MS\&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014
 http://msande317.stanford.edu.

Instructors: Ashish Goel and Reza Zadeh, Stanford University.
Lecture 6, 04/21/2014. Scribed by Jean-Yves Stephan.

7 Sketches applications

7.1 Estimating the number of distinct elements in a stream

Sketch definition For a stream $S=a_{0}, a_{1}, \ldots, a_{t}$ we defined $F_{k}(t)=\sum_{a \in V}\left|f_{t}(a)\right|^{k}$, and particularly $F_{0}(t)$ the number of distinct elements seen in the stream at time t: $F_{0}(t)=\left|\left\{a_{0}, \ldots, a_{t}\right\}\right|=|S|$.

The sketch $\operatorname{Min}-\operatorname{Sketch}(S)=<m_{1}(S), \ldots, m_{J}(S)>$ where $m_{j}(S)=\min _{a \in S} h_{j}(a)$ can help us estimate that number.

Recall the consistent hash functions are such that $h_{j}(a)$ follows a uniform distribution over $[0,1]$ and the random variables $h_{i}(a), h_{j}(b)$ are independent if either $i \neq j$ or $a \neq b$. They can be implemented as $h_{j}(a)=h(j, a)$ with the following pseudo-code:
$\overline{\operatorname{def} h(j, a)}$
srand (j, a)
return rand()
Sketches can be combined together by:

$$
\tau\left(\operatorname{Min}-\operatorname{Sketch}\left(S_{1}\right), \operatorname{Min}-\operatorname{Sketch}\left(S_{2}\right)\right)=<\min \left(m_{1}\left(S_{1}\right), m_{1}\left(S_{2}\right)\right), \ldots, \min \left(m_{J}\left(S_{1}\right), m_{J}\left(S_{2}\right)\right)>
$$

Example $\quad S=\{1,5,7,8,9,1\}, J=3$

a	h_{1}	h_{2}	h_{3}	
1	$\mathbf{. 0 8 5}$.138	\ldots	
5	.865	.464	\ldots	
7	.274	.841	\ldots	
8	.399	.833	\ldots	
9	.368	$\mathbf{. 1 0 9}$	\ldots	

Estimating F_{0} from the sketch The most natural estimator involves the mean:

$$
\text { Estimator }_{\text {mean }}=\operatorname{mean}\left(\frac{1}{m_{1}(S)}, \ldots, \frac{1}{m_{J}(S)}\right)
$$

but this estimator has a large variance, while taking the median can offset some of the variability:

$$
\text { Estimator }_{\text {median }}=\frac{\ln (2)}{\operatorname{median}\left(m_{1}(S), \ldots, m_{J}(S)\right)}
$$

The median lemma gives a confidence interval for the median of iid. random variables. It will also explain the origin of the $\ln (2)$ normalization factor.

7.2 The Median lemma

For a random variable Z, let $G(x)=\operatorname{Pr}(Z>x)$ denote the residual density function.
With these notations, $\operatorname{Median}(Z)=G^{-1}(1 / 2)$

Theorem 7.1 The median lemma

There exists a constant c such that:
for all $\delta \in(0,1 / 2)$ (accuracy) and for all $\epsilon \in(0,1 / 2)$ (error probability), for all $J>\frac{c}{\delta^{2}} \ln \left(\frac{1}{\epsilon}\right)$ If Z_{1}, \ldots, Z_{J} are iid random variables of residual density G,

$$
\operatorname{Pr}\left(\operatorname{median}\left(Z_{1}, \ldots, Z_{J}\right) \in\left[G^{-1}(1 / 2+\delta), G^{-1}(1 / 2-\delta)\right]\right) \geq 1-2 \epsilon
$$

Proof: Let's proove that $\operatorname{Pr}\left(\operatorname{median}\left(Z_{1}, \ldots, Z_{J}\right)<G^{-1}(1 / 2+\delta)\right) \leq \epsilon$
We define the iid Bernouilli variables :

$$
Y_{j}= \begin{cases}1 & \text { if } Z_{j}<G^{-1}(1 / 2+\delta) \\ 0 & \text { otherwise }\end{cases}
$$

By definition of G we have:

$$
\operatorname{Pr}\left(Z_{j}<G^{-1}(1 / 2+\delta)\right)=1-G\left(G^{-1}(1 / 2+\delta)\right)=1 / 2-\delta
$$

and therefore:

$$
\mu=\mathbf{E}\left(Y_{1}+\ldots+Y_{J}\right)=J(1 / 2-\delta)=\frac{J}{2}(1-2 \delta)
$$

By definition of a median we have:

$$
\operatorname{median}\left(Z_{1}, \ldots, Z_{J}\right)<G^{-1}(1 / 2+\delta) \Longleftrightarrow Y_{1}+\ldots+Y_{J} \geq \frac{J}{2}
$$

which implies the necessary condition:

$$
\operatorname{median}\left(Z_{1}, \ldots, Z_{J}\right)<G^{-1}(1 / 2+\delta) \Longrightarrow Y_{1}+\ldots+Y_{J} \geq \frac{J}{2}(1-2 \delta)(1+2 \delta)=\mu(1+2 \delta)
$$

Hence applying the Chernoff bound yields:

$$
\operatorname{Pr}\left(\operatorname{median}\left(Z_{1}, \ldots, Z_{J}\right)<G^{-1}(1 / 2+\delta)\right) \leq \exp \left(-.38\left(\frac{J}{2}(1-2 \delta)\right)(2 \delta)^{2}\right) \leq \exp \left(-\frac{J \delta^{2}}{c}\right)
$$

For some constant c. Given our choice of J we finally get the desired result:

$$
\operatorname{Pr}\left(\operatorname{median}\left(Z_{1}, \ldots, Z_{J}\right)<G^{-1}(1 / 2+\delta)\right) \leq \exp \left(-\ln \left(\frac{1}{\epsilon}\right)\right)=\epsilon
$$

Remark 7.1 The condition $J>\frac{c}{\delta^{2}} \ln \left(\frac{1}{\epsilon}\right)$ shows that the median lemma is efficient to bound the probability error $\left(\ln \left(\frac{1}{\epsilon}\right)\right.$ term) but not to get a precise accuracy ($\frac{1}{\delta^{2}}$ term).

Application to the F_{0} estimate \quad Estimator $=\frac{\ln (2)}{\operatorname{median}\left(m_{1}(S), \ldots, m_{J}(S)\right)}$

$$
\begin{align*}
G(x)=\operatorname{Pr}\left(m_{1}(S)>x\right) & =\operatorname{Pr}\left(\forall a \in S, h_{1}(a)>x\right) \tag{1}\\
& =\mathbf{P r}\left(h_{1}\left(a_{0}\right)>x\right)^{|S|} \tag{2}\\
& =(1-x)^{|S|} \tag{3}
\end{align*}
$$

where in (1) we used $m_{1}(S)=\min _{a \in S} h_{1}(a)$, in (2) we used the independency of the random hash functions, and in (3) we use the fact that $h_{1}\left(a_{0}\right)$ follows a uniform $[0,1]$ distribution.

Then since $(1-x)^{|S|}=1 / 2 \Longleftrightarrow x=\frac{\ln (2)}{|S|}$, the median of $m_{1}(S)$ is $G^{-1}(1 / 2)=\frac{\ln (2)}{|S|}$. It follows from the median lemma that with high probability median $\left(m_{1}(S), \ldots, m_{J}(S)\right)$ will be close to $\frac{\ln (2)}{|S|}$, which in turns implies that our estimator will be close to $|S|=F_{0}(S)$.

Possible concrete applications

- Estimating the number of unique viewers of tweets you make. Taking advantage of the fact that sketches can be computed in parallel on different machines and then combined together.
- Estimating the number of visits on your website that bidding on a collection of adwords would bring you.

7.3 The Min-Hash technique (for computing Jacquard Similarity)

Definition of the Jacquard similarity

$$
J S\left(S_{1}, S_{2}\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}
$$

Estimating the Jacquard Similarity

$$
m_{j}(S)=<\min _{a \in S} h_{j}(a), \operatorname{argmin}_{a \in S} h_{j}(a)>
$$

This random variable has the following desirable property: $\operatorname{Pr}\left(m_{1}\left(S_{1}\right)=m_{1}\left(S_{2}\right)\right)=J S\left(S_{1}, S_{2}\right)$. Therefore we can estimate the Jacquard Similarity from our previous Min - Sketch:

$$
\left.\left.J S_{\text {estimate }}\left(\operatorname{Min}-\operatorname{Sketch}\left(S_{1}\right), \operatorname{Min}-\operatorname{Sketch}\left(S_{2}\right)\right)=\frac{1}{J} \right\rvert\,\left\{j \text { such that } m_{j}\left(S_{1}\right)=m_{j}\left(S_{2}\right)\right\} \right\rvert\,
$$

References

[1] A. Broder. On the resemblance and containment of documents. IEEE Computer Society, 1997.

