Discussion of “Understanding the Great Recession” by Christiano, Eichenbaum, and Trabant

Robert E. Hall
Hoover Institution and Department of Economics
Stanford University
National Bureau of Economic Research

GROWTH OF THE NEW KEYNESIAN TOWER

Calvo pricing
GROWTH OF THE NEW KEYNESIAN TOWER

Dixit-Stiglitz
Calvo pricing
GROWTH OF THE NEW KEYNESIAN TOWER

- Forward-looking consumption
- Dixit-Stiglitz
- Calvo pricing
GROWTH OF THE NEW KEYNESIAN TOWER

- Consumption habit
- Forward-looking consumption
- Dixit-Stiglitz
- Calvo pricing
GROWTH OF THE NEW KEYNESIAN TOWER

- Exotic adjustment of investment
- Consumption habit
- Forward-looking consumption
- Dixit-Stiglitz
- Calvo pricing
Growth of the New Keynesian Tower

- Calvo pricing
- Dixit-Stiglitz
- Forward-looking consumption
- Consumption habit
- Exotic adjustment of investment
- Variable capacity utilization
GROWTH OF THE NEW KEYNESIAN TOWER

- Calvo pricing
- Dixit-Stiglitz
- Forward-looking consumption
- Consumption habit
- Exotic adjustment of investment
- Variable capacity utilization
- Matching function
Growth of the New Keynesian Tower

Calvo pricing
Dixit-Stiglitz
Forward-looking consumption
Consumption habit
Exotic adjustment of investment
Variable capacity utilization
Matching function
Hall-Milgrom wage setting
GROWTH OF THE NEW KEYNESIAN TOWER

- Calvo pricing
- Dixit-Stiglitz
- Forward-looking consumption
- Consumption habit
- Exotic adjustment of investment
- Variable capacity utilization
- Matching function
- Hall-Milgrom wage setting
- Home production
- Calvo pricing
- Dixit-Stiglitz
- Forward-looking consumption
- Consumption habit
- Exotic adjustment of investment
- Variable capacity utilization
- Matching function
- Hall-Milgrom wage setting
- Home production
Frisch analysis of a single worker’s labor supply

\[U(c, h) = \log c - v(h) \]
Frisch analysis of a single worker’s labor supply

\[U(c, h) = \log c - v(h) \]

\[\max_{c, h} U(c, h) - \lambda c + \lambda wh \]
Frisch analysis of a single worker’s labor supply

\[U(c, h) = \log c - v(h) \]

\[\max_{c, h} U(c, h) - \lambda c + \lambda wh \]

\[\frac{1}{c} = \lambda \]
Frisch analysis of a single worker’s labor supply

\[U(c, h) = \log c - v(h) \]

\[\max_{c,h} U(c, h) - \lambda c + \lambda wh \]

\[\frac{1}{c} = \lambda \]

\[v'(h) = w\lambda \]

.
$v(h) = \frac{h^{1+1/\psi}}{1 + 1/\psi}$
Leading example

\[v(h) = \frac{h^{1+1/\psi}}{1 + 1/\psi} \]

\[h^* = (w\lambda)^\psi \]
Leading example

\[v(h) = \frac{h^{1+1/\psi}}{1 + 1/\psi} \]

\[h^* = (w\lambda)^\psi \]

\(\psi\) is the Frisch elasticity of labor supply.
Big household

\[U(c, h) = \log c - Lv(h) \]
Big household

\[U(c, h) = \log c - Lv(h) \]

\[
\max_{c, h, L} \log c - Lv(h) - \lambda c + L\lambda wh - L\gamma
\]
Big household

\[U(c, h) = \log c - Lv(h) \]

\[
\max_{c, h, L} \log c - Lv(h) - \lambda c + L\lambda wh - L\gamma
\]

\[
\frac{1}{c} = \lambda \Rightarrow c = \frac{1}{\lambda}
\]
Big household

\[U(c, h) = \log c - L v(h) \]

\[\max_{c,h,L} \log c - L v(h) - \lambda c + L \lambda w h - L \gamma \]

\[\frac{1}{c} = \lambda \Rightarrow c = \frac{1}{\lambda} \]

\[L v'(h) = L w \lambda \Rightarrow \text{hours same as individual} \]
Participation

\[L \in (0, 1) \text{ and } \lambda wh^* - \gamma = v(h^*) \]
Participation

\[L \in (0, 1) \text{ and } \lambda wh^* - \gamma = v(h^*) \]

\[L = 0 \text{ and } \lambda wh^* - \gamma < v(h^*) \]
Participation

\[L \in (0, 1) \text{ and } \lambda wh^* - \gamma = v(h^*) \]

\[L = 0 \text{ and } \lambda wh^* - \gamma < v(h^*) \]

\[L = 1 \text{ and } \lambda wh^* - \gamma > v(h^*) \]

.
Homogeneous households

Exogenous participation: $\lambda wh^* - \gamma > v(h^*)$
Homogeneous households

Exogenous participation: $\lambda wh^* - \gamma > v(h^*)$

Rogerson: $\lambda wh^* - \gamma = v(h^*)$
Heterogeneous household members (Galí)

\[\gamma \text{ distributed as } G(\gamma) \text{ within the household} \]
Heterogeneous household members (Galí)

\(\gamma \) distributed as \(G(\gamma) \) within the household

Members with \(\gamma < w\lambda w^* - v(h^*) = \gamma^*(w\lambda) \) are in the labor force: \(L = 1 \)
\[\gamma \text{ distributed as } G(\gamma) \text{ within the household} \]

Members with \[\gamma < w\lambda w^* - v(h^*) = \gamma^*(w\lambda) \] are in the labor force: \[L = 1 \]

Otherwise, \[L = 0 \]
Aggregate labor supply

\[L(w\lambda) = G(\gamma^*(\lambda w)) \]
Aggregate labor supply

\[L(w\lambda) = G(\gamma^*(\lambda w)) \]

Envelope condition: \(d\gamma^*/d(w\lambda) = h^* > 0 \), so \(L' > 0 \).
Linear $v(h)$, as in Christiano et al.

Household makes its chosen workers work maximal hours:

$$w^* = 1$$
Linear $v(h)$, as in Christiano et al.

Household makes its chosen workers work maximal hours: $w^* = 1$.

All previous results go through in this case.
Linear \(v(h) \), as in Christiano et al.

Household makes its chosen workers work maximal hours:
\[w^* = 1 \]

All previous results go through in this case.

But lack of variation in hours per worker is wildly inaccurate—cyclical movements in hours per week account for almost half of total variation in labor input.
INDEX OF WEEKLY HOURS OF WORK

![Index of weekly hours of work chart]

- The chart shows the index of weekly hours of work from 2003 to 2013.
- The values range from 0.86 to 1.04.
- There is a noticeable decrease around 2010.
Cyclical variations in participation

λ: Good times mean higher consumption and lower marginal utility
Cyclical variations in participation

λ: Good times mean higher consumption and lower marginal utility

w: Good times mean lower wages if a force other than productivity expands output and employment; in that case, participation L falls in booms and rises in recessions
Cyclical variations in participation

λ: Good times mean higher consumption and lower marginal utility

w: Good times mean lower wages if a force other than productivity expands output and employment; in that case, participation L falls in booms and rises in recessions

Recessions resulting from declines in productivity may depress participation.
Unemployment

Households allocate L of their members to employment but only ϕL hold jobs; the remainder are unemployed. Unemployed have $v = 0$.

Now

$$\max c, h, L \log c - Lv(h) - \lambda c + \phi L \lambda w h - \phi L \gamma$$

First-order conditions are the same as for $\phi = 1$, but output and employment will be lower, so $w\lambda$ is higher and participation is higher if there is an exogenous decrease in ϕ.

Households allocate L of their members to employment but only ϕL hold jobs; the remainder are unemployed. Unemployed have $v = 0$.

Now

$$\max_{c,h,L} \log c - Lv(h) - \lambda c + \phi L \lambda wh - \phi L \gamma$$
Households allocate L of their members to employment but only ϕL hold jobs; the remainder are unemployed. Unemployed have $v = 0$.

Now

$$\max_{c,h,L} \log c - Lv(h) - \lambda c + \phi L \lambda wh - \phi L \gamma$$

First-order conditions are the same as for $\phi = 1$, but output and employment will be lower, so $w\lambda$ is higher and participation is higher if there is an exogenous decrease in ϕ.

...
Response to driving force

Let x be an exogenous driving force that is higher in good times.
Response to driving force

Let x be an exogenous driving force that is higher in good times.

x raises the employment rate ϕ, raises Hicks-neutral productivity z, and lowers λ.

Three effects: (1) direct productivity effect, procyclical, (2) labor-demand effect, countercyclical, and (3) well-being effect, countercyclical.
Response to driving force

Let x be an exogenous driving force that is higher in good times.

x raises the employment rate ϕ, raises Hicks-neutral productivity z, and lowers λ

\[
\frac{d(w\lambda)}{dx} = \frac{z'F_N\lambda + zF_{N,N}\phi'L + zF_N\lambda'}{1 - zF_{N,N}\phi'L'}
\]

Three effects: (1) direct productivity effect, procyclical, (2) labor-demand effect, countercyclical, and (3) well-being effect, countercyclical.
Response to driving force

Let x be an exogenous driving force that is higher in good times

x raises the employment rate ϕ, raises Hicks-neutral productivity z, and lowers λ

$$\frac{d(w\lambda)}{dx} = \frac{z'F_N\lambda + zF_{N,N}\phi'L + zF_N\lambda'}{1 - zF_{N,N}\phi'L'}$$

Three effects: (1) direct productivity effect, procyclical, (2) labor-demand effect, countercyclical, and (3) well-being effect, countercyclical
HETEROGENEITY EXPLAINS PROCYCLICAL PARTICIPATION

<table>
<thead>
<tr>
<th>Comparative advantage in job market</th>
<th>Economic condition</th>
<th>Working</th>
<th>Intense job search</th>
<th>Sporadic job search</th>
<th>Working or searching</th>
<th>Reported participation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Boom</td>
<td>0.90</td>
<td>0.04</td>
<td>0.00</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>Slump</td>
<td>0.88</td>
<td>0.08</td>
<td>0.00</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>Moderate</td>
<td>Boom</td>
<td>0.40</td>
<td>0.00</td>
<td>0.04</td>
<td>0.44</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Slump</td>
<td>0.34</td>
<td>0.00</td>
<td>0.12</td>
<td>0.46</td>
<td>0.34</td>
</tr>
<tr>
<td>Average</td>
<td>Boom</td>
<td>0.65</td>
<td>0.02</td>
<td>0.02</td>
<td>0.69</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Slump</td>
<td>0.61</td>
<td>0.04</td>
<td>0.06</td>
<td>0.71</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Adding those who want a job, have searched for work during the prior 12 months, and were available to take a job during the reference week, but had not looked for work in the past 4 weeks.