Search-and-Matching Analysis of High Unemployment Caused by the Zero Lower Bound

Robert E. Hall
Hoover Institution and Department of Economics
Stanford University

12 January 2015
A landing on the non-Walrasian continent has been made. Whatever further exploration may reveal, it has been a mind-expanding trip: We need never go back to

\[\dot{p} = \alpha(D - S) \]

and

\[q = \min(D, S) \]
Four kinds of agents

(1) *Endowed households* of measure one, with utility $\sum_t c_t$

(2) Workers of measure $\lambda \geq 1$, with the capacity in each period to turn one unit of the primary input into consumption, for which they receive a wage of w units of consumption goods. Their reservation wage is z.

(3) Firms, intermediaries who receive the input from endowed households, hire workers at the wage w, and return $1 - p$ units of consumption to endowed households for each unit of the input.

(4) A central bank that accepts deposits (reserves) from endowed households that pay interest, in the form of the primary input, at a per-period rate of r, the reserve rate.
Four kinds of agents

(1) *Endowed households* of measure one, with utility $\sum_t c_t$

(2) *Workers* of measure $\lambda \geq 1$, with the capacity in each period to turn one unit of the primary input into consumption, for which they receive a wage of w units of consumption goods. Their reservation wage is z.
FOUR KINDS OF AGENTS

(1) *Endowed households* of measure one, with utility $\sum_t c_t$

(2) *Workers* of measure $\lambda \geq 1$, with the capacity in each period to turn one unit of the primary input into consumption, for which they receive a wage of w units of consumption goods. Their reservation wage is z.

(3) *Firms*, intermediaries who receive the input from endowed households, hire workers at the wage w, and return $1 - p$ units of consumption to endowed households for each unit of the input.

(4) *A central bank* that accepts deposits (reserves) from endowed households that pay interest, in the form of the primary input, at a per-period rate of r, the reserve rate.
Four kinds of agents

(1) *Endowed households* of measure one, with utility $\sum_t c_t$

(2) *Workers* of measure $\lambda \geq 1$, with the capacity in each period to turn one unit of the primary input into consumption, for which they receive a wage of w units of consumption goods. Their reservation wage is z.

(3) *Firms*, intermediaries who receive the input from endowed households, hire workers at the wage w, and return $1 - p$ units of consumption to endowed households for each unit of the input.

(4) A *central bank* that accepts deposits (reserves) from endowed households that pay interest, in the form of the primary input, at a per-period rate of r, the *reserve rate*.
Frictionless equilibrium

The endowed household’s demand for consumption is

\[c_t = 1 - p_t \]
Frictionless equilibrium

The endowed household’s demand for consumption is

\[c_t = 1 - p_t \]

The wage is \(w_t = p_t \) and the supply of consumption by firms, integrated with the market for workers, is

\[
\begin{align*}
 c_t &= 0 \text{ if } p_t < z \\
 &\in [0, (1 - z)\lambda] \text{ if } p_t = z \\
 &= (1 - p_t)\lambda \text{ if } p_t > z
\end{align*}
\]

(1)
Equilibrium without frictions

\[c = 1 - p \]

\[c = (1 - p)\lambda \]

Classical unemployment

Equilibrium
The central bank

Sets a positive reserve rate r in all periods
The central bank

Sets a positive reserve rate r in all periods

An endowed household now faces an intertemporal choice, because it has the option of deferring consumption by depositing some of its endowment at the central bank.
The central bank

Sets a positive reserve rate \(r \) in all periods

An endowed household now faces an intertemporal choice, because it has the option of deferring consumption by depositing some of its endowment at the central bank

The period-1 Arrow-Debreu price for period-\(t \) consumption is

\[a_t = \frac{p_t}{(1 + r)^{t-1}} \]
The central bank

Sets a positive reserve rate r in all periods

An endowed household now faces an intertemporal choice, because it has the option of deferring consumption by depositing some of its endowment at the central bank.

The period-1 Arrow-Debreu price for period-t consumption is

$$a_t = \frac{p_t}{(1 + r)^{t-1}}$$

Let $a = \min_t a_t$. The household will choose $c_t = 0$ for all t with $a_t > a$.
The economy has no equilibrium with a positive reserve rate

This conclusion applies quite generally to general-equilibrium macro models. It lies at the heart of the papers on the zero lower bound outside the New Keynesian paradigm, notably Krugman (1998) and Korinek-Simsek (2014)
The economy has no equilibrium with a positive reserve rate

This conclusion applies quite generally to general-equilibrium macro models. It lies at the heart of the papers on the zero lower bound outside the New Keynesian paradigm, notably Krugman (1998) and Korinek-Simsek (2014).

The quick and dirty explanation is that adding a central bank that sets an interest rate different from the equilibrium rate of a model, without removing an equation, results in an over-determined system of equations that has no solution.
Demand Gap Resulting from a Price and Wage above the Equilibrium Level

\[c = 1 - p \]

\[c = (1 - p)\lambda \]

Demand-gap unemployment
DEMAND-GAP UNEMPLOYMENT

A feasible path of the economy exists with prices satisfying the intertemporal equality condition (the consumption Euler equation) of the endowed households and with demand-gap unemployment in every period. The price trajectory is

\[p_t = \frac{p_T}{(1 + r)^{T-t}} \]

with \(p_T \) less than one but close enough that \(p_1 \geq z \)
Demand-gap unemployment

A feasible path of the economy exists with prices satisfying the intertemporal equality condition (the consumption Euler equation) of the endowed households and with demand-gap unemployment in every period. The price trajectory is

\[p_t = \frac{p_T}{(1 + r)^{T-t}} \]

with \(p_T \) less than one but close enough that \(p_1 \geq z \)

Then

\[a_t = \frac{p_T}{(1 + r)^{T-1}} \text{ for all } t \]
Demand-gap unemployment

A feasible path of the economy exists with prices satisfying the intertemporal equality condition (the consumption Euler equation) of the endowed households and with demand-gap unemployment in every period. The price trajectory is

\[p_t = \frac{p_T}{(1 + r)^{T-t}} \]

with \(p_T \) less than one but close enough that \(p_1 \geq z \)

Then

\[a_t = \frac{p_T}{(1 + r)^{T-1}} \text{ for all } t \]

Demand-gap unemployment is

\[u_t = \lambda - 1, \]

the excess of the labor force over maximum feasible employment.
Clashing theories of unemployment

The demand-gap level of unemployment along this path has no connection to the level from the DMP model of unemployment.
Clashing theories of unemployment

The demand-gap level of unemployment along this path has no connection to the level from the DMP model of unemployment.

The demand-gap model and the DMP model clash.
Search and Matching

As in the standard DMP model, jobseekers search for employment opportunities at firms. The searchers meet firms at random. The firm posts employment opportunities to attract jobseekers.
Search and Matching

As in the standard DMP model, jobseekers search for employment opportunities at firms. The searchers meet firms at random. The firm posts employment opportunities to attract jobseekers.

The flow cost of posting is k and the flow probability of matching is q. The probability that a jobseeker will encounter a posting is $\phi(q)$, a decreasing function.
Search and Matching

As in the standard DMP model, jobseekers search for employment opportunities at firms. The searchers meet firms at random. The firm posts employment opportunities to attract jobseekers.

The flow cost of posting is k and the flow probability of matching is q. The probability that a jobseeker will encounter a posting is $\phi(q)$, a decreasing function.

The number of postings is $V = \frac{\phi(q)}{q} U$, where U is the number of searchers. A reasonable specification for $\phi(q)$, based on the matching function $\alpha \sqrt{UV}$, is

$$\phi(q) = \frac{\alpha^2}{q}$$

.
Nash-bargained wage

The worker and the firm make a Nash bargain, with a fraction β of the surplus going to the worker.
Nash-bargained wage

The worker and the firm make a Nash bargain, with a fraction β of the surplus going to the worker.

To simplify the bargaining problem relative to the standard model of Mortensen and Pissarides, I assume that jobs last only one period and the worker’s outside option is to receive the non-work value z during that period.
Nash-bargained wage

The worker and the firm make a Nash bargain, with a fraction β of the surplus going to the worker.

To simplify the bargaining problem relative to the standard model of Mortensen and Pissarides, I assume that jobs last only one period and the worker’s outside option is to receive the non-work value z during that period.

The payoff to the firm from a match is the price p that the firm will earn in the consumption market.
The worker and the firm make a Nash bargain, with a fraction β of the surplus going to the worker.

To simplify the bargaining problem relative to the standard model of Mortensen and Pissarides, I assume that jobs last only one period and the worker’s outside option is to receive the non-work value z during that period.

The payoff to the firm from a match is the price p that the firm will earn in the consumption market.

The surplus from a match is $p - z$; the worker receives a fraction β of the surplus and the firm retains the rest.
Firms expand their efforts to find workers to the point of zero profit:

\[q(1 - \beta)(p - z) = k \]
Firms expand their efforts to find workers to the point of zero profit:

\[q(1 - \beta)(p - z) = k \]

The unemployment rate is

\[u = 1 - \frac{\alpha^2}{q} \]

.
The wage is

\[w = z + \beta(p - z) = \beta p + (1 - \beta)z \]
The wage is

\[w = z + \beta(p - z) = \beta p + (1 - \beta)z \]

The labor market imposes a functional relation between unemployment and the price:

\[u(p) = 1 - \frac{(1 - \beta)\alpha^2(p - z)}{k} \]
For simplicity, I assume that employment falls short of the level needed to convert all of the primary factor supplied by endowed households into consumption goods, by setting $\lambda = 0$
For simplicity, I assume that employment falls short of the level needed to convert all of the primary factor supplied by endowed households into consumption goods, by setting $\lambda = 0$.

The matching function for transactions between endowment households and firms is the minimum of the amount offered for conversion by households and the conversion capacity of firms, $1 - u$.
Product market

For simplicity, I assume that employment falls short of the level needed to convert all of the primary factor supplied by endowed households into consumption goods, by setting $\lambda = 0$

The matching function for transactions between endowment households and firms is the minimum of the amount offered for conversion by households and the conversion capacity of firms, $1 - u$

A matched household and firm make a Nash bargain for the price of consumption goods, p
Nash Bargain in the Product Market

The firm’s outside option is to sell to another household at the prevailing price, \bar{p}, but the firm faces a cost γ of breaking off bargaining with one household and starting up with another, so the outside option is worth $\bar{p} - \gamma$
Nash bargain in the product market

The firm’s outside option is to sell to another household at the prevailing price, \bar{p}, but the firm faces a cost γ of breaking off bargaining with one household and starting up with another, so the outside option is worth $\bar{p} - \gamma$

In period T, the household has no outside option because there are more households offering to trade their endowments for consumption goods than there are firms able to convert endowment goods to consumption goods, and no opportunity to invest the endowment at the central bank

Nash Bargain in the Product Market

The firm’s outside option is to sell to another household at the prevailing price, \(\bar{p} \), but the firm faces a cost \(\gamma \) of breaking off bargaining with one household and starting up with another, so the outside option is worth \(\bar{p} - \gamma \)

In period \(T \), the household has no outside option because there are more households offering to trade their endowments for consumption goods than there are firms able to convert endowment goods to consumption goods, and no opportunity to invest the endowment at the central bank.

The surplus from the potential trade is \(1 - (\bar{p}_T - \gamma) \).
The bargaining weight for the household is b
The bargaining weight for the household is b

The bargained price solves

$$1 - p_T = b[1 - (\bar{p}_T - \gamma)]$$
Nash bargain in period T, continued

The bargaining weight for the household is b

The bargained price solves

$$1 - p_T = b[1 - (\bar{p}_T - \gamma)]$$

In the symmetric equilibrium, where $\bar{p} = p$, the price is

$$p_T = 1 - \frac{b}{1 - b\gamma}.$$
Earlier periods

The endowed household has the option to invest its endowment at the central bank at rate \(r \) for \(\tau \) periods, and pay

\[
\frac{p_{t+\tau}}{1 - u_{t+\tau}}
\]

for conversion in period \(t + \tau \). The effective price is boosted by division by \(1 - u_{t+\tau} \) to account for the possibility that the household will not be matched to a firm.
EARLIER PERIODS, CONTINUED

The present value in period $t - 1$ of output purchased by saving in period $t - 1$ and purchasing in period $t + \tau$ is

$$X_{t,\tau} = \frac{p_{t+\tau}}{(1 + r)^\tau (1 - u(p_{t+\tau}))}.$$
The present value in period $t - 1$ of output purchased by saving in period $t - 1$ and purchasing in period $t + \tau$ is

$$X_{t,\tau} = \frac{p_{t+\tau}}{(1 + r)^\tau (1 - u(p_{t+\tau}))}.$$

The most advantageous outside option is

$$x_t = \min_{\tau} X_{t,\tau}.$$
Earlier periods, continued

This outside option for the household in period t is worth $1 - x_t$. If $x_t > 1$, it has no influence and the bargain becomes the same as in period T, in which case I redefine $x_t = 1$. The firm has the same option as in period T. The surplus is

$$S_{t-1} = 1 - (1 - x_t) - (\bar{p}_{t-1} - \gamma)$$
Earlier periods, continued

This outside option for the household in period t is worth $1 - x_t$. If $x_t > 1$, it has no influence and the bargain becomes the same as in period T, in which case I redefine $x_t = 1$. The firm has the same option as in period T. The surplus is

$$S_{t-1} = 1 - (1 - x_t) - (\bar{p}_{t-1} - \gamma)$$

The household’s payoff is

$$1 - p_{t-1} = bS + 1 - x_t$$

$$= b[1 - (1 - x_t) - (\bar{p}_{t-1} - \gamma)] + 1 - x_t. \quad (2)$$
Symmetric equilibrium

\[p_{t-1} = x_t - \frac{b}{1 - b}\gamma, \]

provided that \(p_t \geq \lambda \) for all \(t \)
Symmetric equilibrium

\[p_{t-1} = x_t - \frac{b}{1 - b} \gamma, \]

provided that \(p_t \geq \lambda \) for all \(t \)

Given \(p_T \), one can compute the equilibrium price path by backward recursion.
ILLUSTRATIVE PARAMETER VALUES

Efficiency of matching: $\alpha = 0.28$
Bargaining weight of jobseekers: $\beta = 0.5$
Bargaining weight of endowment households: $b = 0.5$
Firm’s cost of maintaining a posting of a vacancy: $k = 0.02$
Flow value of not working: $z = 0.5$
Number of years: $T = 10$
Central bank’s real interest rate: $r = 0.01$
Properties

Unemployment rate in all years is $u = 0.055$, a normal level for the U.S.
Properties

Unemployment rate in all years is $u = 0.055$, a normal level for the U.S.

Elasticity of the unemployment rate with respect to the product price is around 25, a value known to equip the model to turn small observed fluctuations in productivity into meaningful fluctuations in unemployment. The model’s reliance on Nash bargaining with equal bargaining weights—shown in Shimer (2005) to generate pathetically small fluctuations in unemployment—is offset by the model’s different specification of the matching process.
Properties

Unemployment rate in all years is $u = 0.055$, a normal level for the U.S.

Elasticity of the unemployment rate with respect to the product price is around 25, a value known to equip the model to turn small observed fluctuations in productivity into meaningful fluctuations in unemployment. The model’s reliance on Nash bargaining with equal bargaining weights—shown in Shimer (2005) to generate pathetically small fluctuations in unemployment—is offset by the model’s different specification of the matching process.
Paths of Unemployment and Consumption Price Induced by a Central-Bank Interest Rate of 0.01