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Lecture 9, 9/26/2014. Scribed by Adrien Fallou.

Outline:
e The perceptron algorithm
e Stochastic gradient descent

This lecture starts the series on machine learning. We’ll focus on supervised learning and
classification.

10 The perceptron

10.1 Setting

We have a set of points S € R? S = {X1, X»,...X,,} with || X;||2 = 1. The points are coming as a
stream, and each X; is associated with a label y; (+ or —).

We assume the points are separable, i.e. there exists a linear classifier that can correctly classify
all points. We are looking to find this classifier. We define the margin v as the shortest distance
from any point to this classifier.

In order not to have to deal with an intercept term, we also assume there is a given dimension
k for which [X;]r = 1 for all 7.

10.2 Algorithm

wo = 0
for each point X
if w; X > 0 predict y; = + else predict y; = —
if we make a mistake
if true answer is + update w;11 = w; + X
if true answer is — update w;11 = w; — X

10.3 Properties

M denotes the number of mistakes the algorithm makes, i.e. the total number of mistakes we’d get
by running the algorithm an indefinite amount of time

Proposition 10.1 M < &,
5

Proof: The idea is to prove that w;-w* becomes bigger (i.e. both vectors become closer), while
||w;||3 remains bounded.
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e We claim w; - w* > w; - w* + v when we make a mistake.

If we make a mistake:
— If we predict w;x < 0 and we make a mistake:
Wit1 - w* = (w; + X) - w*
=w; w4+ X -w*
> w; - w* + 7y since we made a mistake, and by definition of v
— In the opposite case, we have: w;41 - w* = w; - w* —w* - X > w; - w* + 7

e We'll also get a handle on the growth of ||w;]|3

If we predict w; - X > 0 and make a mistake we have, since || X||3 = 1

iyl = |lwi + X |3
= ||ws||3 + 2w; - X + | X I3
< w3 +1

And we easily get the same result for the opposite case
Thus after M mistakes we have:
o Wy -wt > My
o [[wirtile < VM
We can suppose ||[w*|| = 1, we now get
My < [lwarsr - w*|fa < [Jwarpilla < VM
el
Y
|

Remark 10.1 One of the problems we may have is that we need a nonzero margin for the percep-
tron to work, which we may not always have.

11 Stochastic Gradient Descent (SGD)

We want to minimize

Flw) =Y (w'X; —4:)> =D Qi(w)
i=1

=1

If we minimize with regular ("batch”) gradient descent, we have:

Wi41 = Wy — aVF



This approach requires going through the whole dataset to advance one timestep, which is not
feasible when the data gets too big. Instead we can write:

VF = Z VQi(w)

i=1

And the idea is to update our classifier w; with each datapoint, as:
wiy1 = w; — aVQ;i(w)

We go through the whole data in this way, shuffle the data and start again. This algorithm is called
stochastic gradient descent.

Because we’re only making one small update at a time, we’ll need more iterations to get the
same precision. The following table compares both algorithm:

GD 2 GD SGD | 2 SGD
time per iteration n n 1
number of iterations to € accuracy | —loge | log logé

M=o =
M=o = =

total time —loge | nloglog %

Remark 11.1 Newton’s method iterates as wijy1 = w; — aH VF (we called it 72 GD” in the
table). We can apply the same idea as for stochastic gradient descent and iterate as w;i1 =
w; — aHIVQ; ("2 SGD” in the table)

Remark 11.2 It seems that smallest total time we get is for Newton’s method. However, this
involves computing a Hessian on the whole data, which is not computationally feasible when the
data gets large.
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