MS&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014

http://msande317.stanford.edu.

Instructors: Ashish Goel and Reza Zadeh, Stanford University.

Lecture 4, 4/9/2014. Scribed by Burak Yavuz.

4.1 Outline

- 1. Matrix Vector Multiply (Av)
- 2. PageRank
 - on MapReduce
 - on RDD's / Spark

4.2 Matrix Vector Multiplication on MapReduce

We have a sparse matrix A stored in the form $\langle i, j, a_{ij} \rangle$, where i, j are the row and column indices and a vector v stored as $\langle j, v_j \rangle$. We wish to compute Av.

For the following algorithm, we assume v is small enough to fit into the memory of the mapper.

Algorithm 1 Matrix Vector Multiplication on MapReduce

```
1: function MAP(< i, j, a_{ij} >)
2: Emit(i, a_{ij}v[j])
3: end function
4: function REDUCE(key,values)
5: ret \leftarrow 0
6: for val \in values do
7: ret \leftarrow ret + val
8: end for
9: Emit(key, ret)
10: end function
```

4.3 PageRank

For a graph G with n nodes, we define the transition matrix $Q = D^{-1}A$, where $A \in \mathbb{R}^{n \times n}$ is the adjacency matrix and $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix composed of the outgoing edges from each node.

We use Power Iteration to estimate importance values for webpages as $v^{(k+1)} = v^{(k)}Q$, where $v \in \mathbb{R}^n$ is a row vector, and k is the number of iterations. We set $v^{(0)} = \mathbf{1}$, a vector with each element equaling one.

Figure 1: Graph G

Using Q as the probability distribution for random walks is a problem when G contains deadends, i.e. "sink" nodes (nodes 2 and 7 in Figure 1). We introduce the idea of random teleports. With probability α , the random walker can teleport to a random webpage or continue walking with probability $1 - \alpha$ where $0 < \alpha < 1$. Then we have a new matrix:

$$P = (1 - \alpha)Q + \alpha\Lambda$$

where

$$\Lambda = \begin{bmatrix} --- & \lambda & --- \\ --- & \lambda & --- \\ & \cdot & \\ & \cdot & \\ --- & \lambda & --- \end{bmatrix}_{n \times r}$$

and $\alpha \in \mathbb{R}^n$ is composed of the probability distribution of teleporting to a webpage.

The Power Iteration applies again: $\pi^{(k+1)} = \pi^{(k)}Q$.

Theorem 4.1

$$\|\pi - v^{(k)}\|_2 < e^{-ak}$$

for some constant a > 0.

According to 4.1, for $n = 10^9$, around 9 iterations are enough to get correct ranking.

4.3.1 PageRank on MapReduce

P is stored as $\langle i, \{(j, P_{ij})\} \rangle$, where $\sum_{j} P_{ij} = 1, \forall i \in [1, n]$. v is stored as $\langle i, v_i^{(k)} \rangle$.

We use a two-step algorithm:

Step 1:

Annotate P_i with v_i , i.e. Emit $\langle i, v_i, \{(j, P_{ij})\} \rangle$.

Step 2:

```
Algorithm 2 PageRank Computation on MapReduce, Step 2
```

```
1: function MAP(< i, v_i, \{(j, P_{ij})\} >)
2: for (j, P_{ij}) \in \text{links do}
3: Emit(j, P_{ij}v_i^{(k)})
4: end for
5: end function
6: function REDUCE(key, values)
7: v_i^{(k+1)} = \sum_{v \in \text{values}} v
8: Emit (i, v_i^{(k+1)})
9: end function
```