MS\&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014

http://msande317.stanford.edu.
Instructors: Ashish Goel and Reza Zadeh, Stanford University.
Lecture 5, 4/16/2014. Scribed by Nicolas Genain.

6 Sketches

6.1 Definition

Sketeches are a useful "summary" of a set S. More formally,
Definition : A sketch is a couple $<\sigma, \tau>$ where, for any sets S_{1}, S_{2}, the following property is verified : $\sigma\left(S_{1} \cup S_{2}\right)=\tau\left(\sigma\left(S_{1}\right), \sigma\left(S_{2}\right)\right)$.

A few exaples where sketches are useful Sketches are very useful for map-reduce jobs. For instance if we want to to the job

```
\(\overline{\text { MAP }:<a, b>}\)
emit \(\langle a, b\rangle\)
REDUCE: \(<a,\left\{b_{1}, \ldots, b_{K}\right\}>\)
emit \(<a, f\left(\left\{b_{1}, \ldots, b_{K}\right\}\right)>\)
```

Using a skeths allows us to use a combibner and diminish the shuffle size.
Now the reduce phase is:

```
REDUCE: < a,(\sigma(S S ),\ldots,\sigma(SJ))
emit <a,f(\tau(\sigma(\mp@subsup{S}{1}{}),\ldots,\sigma(\mp@subsup{S}{J}{}))>
```

Sketeches are also useful in a streaming environment. Suppose we need to compute at time t on the whole stream. We would like to compute $f\left(\left\{a_{1}, \ldots, a_{t}\right\}\right)$. With sketches we can easily do

Initialization: $\sigma(\})$
At time t: update $\tau\left(\sigma\left(S_{t-1}\right), \sigma\left(a_{t}\right)\right)$

6.2 Desirable qualities

To be useful, a sketch should have the following properties :

- Computing sigma should be linear
- We should be able to estimate f efficiently and accurately from σ
- σ should be small
- τ should be efficient

6.3 A few reminders

Linearity of the Expectation

If X_{1}, X_{2} are random variables then $E\left[X_{1}+X_{2}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]$

Markov inequality

If X is a positive or null random variable then $\mathbb{P}(X>c E[X])<\frac{1}{c}$

Chernoff bounds

If $S=\sum_{i=1}^{k} X_{i}$ where X_{i} are independent random variables drawn from a Bernouilli distribution, then

$$
\mathbb{P}(S<(1-\delta) \mu) \leq e^{\frac{-\delta^{2} \mu}{2}}
$$

And

$$
\mathbb{P}(S>(1+\delta) \mu) \geq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

We can see in the second inequality that as $\delta \longrightarrow 0$ the right hand side is equivalent to $e^{\frac{-\delta^{2} \mu}{2}}$

6.4 First example of a Sketch

We would like to find a sketch for the function : $f(S)=$ uniform sample from S .
Attempt $1 \quad \sigma(S)=$ uniform sample from S and $\tau\left(\sigma\left(S_{1}\right), \sigma\left(S_{2}\right)\right)$ a random choice from $\sigma\left(S_{1}\right), \sigma\left(S_{2}\right)$ That doesn't work if the size of the sets are different.

Attempt 2 To counter the flaw of the first attempt, we can try to modify τ and σ by keeping the size of the sample in memory :

$$
\sigma(S)=<\text { uniform sample of } S,|S|>
$$

And $\left.\left.\tau\left(<v_{1}, s_{1}\right\rangle,<v_{2}, s_{2}\right\rangle\right)$ gives $\left\langle v_{1}, s_{1}\right\rangle$ with $।=\frac{s_{1}}{s_{1}+s_{2}}$ and $\left.<v_{2}, s_{2}\right\rangle$ with । $=\frac{s_{2}}{s_{1}+s_{2}}$
This method doesn't work if the sets $\sigma\left(S_{1}\right), \sigma\left(S_{2}\right)$ aren't disjoint. To give a proper solution, we need to define the notion of a Consistent random Hash function.

Consistent random Hash function

A Consistent random Hash function $h(x)$ verifies

- $h(x)$ follows a uniform law on $[0,1]$
- $h(x)$ and $h(y)$ are independent for any $x \neq y$
- $h(x)$ returns the same calue each time for a given x

For instance, in any modern programmation language, one could write :

```
def h(x)
srand (x)
return rand()
```

We are now ready to give the solution

Solution

Let h be a Consistent random Hash function. We define

$$
\sigma(S)=\operatorname{argmin}_{x \in S} h(x)
$$

and

$$
\tau\left(\sigma_{1}, \sigma_{2}\right)=\operatorname{argmin}_{x \in \sigma_{1}, \sigma_{2}} h(x)
$$

This two functions define a sketch and give an accurate response to our problem.

6.5 Second example of a sketch

In this case we consider a streaming example a_{1}, \ldots, a_{t} and try to evaluate the frequency of each item in the stream $f_{t}(a)=\left|\left\{i \leq t \mid a_{i}=a\right\}\right|$ and we also define the $k^{\text {th }}$ frequency moment

$$
F_{k}(t)=\sum_{a \in V}\left(f_{t}(a)\right)^{k} k>0
$$

and $F_{0}(t)$ as the number of distinct values in the stream seen at time t.

