
MS&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014

http://msande317.stanford.edu.

Instructors: Ashish Goel and Reza Zadeh, Stanford University.

Lecture 4, 4/9/2014. Scribed by Burak Yavuz.

4.1 Outline

1. Matrix Vector Multiply (Av)

2. PageRank

• on MapReduce

• on RDD’s / Spark

4.2 Matrix Vector Multiplication on MapReduce

We have a sparse matrix A stored in the form < i, j, aij >, where i, j are the row and column

indices and a vector v stored as < j, vj >. We wish to compute Av.

For the following algorithm, we assume v is small enough to fit into the memory of the mapper.

Algorithm 1 Matrix Vector Multiplication on MapReduce

1: function map(< i, j, aij >)

2: Emit(i, aijv[j])

3: end function

4: function reduce(key,values)

5: ret ← 0

6: for val ∈ values do

7: ret ← ret + val

8: end for

9: Emit(key, ret)

10: end function

4.3 PageRank

For a graph G with n nodes, we define the transition matrix Q = D−1A, where A ∈ Rn×n is the

adjacency matrix and D ∈ Rn×n is a diagonal matrix composed of the outgoing edges from each

node.

We use Power Iteration to estimate importance values for webpages as v(k+1) = v(k)Q, where

v ∈ Rn is a row vector, and k is the number of iterations. We set v(0) = 1, a vector with each

element equaling one.

1

http://msande317.stanford.edu 


1

2 3

45

67

Figure 1: Graph G

Using Q as the probability distribution for random walks is a problem when G contains dead-

ends, i.e. “sink” nodes (nodes 2 and 7 in Figure 1). We introduce the idea of random teleports.

With probability α, the random walker can teleport to a random webpage or continue walking with

probability 1− α where 0 < α < 1. Then we have a new matrix:

P = (1− α)Q+ αΛ

where

Λ =



−−− λ −−−
−−− λ −−−

·
·
·

− − − λ −−−


n×n

and α ∈ Rn is composed of the probability distribution of teleporting to a webpage.

The Power Iteration applies again: π(k+1) = π(k)Q.

Theorem 4.1

‖π − v(k)‖2 ≤ e−ak

for some constant a > 0.

According to 4.1, for n = 109, around 9 iterations are enough to get correct ranking.

4.3.1 PageRank on MapReduce

P is stored as < i, {(j, Pij)} >, where
∑

j Pij = 1, ∀i ∈ [1, n].

v is stored as < i, v
(k)
i >.

We use a two-step algorithm:

Step 1:

Annotate Pi with vi, i.e. Emit < i, vi, {(j, Pij)} >.

Step 2:

2



Algorithm 2 PageRank Computation on MapReduce, Step 2

1: function map(< i, vi, {(j, Pij)} >)

2: for (j, Pij) ∈ links do

3: Emit(j, Pijv
(k)
i )

4: end for

5: end function

6: function reduce(key,values)

7: v
(k+1)
i =

∑
v∈values v

8: Emit (i, v
(k+1)
i )

9: end function

3


	4.1 Outline
	4.2 Matrix Vector Multiplication on MapReduce
	4.3 PageRank
	4.3.1 PageRank on MapReduce


