MS&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014

http://msande317.stanford.edu.

Instructors: Ashish Goel and Reza Zadeh, Stanford University.

Lecture 14, 5/19/2014., Scribed by Amir Sadeghian.

Topics

- Approximating Cuts.
- Clustering.

Approximating Cuts

Remember the Sketch(S): Estimate the number of nodes that have an edge to a node in S. Define the following sketch, Sketch(S): Estimate the number of edges from S to (V - S) i.e. size of cut(S) in undirected graph G = (V, E) such:

$$\delta(S, V - S) = \{ e \in E : e \in S \times (V - S) \}$$

Our sketch should be able to compute Sketch($S1 \cup S2$) easily if S1 and S2 are disjoint. With above in mind we are looking for sketch: $\sigma(v) \in R, v \in V$ and want to say $\sigma(S) = \sum_{v \in S} \sigma(v)$. If (v, w) is an edge (assume nodes are integers) such:

$$\sigma((v,m)) = \begin{cases} \delta(sorted(v,w)) \text{ if } (v \le w) \\ -\delta(sorted(v,w)) \text{ if } (v > w) \end{cases}$$

And now: $\sigma(v) = \sum_{w:(v,w) \in E} \delta(v,w) \to \text{An edge } (v,w) \text{ will also be in } \sigma(w) \text{ as } (w,v).$

If S_1 and S_2 are disjoint then $\sigma(S_1 \cup S_2) = \sum_{v \in S_1 \cup S_2} \sigma(v) = \sum_{v \in S_1} \sigma(v) + \sum_{v \in S_2} \sigma(v) = \sigma(S_1) + \sigma(S_2)$

$$\sigma(S) \ = \ \sum_{v \in S} \sigma(v) \ = \ \sum_{v \in S} \sum_{w:(v,w) \in E} \sigma((v,w)) \ = \ \sum_{v \in S} \sum_{w:(v,w) \in E} \sigma((v,w)) \ + \ \sum_{v \in S} \sum_{w:(v,w) \in E} \sigma((v,w)) \ = \ \sum_{v \in S} \sum_{v \in S} \sum_{w:(v,w) \in E} \sigma((v,w)) \ = \ \sum_{v \in S} \sum_{v \in S$$

$$\sum_{v \in S} \sum_{w:(v,w) \in E} \sigma((v,w))$$

As we see from the above equation the elements in the second summation will cancel themselves out.

Set $\sigma(S) = \text{Normal variable}$ with mean 0 and variance $|\delta(S)|$. In this case $(\delta(S))^2$ is expectation of $|\delta(S)|$.

This sketch can be used in:

- Sparsifiers → Preserves all cuts simultaneously, also it stores small number of edges.
- Finding connected components in graphs.

Clustering

Clustering algorithm on N given nodes (V) and distance metric d(v, w).

Facility Location

Find
$$F \subseteq V$$
 to minimize $\underbrace{f}_{\text{facility cost}} + \sum_{v \in V} \min_{w \in F} \underbrace{d(v, w)}_{\text{service cost}}$
Goal is to build facilities at subset of V , with F cost of building a facility. We will build an

incremental algorithm for this problem:

Nodes arrive one at a time. At time t, node v_t arrives. Also F_t = set of facilities after node t arrives, with the following properties:

$$F_0 = \{\}, \quad F_t \subseteq F_{t+1}.$$

At each step the algorithm chooses v_t as facility with prob $\frac{\delta}{f}$ knowing $\delta = \min_{w \in F_{t-1}} d(v_t, w)$.

$$F_t = \begin{cases} F_{t-1} \cup \{v_t\} & \text{with prob } \frac{\delta}{f} \\ F_{t-1} & \text{otherwise} \end{cases}$$

Some algorithm notes

- Incremental (never revisit old decisions)
- Space and time per node depends on |F|
- Use LSH $\rightarrow \delta = min_{w \in F_{t-1}d(v_t,w)}$
- d(.,.) and V are chosen by adversary, but we will assume that nodes of V are presented in random order (random permutation model)!

Approximation factor

Prove that the algorithm is giving a close answer to optimal solution will be provided in the next lecture note.