MS\&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014

http://msande317.stanford.edu.
Instructors: Ashish Goel and Reza Zadeh, Stanford University.
Lecture 2, 04/02/2014. Scribed by Nicole Tselentis.

1. Intro

Map Reduce Reminder

Performance measures

Triangle Counting Sequentially
Triangle Counting on M.R.
Analysis: Shuffle Size, Redirecting complexity

2. Map Reduce

Mappers take in data and emit pairs
Reducers get all pairs with the same key

3. MR Bottlenecks, Performance Measures

Reduce-key complexity: traditional single machine work mode.

Shuffle size: (not used to this one). Total number of pairs emitted in the map phase.
Shuffling happens between the map and the reduce phase.
Given graph $G(V, E), n$ nodes and m edges, this graph is sparse. $m=O(n)=c n$.
Let "clustering coefficient" = number of triangles $/\binom{n}{3}$
where $\binom{n}{3}=$ number of possible triangles.

4. Counting triangles on a single machine: Node iterator algorithm

$T=0$.
For each $v \in V$, for $u, w \in \Gamma^{*}(v)$, i.e. "pairs of nodes in neighborhood of v "
if $(u, w) \in E$ and $\operatorname{deg}(u) \leq \operatorname{deg}(v) \leq \operatorname{deg}(w)$
$\mathrm{T}=\mathrm{T}+1$
Number of computations $=\sum_{v \in V}\binom{\operatorname{deg}(v)}{2}$

If highly connected node exists, then this is at least $\Omega\left(n^{2}\right)$.

Every triangle will be counted by the node with the lowest degree.
Want: $\operatorname{deg}(v) \leq \operatorname{deg}(w)$ and $\operatorname{deg}(v) \leq \operatorname{deg}(u)$
Define: Γ^{*} as neighborhood of v consisting of only higher degree nodes.

So now, don't need this:

$$
\operatorname{deg}(u) \leq \operatorname{deg}(v) \leq \operatorname{deg}(w)
$$

And do:

$$
T=T+1 / 2
$$

Now, \# of computations is:

$$
\sum_{v \in V}\binom{\operatorname{deg}^{*}(v)}{2}
$$

Use threshold t :

$$
\begin{aligned}
\sum_{\operatorname{deg}(v) \leq t}\binom{\operatorname{deg}^{*}(v)}{2} & \leq \sum_{\operatorname{deg}(v) \leq t} \operatorname{deg}^{*}(v)^{2} \\
& \leq \sum_{\substack{v \in V \\
\operatorname{deg}(v) \leq t}} t \operatorname{deg}^{*}(v) \leq 2 m t
\end{aligned}
$$

There are at most $2 m / t$ nodes with $\operatorname{deg} \geq t$.

$$
\sum_{\substack{v \in V \\ \operatorname{deg}(v)>t}}\binom{\operatorname{deg}^{*}(v)}{2} \leq\left(\frac{2 m}{t}\right)^{3}
$$

Note: handshake lemma from graph theory $\sum_{v} \operatorname{deg}(v)=2 m$, and that t is arbitrary.

$$
\sum\binom{\operatorname{deg}^{*}(v)}{2} \leq\left(\frac{2 m}{t}\right)^{3}+2 m t=O\left(m^{3 / 2}\right), \text { setting } t=\sqrt{m}
$$

So, runtime went from $O\left(n^{2}\right)$ to $O\left(m^{3 / 2}\right)$ which is great for a sparse graph.

Let "high degree node" be a node with degree $>\sqrt{m}$.
This algorithm can be used to list all triangles.

$$
\begin{gathered}
m=O(n) \\
O\left(m^{3 / 2}\right)
\end{gathered}
$$

$$
\begin{gathered}
m=\frac{\sqrt{n}}{2}+n+\sqrt{n}=O(n) \\
\text { so } T=\Omega\binom{\sqrt{n}}{3}
\end{gathered}
$$

5. Edgeless Format

$$
(u, v) \in E \text { is the input to mappers }
$$

6. Map Reduce for Computing Neighborhoods

$\operatorname{map}((u, v))$
$\operatorname{emit}(u, v)$
$\operatorname{emit}(v, u)$
reduce $(v, \Gamma(v))$
for $(u, w) \in \Gamma(v)$
output $((u, w) \rightarrow v)$

Use ordering:
$\operatorname{map}((u, v))$
if $\operatorname{deg}(u) \leq \operatorname{deg}(v)$:
$\operatorname{emit}(u, v)$
else:
$\operatorname{emit}(v, u)$
reduce $\left(v, \Gamma^{*}(v)\right)$

$$
\begin{aligned}
& \text { for }(u, w) \in \Gamma^{*}(v) \\
& \quad \text { output }((u, w) \rightarrow v)
\end{aligned}
$$

Now, number of operations in reduce is $O(\sqrt{m})$.
If node v is of low degree:
the reduce key complexity is at most $\binom{\sqrt{m}}{2} \rightarrow O(\sqrt{m})$.
Else if v is high degree:
Reduce key complexity is $\binom{\sqrt{m}}{2} \rightarrow O(\sqrt{m})$.
And, shuffle size is number of edges $\rightarrow O(m)$. Output of MR gives two hop paths.

7. But, what if the graph is not sparse?

Let $A_{i j}$ be an adjacency matrix.
$A_{i j}^{3}=$ number of paths of length 3 between.

We can do matrix multiplication $O\left(n^{\gamma}\right)$ where $\gamma=2.374$.
$A_{i j}^{3} / 6$ counts number of triangles.
Before, we had algorithm $O\left(m^{1.5}\right)$ and now it's $O\left(m^{1.4}\right.$. See also Alon et al. 1997.

8. Next class

Compute cosine similarities

Generalize to squaring a matrix

This Friday is Spark Workshop

