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7 Sketches applications

7.1 Estimating the number of distinct elements in a stream

Sketch definition For a stream S = a0, a1, . . . , at we defined Fk(t) =
∑

a∈V |ft(a)|k, and particu-

larly F0(t) the number of distinct elements seen in the stream at time t: F0(t) = |{a0, . . . , at}| = |S|.

The sketch Min− Sketch(S) =< m1(S), . . . ,mJ(S) > where mj(S) = mina∈S hj(a) can help

us estimate that number.

Recall the consistent hash functions are such that hj(a) follows a uniform distribution over

[0, 1] and the random variables hi(a), hj(b) are independent if either i 6= j or a 6= b. They can be

implemented as hj(a) = h(j, a) with the following pseudo-code:

def h(j, a)

srand (j, a)

return rand()

Sketches can be combined together by:

τ(Min− Sketch(S1),Min− Sketch(S2)) =< min(m1(S1),m1(S2)), . . . ,min(mJ(S1),mJ(S2)) >

Example S = {1, 5, 7, 8, 9, 1}, J = 3

a h1 h2 h3

1 .085 .138 ...

5 .865 .464 ...

7 .274 .841 ...

8 .399 .833 ...

9 .368 .109 ...

=⇒Min− Sketch(S) =< .085, .109, ... >

Estimating F0 from the sketch The most natural estimator involves the mean:

Estimatormean = mean(
1

m1(S)
, . . . ,

1

mJ(S)
)

but this estimator has a large variance, while taking the median can offset some of the variability:
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Estimatormedian =
ln(2)

median(m1(S), . . . ,mJ(S))

The median lemma gives a confidence interval for the median of iid. random variables. It will

also explain the origin of the ln(2) normalization factor.

7.2 The Median lemma

For a random variable Z, let G(x) = Pr(Z > x) denote the residual density function.

With these notations, Median(Z) = G−1(1/2)

Theorem 7.1 The median lemma

There exists a constant c such that:

for all δ ∈ (0, 1/2) (accuracy) and for all ε ∈ (0, 1/2) (error probability), for all J > c
δ2

ln(1ε )

If Z1, . . . , ZJ are iid random variables of residual density G,

Pr
(
median(Z1, . . . , ZJ) ∈ [G−1(1/2 + δ), G−1(1/2− δ)]

)
≥ 1− 2ε

Proof: Let’s proove that Pr
(
median(Z1, . . . , ZJ) < G−1(1/2 + δ)

)
≤ ε

We define the iid Bernouilli variables :

Yj =

{
1 if Zj < G−1(1/2 + δ)

0 otherwise

By definition of G we have:

Pr(Zj < G−1(1/2 + δ)) = 1−G(G−1(1/2 + δ)) = 1/2− δ

and therefore:

µ = E(Y1 + ...+ YJ) = J(1/2− δ) =
J

2
(1− 2δ)

By definition of a median we have:

median(Z1, . . . , ZJ) < G−1(1/2 + δ)⇐⇒ Y1 + . . .+ YJ ≥
J

2

which implies the necessary condition:

median(Z1, . . . , ZJ) < G−1(1/2 + δ) =⇒ Y1 + . . .+ YJ ≥
J

2
(1− 2δ)(1 + 2δ) = µ(1 + 2δ)

Hence applying the Chernoff bound yields:

Pr
(
median(Z1, . . . , ZJ) < G−1(1/2 + δ)

)
≤ exp(−.38(

J

2
(1− 2δ))(2δ)2) ≤ exp(−Jδ

2

c
)

For some constant c. Given our choice of J we finally get the desired result:

Pr
(
median(Z1, . . . , ZJ) < G−1(1/2 + δ)

)
≤ exp(− ln(

1

ε
)) = ε
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Remark 7.1 The condition J > c
δ2

ln(1ε ) shows that the median lemma is efficient to bound the

probability error (ln(1ε ) term) but not to get a precise accuracy ( 1
δ2

term).

Application to the F0 estimate Estimator = ln(2)
median(m1(S),...,mJ (S))

G(x) = Pr(m1(S) > x) = Pr(∀a ∈ S, h1(a) > x) (1)

= Pr(h1(a0) > x)|S| (2)

= (1− x)|S| (3)

where in (1) we used m1(S) = mina∈S h1(a), in (2) we used the independency of the random hash

functions, and in (3) we use the fact that h1(a0) follows a uniform [0, 1] distribution.

Then since (1− x)|S| = 1/2⇐⇒ x = ln(2)
|S| , the median of m1(S) is G−1(1/2) = ln(2)

|S| . It follows

from the median lemma that with high probability median(m1(S), . . . ,mJ(S)) will be close to ln(2)
|S| ,

which in turns implies that our estimator will be close to |S| = F0(S).

Possible concrete applications

• Estimating the number of unique viewers of tweets you make. Taking advantage of the fact

that sketches can be computed in parallel on different machines and then combined together.

• Estimating the number of visits on your website that bidding on a collection of adwords would

bring you.

7.3 The Min-Hash technique (for computing Jacquard Similarity)

Definition of the Jacquard similarity

JS(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

Estimating the Jacquard Similarity

mj(S) =< mina∈Shj(a), argmina∈Shj(a) >

This random variable has the following desirable property: Pr(m1(S1) = m1(S2)) = JS(S1, S2).

Therefore we can estimate the Jacquard Similarity from our previous Min− Sketch:

JSestimate(Min− Sketch(S1),Min− Sketch(S2)) =
1

J
|{j such that mj(S1) = mj(S2)}|
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