MS&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014
http://msande317.stanford.edul
Instructors: Ashish Goel and Reza Zadeh, Stanford University.

Lecture 4, 4/9/2014. Scribed by Burak Yavuz.

4.1 Outline
1. Matrix Vector Multiply (Av)
2. PageRank

e on MapReduce
e on RDD’s / Spark

4.2 Matrix Vector Multiplication on MapReduce

We have a sparse matrix A stored in the form < 4,j,a;; >, where 7,j are the row and column
indices and a vector v stored as < j,v; >. We wish to compute Av.
For the following algorithm, we assume v is small enough to fit into the memory of the mapper.

Algorithm 1 Matrix Vector Multiplication on MapReduce
: function MAP(< 4,7, a;5 >)

1

2 Emit(i, a;;v[j])

3: end function

4: function REDUCE(key,values)
5: ret < 0

6 for val € values do

7 ret < ret + val

8: end for

9: Emit(key, ret)

10: end function

4.3 PageRank

For a graph G with n nodes, we define the transition matrix Q@ = D™'A, where A € R™*" is the
adjacency matrix and D € R™™™ is a diagonal matrix composed of the outgoing edges from each
node.

We use Power Iteration to estimate importance values for webpages as v+ = () Q, where
v € R" is a row vector, and k is the number of iterations. We set v(?) = 1, a vector with each

element equaling one.


http://msande317.stanford.edu 

Figure 1: Graph G
Using @ as the probability distribution for random walks is a problem when G contains dead-
ends, i.e. “sink” nodes (nodes 2 and 7 in Figure . We introduce the idea of random teleports.

With probability «, the random walker can teleport to a random webpage or continue walking with
probability 1 — a where 0 < a < 1. Then we have a new matrix:

P=(1-a)Q+aA

where

- - nxn
and a € R™ is composed of the probability distribution of teleporting to a webpage.
The Power Iteration applies again: kD) = z(k) Q.

Theorem 4.1
I — o8]y < ek

for some constant a > 0.

According to for n = 10°, around 9 iterations are enough to get correct ranking.

4.3.1 PageRank on MapReduce

P is stored as <'4,{(j, P;j)} >, where >, P;; = 1,Vi € [1,n].
(k)

S >
(2
We use a two-step algorithm:

Step 1:

Annotate P; with v;, i.e. Emit < i,v;,{(J, P;;)} >.

Step 2:

v is stored as < i, v



Algorithm 2 PageRank Computation on MapReduce, Step 2

: function MAP(< i, v, {(J, Pij)} >)
for (j,P;;) € links do
Emit(j, szvl(k))
end for

: function REDUCE (key,values)
(k+1)
Y; - Zvaalues v
Emit (i, 0" "")

1
2
3
4
5: end function
6
7
8
9: end function




	4.1 Outline
	4.2 Matrix Vector Multiplication on MapReduce
	4.3 PageRank
	4.3.1 PageRank on MapReduce


