
For COLA, we also note that pre-training the FM and then fine-tuning provides significant gains
compared to fine-tuning the SAE only on pre-trained SAE embeddings (0.6157 versus 0.3556). This
indicates that the raw base FM embeddings may not be sufficiently adaptable to this task. For MRPC,
however, it appears much of the benefit is achieved from fine-tuning the BERT model itself, with the
non-pre-trained model achieving a score of 0.6429.
The SAE framework has strong properties as a pretraining module. For QNLI, the pre-trained SAE
embeddings outperform the baseline even without fine-tuning (0.6998, 0.6820). In the QQP and SST2
tasks, for the SAE model, we see that pre-training and fine-tuning is nearly identical, comparing rows
3 and 10.

6.2 Biochemical

For the SMP dataset, we observe far more erratic behavior compared to the NLP case. This shows
that perhaps the SMP data is not as readily data-scalable compared to the general NLP tasks above.
Interestingly, some tasks do not have any performance impact from training (tasks 10, 16-18 for
example). For other tasks, such as tasks 4,5,8, and 20, the SAE method provides similar gains when
fine-tuning all. We also remark on the overfitting issue of the datasets, where, for example, tasks 2,
11, and 12 display the best results when just finetuning the final projection head rather than all layers.

7 Conclusion

Overall, this study contributes a novel EGNN model architecture for boosting FM embeddings by
incorporating syntactical information. The model outperforms baseline networks in a wide-variety of
tasks and domains. As the applications of deep learning in many AI domains grow, the importance of
good embeddings grows as well. The proposed method enables learning from syntactic information
in the form of vector features as a possible avenue for improving embeddings in a relatively efficient
manner compared to large foundational models. For future work, there is still space to leverage the
strong pre-training abilities of the model at greater scale. Further, introducing mechanisms to weigh
the balance between originally encoded information and new syntactic information is important to
understand in order to optimally construct embeddings for downstream tasks after pre-training.
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