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18 Social Search: Quick Estimate for Distance Between Nodes

18.1 Problem Statement

Goal: Develop an algorithm to provide us with a quick estimate for distance between two nodes

in a graph with an accuracy guarantee within 10%.

Sketch: We want to estimate the distance between nodes u, v. To do so, we will create a set,

S, of landmarks nodes that we select uniformly and at random, and keep track of which nodes in

S are closest to u and v (where d(., .) is defined as the shortest path distance in G in the specified

metric space):

d(v, S) = min
w∈S

d(v, w)

Then, d(v, w) ≈ d(v, S) + d(w, S).

18.2 Algorithm for Distance Sketch

Definition: Given G = (V,E) undirected, unweighted graph, define the algorithm as follows:

1. Sample sets Si of size 2i from the set of all nodes V uniformly at random without replacement,

where i ranges from 1 to blogNc. Note, |ΣSi| = 2N .

2. For each landmark set, Si, find the closest landmark to v li(v) = arg minw∈S{d(v, w)}. There-

fore, for all i we define our i-th distance estimate d̃i(v) = d(v, li(v)). The sketch for v is defined

as: {< l0(v), d̃0(v) >, ... < lblogNc(v), d̃blogNc(v) >}.

Note, if a node is in Si, its landmark is itself (li(v) = v) and d̃i(v) = 0.

3. If u and v have the same landmark in set Si then the distance between u and v is at

most Di(u) + Di(V ) by the triangle inequality for metric spaces. Otherwise, Si provides

no information for pair (u, v). The estimate for the distance between u and v is then:

d̃(u, v) = mini:liu=liv{d̃i(u) = d̃i(v)}

Note, steps (1) and (2) can be preprocessed. Step (3) is a query for a distance estimate between

two nodes. Step (3) will always return a non-zero d̃(v, w) because at very least l0(v) = l0(u)

(|S0| = 1).
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18.3 Accuracy and Efficiency

Here, we sketch the proof the following three claims about the accuracy and efficiency of the dis-

tance sketching algorithm. For a full proof, refer to actual paper [1]:

Claim 1: d̃(u, v) ≥ d(u, v)

Proof of Claim 1: This holds by the triangle inequality for d(., .) defined in metric spaces.

Claim 2: li(v) and d̃i(v) can be computed using blogNc breadth-first-searches.

Proof of Claim 2: Given Si, ∀ v ∈ V can compute li(v) and d̃i(v) using one BFS as follows:

• ∀w ∈ Si, li(w) = w & d̃i(w) = 0

• First step, keep track of all nodes, w1 one hop away from w ∈ Si. For all such nodes w1, set

landmark from Si and d̃i(w1) = 1. Mark {w1} as visited, not explored.

• Second step, keep track of all nodes, w2 one hop away from {w1}. For all such nodes w2 6∈
{w1}, set landmark as landmark of parent node in {w1} and d̃i(w2) = 2. Mark {w2} as

visited, not explored.

• Repeat until all nodes v ∈ V explored

And, as i ∈ {1, blogNc} → blogNc BFS required. Also, note that this BFS can be conducted as

semi-streaming algorithm, stream through M edges, O(N) space required.

Claim 3: ∃ c > 0 : Pr[d̃(u, v) ≥ 2 blogNc ∗ d(u, v)] ≤ c

With such a c, to improve performance of algorithm repeat process. In particular, repeat algorithm
2blogNc

c times then Pr[d̃(u, v) ≥ 2 blogNc ∗ d(u, v)] for all times ≤ (1− c)
2blogNc

c ≤ e−2blogNc ≤ 1
N2

Intuition for Claim 3: For nodes that are close, landmark estimate comes from dense set (small

neighborhood). For nodes that are far, landmark for distance estimates comes from sparse set (i.e.

one random node will do okay).

Proof of Claim 3:

1. For r = 1, 2, ..., blogNc and d = d(u, v) define:

Ar = {x : d(u, x) ≤ rd} all nodes in V at most rd away from u

Br = {x : d(v, x) ≤ rd} all nodes in V at most rd away from v

Note ∀i |Ar ∩Br| ≥ 2 because v ∈ Ai, Bi and w ∈ Ai, Bi

2. Case Analysis: Assume there exists an r ∈ {1, ..., blogNc} such that |Ar∩Br|
|Ar∪Br| ≥

1
2 . If ∃k such

that |Sk ∩ (Ar ∩Br)| = 1 and |Sk ∩ (Ar ∪Br)| = 1 then lk(u) ∈ Ar ∩Br and lk(v) ∈ Ar ∩Br

⇒ d̃(u, v) ≤ 2r ∗ d(u, v) and therefore d̃(u, v) = arg min d̃k(u, v) ≤ 2logN ∗ d(u, v). What is

the probability there exists such a k?

Define k = blog(|Ar ∩Br|)c for r in (1).
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Consider S obtained by picking every node in V independently and uniformly at random

with probability p (same as choosing without replacement).

P [|S ∩ (Ar ∪Br)| = |S ∩ (Ar ∪Br)| = 1] = |Ar ∩Br| ∗ p ∗ (1− p)|Ar∩Br|−1 ≥ kp
2 (1− p)k−1

⇒ if we can choose p = 1
k → P [|S ∩ (Ar ∪Br)| = |S ∩ (Ar ∪Br)| = 1] ≥ 1

2e

But, because as we construct Si for i ∈ 1, ..., blogNc we are trying every value of p.

So, ∃i : P [|Si ∩ (Ar ∪Br)| = |Si ∩ (Ar ∪Br)| = 1] ≥ c

Si constructed geometrically → c = 1
4e .

3. Prove ∃r ∈ {1, ..., blogNc} such that (2) holds by contradiction.

Observe that Ar ∪Br ⊂ Ar+1 ∩Br+1 by triangle inequality.

⇒ ∀r ∈ {1, ..., blogNc} |Ar∩Br|
|Ar+1∩Br+1| <

1
2 by 2

⇒ |A2 ∩B2| > 2 ∗ |A1 ∩B1| ... |AblogNc ∩BblogNc| > 2 ∗ |AblogN−1c ∩BblogN−1c|

⇒ |AblogNc ∩BblogNc| > 2blogN−1c ∗ |A1 ∩B1| by telescoping

⇒ |AblogNc ∩BblogNc| > 4blogN−1c by |A1 ∩B1| ≥ 2

⇒ |AblogNc ∩BblogNc| > N contradiction .

Therefore, repeating the distance sketching algorithm provides an estimate of the distance be-

tween any two points that is upper bounded by 2logN ∗d(u, v) with an exponentially low probability

of failure.
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