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7 Sketches applications

7.1 Estimating the number of distinct elements in a stream

Sketch definition For a stream S = ag, ay, . . ., a; we defined Fy(t) = >,y | fi(a)|¥, and particu-
larly Fy(t) the number of distinct elements seen in the stream at time t: Fy(t) = [{ao, ..., a:}| = |5].

The sketch Min — Sketch(S) =< m1(S),...,m;(S) > where m;(S) = minges hj(a) can help

us estimate that number.

Recall the consistent hash functions are such that hj;(a) follows a uniform distribution over
[0,1] and the random variables h;(a), h;(b) are independent if either i # j or a # b. They can be
implemented as h;(a) = h(j,a) with the following pseudo-code:

def h(j,a)
srand (j, a)
return rand()

Sketches can be combined together by:

T(Min — Sketch(S1), Min — Sketch(S2)) =< min(m1(S1),m1(S2)),...,min(ms(S1), ms(S2)) >

Example S =1{1,5,7,8,9,1}, J=3

a h1 ha hs3

1 .085 138

0 86 464 = Min — Sketch(S) =< .085,.109, ... >
7 274 .841

8 399 833

9 .368 .109

Estimating Fj from the sketch The most natural estimator involves the mean:

1 1 )
m1(S)" " my(S)

Estimatorpeqn = mean(

but this estimator has a large variance, while taking the median can offset some of the variability:
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In(2)
median(my(S),...,ms(5))

Estimatoredian =

The median lemma gives a confidence interval for the median of iid. random variables. It will

also explain the origin of the In(2) normalization factor.

7.2 The Median lemma

For a random variable Z, let G(z) = Pr(Z > z) denote the residual density function.
With these notations, Median(Z) = G™1(1/2)

Theorem 7.1 The median lemma
There exists a constant ¢ such that:

for all 6 € (0,1/2) (accuracy) and for all € € (0,1/2) (error probability), for all J > 55 In(1)
If Z1,...,Z; are iid random variables of residual density G,

Pr(median(Zl, L Zy) e [GTY1/2 4 6),G7H1)2 — 5)]) >1 -2
Proof: Let’s proove that Pr(median(Zl, e Zy) < GTH1/2 + (5)) <e

We define the iid Bernouilli variables :

v.o_ ) 1 ifZ< G (1/2+9)
77 ) 0 otherwise

By definition of G we have:
Pr(Z; <G '1/2+6) =1-G(G'(1/2+8)=1/2-6

and therefore: ;
pu=EY1+..+Y;)=J(1/2-9) = 5(1 —20)

By definition of a median we have:

<

median(Zl,...,ZJ)<G_1(1/2—|—5)<:>Y1—|—...—|—YJ25

which implies the necessary condition:

<

median(Zy,..., Z;) < GTH(1/248) = Yi+ ...+ ¥y > S(1 - 26)(1+20) = (1 +29)

Hence applying the Chernoff bound yields:
. 1 J 9 Jés?
Pr(medum(Zl, o Zy) < GTN1)2+ 5)) < exp(—.38(3 (1 - 26))(26)?) < exp(~ )
For some constant c¢. Given our choice of J we finally get the desired result:

Pr(median(Zy,.., Z;) < G™(1/2 4 6)) < exp(~ ln(%)) —



Remark 7.1 The condition J > 55 ln(%) shows that the median lemma is efficient to bound the
probability error (In(L) term) but not to get a precise accuracy (5% term).

In(2)
median(m1(S5),...,m s(S5))

Application to the Fj estimate FEstimator =

G(z) = Pr(mi(S) > z) = Pr(Va € S, h1(a) > ) (1)
= Pr(hi(ag) > 2)° (2)
= (1-2)" Q

where in (1) we used m1(S) = minges h1(a), in (2) we used the independency of the random hash
functions, and in (3) we use the fact that hj(ag) follows a uniform [0, 1] distribution.

Then since (1 — z)I8l =1/2 <= z = h‘lg‘), the median of m1(S) is G=(1/2) = leqQ‘). It follows

from the median lemma that with high probability median(m1(S),...,ms(S)) will be close to %,

which in turns implies that our estimator will be close to |S| = Fy(S5).

Possible concrete applications

e Estimating the number of unique viewers of tweets you make. Taking advantage of the fact
that sketches can be computed in parallel on different machines and then combined together.

¢ Estimating the number of visits on your website that bidding on a collection of adwords would
bring you.
7.3 The Min-Hash technique (for computing Jacquard Similarity)

Definition of the Jacquard similarity

S1NS
IS(51,5) = (e

Estimating the Jacquard Similarity
m;(S) =< mingeshj(a), argmingeshj(a) >

This random variable has the following desirable property: Pr(m;(S1) = mi1(S2)) = JS(S1, S2).
Therefore we can estimate the Jacquard Similarity from our previous Min — Sketch:

J Sestimate(Min — Sketch(S1), Min — Sketch(S2)) = %‘{j such that m;(S1) = m;(S2)}|
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