
MS&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014

http://msande317.stanford.edu.

Instructors: Ashish Goel and Reza Zadeh, Stanford University.

Lecture 9, 9/26/2014. Scribed by Adrien Fallou.

Outline:

• The perceptron algorithm

• Stochastic gradient descent

This lecture starts the series on machine learning. We’ll focus on supervised learning and

classification.

10 The perceptron

10.1 Setting

We have a set of points S ∈ Rd, S = {X1, X2, ...Xn} with ‖Xi‖2 = 1. The points are coming as a

stream, and each Xi is associated with a label yi (+ or −).

We assume the points are separable, i.e. there exists a linear classifier that can correctly classify

all points. We are looking to find this classifier. We define the margin γ as the shortest distance

from any point to this classifier.

In order not to have to deal with an intercept term, we also assume there is a given dimension

k for which [Xi]k = 1 for all i.

10.2 Algorithm

w0 = 0

for each point X

if wiX > 0 predict yi = + else predict yi = −
if we make a mistake

if true answer is + update wi+1 = wi +X

if true answer is − update wi+1 = wi −X

10.3 Properties

M denotes the number of mistakes the algorithm makes, i.e. the total number of mistakes we’d get

by running the algorithm an indefinite amount of time

Proposition 10.1 M ≤ 1
γ2

Proof: The idea is to prove that wi ·w∗ becomes bigger (i.e. both vectors become closer), while

‖wi‖22 remains bounded.
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• We claim wi · w∗ ≥ wi · w∗ + γ when we make a mistake.

If we make a mistake:

– If we predict wix < 0 and we make a mistake:

wi+1 · w∗ = (wi +X) · w∗

= wi · w∗ +X · w∗

≥ wi · w∗ + γ since we made a mistake, and by definition of γ

– In the opposite case, we have: wi+1 · w∗ = wi · w∗ − w∗ ·X ≥ wi · w∗ + γ

• We’ll also get a handle on the growth of ‖wi‖22
If we predict wi ·X > 0 and make a mistake we have, since ‖X‖22 = 1

‖wi+1‖22 = ‖wi +X‖22
= ‖wi‖22 + 2wi ·X + ‖X‖22
≤ ‖wi‖22 + 1

And we easily get the same result for the opposite case

Thus after M mistakes we have:

• wM+1 · w∗ ≥Mγ

• ‖wM+1‖2 ≤
√
M

We can suppose ‖w∗‖ = 1, we now get

Mγ ≤ ‖wM+1 · w∗‖2 ≤ ‖wM+1‖2 ≤
√
M

M ≤ 1

γ2

Remark 10.1 One of the problems we may have is that we need a nonzero margin for the percep-

tron to work, which we may not always have.

11 Stochastic Gradient Descent (SGD)

We want to minimize

F (w) =
n∑
i=1

(wTXi − yi)2 =
n∑
i=1

Qi(w)

If we minimize with regular (”batch”) gradient descent, we have:

wi+1 = wi − α∇F
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This approach requires going through the whole dataset to advance one timestep, which is not

feasible when the data gets too big. Instead we can write:

∇F =
n∑
i=1

∇Qi(w)

And the idea is to update our classifier wi with each datapoint, as:

wi+1 = wi − α∇Qi(w)

We go through the whole data in this way, shuffle the data and start again. This algorithm is called

stochastic gradient descent.

Because we’re only making one small update at a time, we’ll need more iterations to get the

same precision. The following table compares both algorithm:

GD 2 GD SGD 2 SGD

time per iteration n n 1 1

number of iterations to ε accuracy − log ε log log 1
ε

1
ε

1
ε

total time − log ε n log log 1
ε

1
ε

1
ε

Remark 11.1 Newton’s method iterates as wi+1 = wi − αH−1∇F (we called it ”2 GD” in the

table). We can apply the same idea as for stochastic gradient descent and iterate as wi+1 =

wi − αH−1∇Qi (”2 SGD” in the table)

Remark 11.2 It seems that smallest total time we get is for Newton’s method. However, this

involves computing a Hessian on the whole data, which is not computationally feasible when the

data gets large.
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