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12.1 Alternating Direction Method of Multipliers (ADMM)

Suppose we start with an objective function

f(x) =
N∑
i=1

fi(x)

and we refer to fi() as the ith block of the objective function. This family of objective functions

can help solve a lot of different machine learning problems.

Now we define b, the number of machines we have access to, which is O(10, 000) (if we are

lucky). Then we have the number of features, M which is O(108).

In order to minimize the amount of communication between the machines, we reformulate the

problem as

min
N∑
i=1

fi(x)

s.t. ∀ixi − z = 0.

In this case, z is a global variable of dimension M . The xi are specific to the machine, so there

are b distinct xi.

We then run the following recursive algorithm:

x
(k+1)
i = argminxi

(
f(xi) + y

(k)T
i (x)i− x̄(k) +

p

2
‖xi − x̄(k)‖22

)
(1)

y
(k+1)
i = y

(k)
i + p

(
x
(k+1)
i − x̄(k+1)

)
(2)

z
(k+1)
i = x̄(k+1) (3)

NOTE: parenthesis are included to indicate that the superscripts are iteration markers, not

exponents.

12.2 Components of ADMM
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This solution requires x̄ to be re-computed every round. Reza will post a proof that it converges

to the website. The first term of the top equation:

f(xi) + y
(k)T
i (x)i− x̄(k)

is the Lagrangian term for a local minimization. Any of the standard optimization methods

will work.

The second term,

p

2
‖xi − x̄(k)‖22

is a penalty function to enforce the constraint that ∀ixi−z = 0. If the xi are far from x̄, it adds

to the sum and thus hurts the minimization. To guarantee convergence, the weight on the penalty

function, p, should be ”pretty large,” but does not need to go to ∞.

12.3 Calculating x̄ Using All Reduce

How do we calculate x̄(k)? It requires all of the xis, so it can’t be done on one machine. In

order to do this, we use an all reduce, an important function for getting averages of large variables.

Note that the computationally difficult part of calculating an average is the sum. to get the sum

in an all reduce, we add 2 variables on one machine and then pass our result to another machine

to add to another sum of two variables. We repeat this process until we have the sum of all the

variables. For example, if we have 8 variables, we can complete the addition in 3 rounds:
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x1 + x2 = x12

x3 + x4 = x34

x5 + x6 = x56

x7 + x8 = x78

x12 + x34 = x1234

x56 + x78 = x5678

x1234 + x5678 = xall

In this way, an all reduce requires log2(b) rounds to compute x̄.

12.4 Data Classification with ADMM

ADMM can be used for classification of data (ie. sorting emails as spam and not spam). In

order to use it, we define our data as a data point ai ∈ Rn and a classification bi ∈ [−1, 1]. We then

calculate

min

n∑
i=1

Loss(bi(a
T
i w + v)) + r(w))

where r(w) is a regularization term in either L1 or L2. We then use ADMM making each xi a
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training block of data.

12.5 Statistical Interpretation of ADMM

Maximum Likelihood Estimator: The maximum likelihood estimator, or MLE, given an

observed outcome x (or group of outcomes x1, x2, ..., xn) is the value of the set of unknown param-

eters of the random variable that would make the outcome most likely (examples of parameters:

the bounds of a uniform random variable, or the mean and variance of a Gaussian distribution.).

If we have a prior for the parameters, ie. a distribution that gives us a sense of the probability

that the parameters hold certain values, then the MLE is called a Maximum Aposteriori Esti-

mation (MAP).

An example that demonstrates both concepts: Suppose we have a coin with an unknown prob-

ability of landing heads, p, and we have observed it flipped 1, 000 times. Without a prior,

mle(xi) =
#heads

n

But if we have a prior about the value of p that estimation changes. As a trivial example, if I

tell you p = .85, then we will be able to know p from the prior (frankly, something of this example

must have been lost in my notetaking).

ADMM can be used to perform MAP with a prior

N (x̄k +
1

p
yki , pI)

12.6 Loose Ends

1. How do you do stochastic gradient descent in a distributed way?

Shuffle: take a random uniform draw for each item, send the first
1

b
to the machine 1...

Perform local optimization

Take the average

2. Note that the average of averages taken from sub-samples of the same size is equal to the

average of the whole sample.
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