
MS&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014

http://msande317.stanford.edu.

Instructors: Ashish Goel and Reza Zadeh, Stanford University.

Lecture 15, 5/21/2014. Scribed by Schuyler Smith.

15.1 Performance of our Incremental Facility Location Algorithm

Recall our algorithm for incremental facility location, which accepts node vt at time t and maintains

a set Ft of facilities:

1. Initialize F0 = {}.

2. For each vt, compute δvt = minw∈Ft−1 d(vt, w) (that is, the distance to the closest facility

we’ve already built).

3. Open a new facility at vt with probability
δvt
f , where f is the cost of opening a facility. That

is, Ft = Ft−1 ∪ {vt} with probability
δvt
f , and Ft = Ft−1 otherwise.

Define the optimal set of facilities for this problem to be F ∗ = {c∗1, . . . , c∗k}, define C∗i = {v | ∀j 6=
i, d(v, c∗i) < d(v, c∗j)} to be the sets of nodes that are “covered” by facility c∗i in the optimal solution,

and define a∗i =

∑
v∈C∗

i
d(v,c∗i)

|C∗i |
to be the average distance to c∗i among nodes in C∗i . Then the total

cost of the optimal solution is f |F ∗|+
∑

i a
∗
i · |C∗i |.

We will show that if we assume the nodes arrive in random order, then the expected cost of

the solution produced by our algorithm is within a constant factor of this optimal cost. We don’t

particularly care what this factor is, just that it exists.

Proof: We’ll consider each set of nodes C∗i separately. We know the nodes in C∗i will be

processed in some random order by our algorithm (and interleaved with all other nodes, which

don’t matter). First, split the nodes of C∗i into two sets: Let G∗i be the “good” nodes, the half that

are closest to c∗i , and let B∗i be the “bad” nodes, the other half.

First, consider G∗i . We can further break G∗i into two parts as described below. Hence, we have

three cases: two for G∗i and one for B∗i .

Case 1: Consider the nodes that arrive after a node g in G∗i has been chosen as a facility location

by our algorithm. Note this set may be empty. Let g′ be one of these nodes. Directly

from our algorithm we know the expected cost of g′ will be f · δg′f + δg′ ·
(

1− δg′
f

)
< 2δg′ .

Additionally, we know δg′ ≤ d(g, g′) since g is a facility already picked by our algorithm

and δg′ is the distance to the facility closest to g′. But then

2δg′ ≤ 2d(g, g′) ≤ 2
(
d(g, c∗i) + d(g′, c∗i)

)
≤ 2 (2a∗i + 2a∗i) = 8a∗i

since from Markov’s inequality we expect to find a node in B∗i within 2a∗i of c∗i (since a∗i is

the average distance to c∗i in all of C∗i) and all good nodes are closer than all bad nodes,

1

http://msande317.stanford.edu

so in expectation all good nodes, including g and g′, are within 2a∗i of c∗i .

Hence, the expected cost of each g′ is ≤ 8a∗i , which is a constant factor off from the

average cost a∗i of nodes in C∗i .

Case 2: Consider the nodes in G∗i that arrive before any have been chosen by our algorithm as

facility locations. Let δ1, . . . δk be their δ-values upon arrival. Then the expected cost of

the first node is δ1 (since we know it wasn’t chosen as a facility location). The expected

cost of the second node is δ2

(
1− δ1

f

)
(i.e. δ2 if the first node isn’t chosen as a facility

location, and otherwise we already analyzed the second node it in the first case). Similarly,

the expected cost of the third node is δ3

(
1− δ2

f

)(
1− δ1

f

)
(δ3 only if the first and second

nodes weren’t chosen as facility locations), and so on, so the expected cost of the kth node

is δk
∏k−1
i=1

(
1− δi

f

)
.

Hence, we expect the cost of all k nodes to be

δ1 + δ2

(
1− δ1

f

)
+ δ3

(
1− δ2

f

)(
1− δ1

f

)
+ . . .

which can be rewritten as

δ1 +

(
1− δ1

f

)[
δ2 +

(
1− δ2

f

)[
δ3 +

(
1− δ3

f

)
[δ4 + . . .]

]]
Define Si = δi +

(
1− δi

f

) [
δi+1 +

(
1− δi+1

f

)
[δi+2 + . . .]

]
, so S1 is the cost of all k nodes.

Then

Si = δi +

(
1− δi

f

)
Si+1 = δi + Si+1 − Si+1

δi
f

= Si+1 + δi

(
1− Si+1

f

)
so if Si+1 < f then Si > Si+1, and if Si+1 > f then Si < Si+1. Hence, as i decreases, Si
will tend toward f . Hence, the expected cost from this case will be about f .

Case 3: Now, we’ll consider nodes in B∗i . Here we’ll use our random-order assumption for the first

time. Consider the interleaving of bad and good nodes as they arrive: since it’s random

and we have an equal number of bad and good nodes, on average we’ll get streaks of two

bad or two good nodes in a row.

Hence, we expect to see about one bad node before we see any good nodes (we start

with a good node with probability 1
2 , or with a bad streak of length about 2 with proba-

bility 1
2). The expected cost of this bad node will be at most f .

Similarly, after each good node we encounter in the stream, we expect to see about one bad

node before the next good node. Suppose we get a bad node bk after good node gj . Then

the expected cost of this node will be δbk ≤ d(bk, gj) + δgj ≤ d(bk, c
∗
i) + d(gj , c

∗
i) + δgj , since

at worst we can go through gj to get to a nearby facility already picked by our algorithm.

2

But we already know this is ≤ d(bk, c
∗
i) + 2a∗i + δgj , where d(bk, c

∗
i) is just the optimal cost

for bk, 2a∗i is acceptable, and δgj is the expected cost of gj , which we’ve already shown is

acceptable.

Hence, the expected cost of our algorithm for the good nodes is at most f + (|G∗i | − k)8a∗i , and

the expected cost for the bad nodes is at most this again plus |B∗i |2a∗i plus the optimal cost of the

nodes in B∗i , plus f . This is all clearly within a constant factor of f + |C∗i |a∗i , the optimal cost for

the nodes in C∗i , so we’re done.

15.2 Implementing Locality Sensitive Hashing

Recall that we want our locality-sensitive hash function h to have parameters c, R, p1 and p2 such

that p1 ≤ Prob [h(x) = h(y) | d(x, y) ≤ R] and p2 ≥ Prob [h(x) = h(y) | d(x, y) > cR].

The correct hash family to use to implement h will depend on the underlying metric space.

We’ll present a family for l2. Recall that with the l2-norm, d(x, y) = ||x − y|| =
√∑D

i=1(xi − yi)2

where D is the dimension.

We can break a D-dimensional space into a linear set of ∆-width buckets in the following way:

1. Choose a (random) line R, and an offset δ ∈ [0,∆).

2. For each point x, project x onto R, so x→ π(x) = x ·R (where · is the inner/dot product).

3. Compute the integer n =
⌊
||π(x)||+δ

∆

⌋
.

4. Define h(x) = h′(n), where h′ is any suitable hash function on integers.

Hence, we partition space into many cylinders, each of height ∆ and infinite radius. The direction

of R determines the orientation of the cylinders, and all points in the same cylinder will hash to

the same value.

We can choose R = (r1, . . . rD) randomly by choosing ri ∈ N(0; 1).

Note that then π(x)−π(y) = x·R−y·R = (x−y)·R, which will be distributed as ||x−y||×N(0; 1),

so E
[
(π(x)− π(y))2

]
= ||x− y||2, so E [|π(x)− π(y)|] = ||x− y||.

Now, note that if |π(x)− π(y)| > ∆ then h(x) 6= h(y), otherwise h(x) = h(y) (i.e. x and y are

placed in the same cylindrical bucket) with probability 1− |π(x)−π(y)|
∆ . Hence, Prob [h(x) = h(y)] =

1− |π(x)−π(y)|
∆ = 1− ||x−y||∆ = 1− d(x,y)

∆ .

For example, let ∆ = 2cR. Then if d(x, y) < R then h(x) = h(y) with probability at least

1− R
∆ = 1− 1

2c , and if d(x, y) > cR then h(x) = h(y) with probability at most 1− cR
∆ = 1

2 .

15.3 PageRank

See the lecture slides.

3

	15.1 Performance of our Incremental Facility Location Algorithm
	15.2 Implementing Locality Sensitive Hashing
	15.3 PageRank

