
MS&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014

http://msande317.stanford.edu.

Instructors: Ashish Goel and Reza Zadeh, Stanford University.

Lecture 3, 4/7/2014. Scribed by Susan Tu.

Lecture topics:

• Computing ATA for tall/skinny and sparse A

• Computing SVD for A

• Combiners

4 Naive approach to computing ATA

Let A be an m × n matrix, where m ≥ n. Each row of A has at most l nonzero values. As a

motivating example, suppose each column of A represented a movie, and each row a user. If the

user likes a movie, a 1 is recorded in that column, otherwise it’s a 0.

A =

a1 a2 a3 . . . an

 (1)

Then in order to find similar movies, we need to look for similar ai, aj . We can use cosine

similarity, cos(ai, aj), to measure this. (Recall the definition of cosine similarity: cos(x, y) =
xT y
|x|2|y|2 .)

With MapReduce, we probably want to slice A across machines at row boundaries. Let r1, r2,

..., rm be the rows of A.

Map (ri)

f o r a l l (aij , aik) ∈ ri
Emit ((j, k)→ (aij ∗ aik)) // only emit i f nonzero

Reduce ((j, k), < v2, v2, ..., vR >)

Output (
∑R

i=1 vi)

The shuffle size is O(ml2) since there are m rows and each row has at most l2 nonzero pairs.

The reduce-key operation takes O(m) time and space (consider two extremely similar movies) .

5 Probabilistic approach to computing ATA

Let’s modify the previous algorithm:

1

http://msande317.stanford.edu

Map (ri)

f o r a l l (aij , aik) ∈ ri
With p r o b a b i l i t y min(γ

|aj |2|ak|2 , 1)} Emit ((j, k)→ (aij ∗ aik))

Reduce ((j, k), < v2, v2, ..., vR >)

i f (γ
||aj ||||ak|| > 1)

Output (1
||aj ||||ak||

∑R
i=1 vi)

e l s e

Output (1/γ
∑R

i=1 vi)

Intuitively, the more popular a column is, the less likely it is to be sampled.

Claim 5.1 E[output] = 1
||aj ||||ak||a

T
j ak.

We’re going to show that this adaptive sampling approach will remove the dependence on m.

Claim 5.2 Expected shuffle size is O(γnL)

Let #(x, y) be the number of dimensions in which both x and y are both nonzero.

Let’s compute the shuffle size (note that the innermost of the three summations is summing over

all the mappers):
n∑
i=1

n∑
j=1

m∑
k=1

Pr[Emit((i, j))] =

n∑
i=1

n∑
j=1

#(ai, aj)
γ

||ai||||aj ||

≤
n∑
i=1

n∑
j=1

#(ai, aj)
γ√

#(ai)
√

#(aj)

≤ γ

2

n∑
i=1

n∑
j=1

#(ai, aj)(
1

#(ai)
+

1

#(aj)
) Using AM-GM

= γ
n∑
i=1

n∑
j=1

#(ai, aj)
1

#(aj)

= γ
n∑
i=1

1

#(ai)

n∑
j=1

#(ai, aj)

≤ γ
n∑
i=1

1

#(ai)
#(ai)l Using the sparsity assumption

= γnl

Expected reduce-key space and time complexity is O(γ).

6 Computing the SVD of A

How do we leverage the previous algorithm to compute the singular value decomposition of A?

Recall that this means that we want to find U , Σ, and V where A = UΣV T . Since ATA =

2

V ΣUTUΣV T = V Σ2V T , we can first compute V and Σ on a single machine. Both are reasonably

small (O(n2) and O(n)). Now we can compute U = AV Σ−1.

7 Setting γ

For how to set γ, see http://stanford.edu/~rezab/papers/dimsum.pdf. (For example, to pre-

serve cosine similarities that are ≥ S, set γ = Ω(log(n)S). To obtain the singular values of A within

relative error ε, set γ = Ω(n2/ε).

8 Combiners

Combiners are an optimization that can be used when the reduce operation is commutative and

associative (e.g., sum, min, max). They allow mappers to reduce as far as possible before com-

muncating with other machines. For our ATA computation (done the naive way), for example,

they allow us to emit a ”partial” n× n-dimensional ATA. If there are k mappers, then, the shuffle

size is O(n2k).

References

[1] R. Zadeh and G. Carlsson ”Dimension Independent Matrix Square using MapReduce.” http:

//stanford.edu/~rezab/papers/dimsum.pdf

3

http://stanford.edu/~rezab/papers/dimsum.pdf
http://stanford.edu/~rezab/papers/dimsum.pdf
http://stanford.edu/~rezab/papers/dimsum.pdf

	4 Naive approach to computing ATA
	5 Probabilistic approach to computing ATA
	6 Computing the SVD of A
	7 Setting
	8 Combiners

