MS&E 317/CS 263: Algorithms for Modern Data Models, Spring 2014

http://msande317.stanford.edu.

Instructors: Ashish Goel and Reza Zadeh, Stanford University.

Lecture 9, 9/26/2014. Scribed by Adrien Fallou.

Outline:

- The perceptron algorithm
- Stochastic gradient descent

This lecture starts the series on machine learning. We'll focus on supervised learning and classification.

10 The perceptron

10.1 Setting

We have a set of points $S \in \mathbb{R}^d$, $S = \{X_1, X_2, ... X_n\}$ with $||X_i||_2 = 1$. The points are coming as a stream, and each X_i is associated with a label y_i (+ or -).

We assume the points are separable, i.e. there exists a linear classifier that can correctly classify all points. We are looking to find this classifier. We define the margin γ as the shortest distance from any point to this classifier.

In order not to have to deal with an intercept term, we also assume there is a given dimension k for which $[X_i]_k = 1$ for all i.

10.2 Algorithm

```
w_0 = 0 for each point X if w_i X > 0 predict y_i = + else predict y_i = - if we make a mistake if true answer is + update w_{i+1} = w_i + X if true answer is - update w_{i+1} = w_i - X
```

10.3 Properties

M denotes the number of mistakes the algorithm makes, i.e. the total number of mistakes we'd get by running the algorithm an indefinite amount of time

Proposition 10.1 $M \leq \frac{1}{\gamma^2}$

Proof: The idea is to prove that $w_i \cdot w^*$ becomes bigger (i.e. both vectors become closer), while $||w_i||_2^2$ remains bounded.

• We claim $w_i \cdot w^* \ge w_i \cdot w^* + \gamma$ when we make a mistake.

If we make a mistake:

– If we predict $w_i x < 0$ and we make a mistake:

$$w_{i+1} \cdot w^* = (w_i + X) \cdot w^*$$

= $w_i \cdot w^* + X \cdot w^*$
 $\geq w_i \cdot w^* + \gamma$ since we made a mistake, and by definition of γ

- In the opposite case, we have: $w_{i+1} \cdot w^* = w_i \cdot w^* w^* \cdot X \ge w_i \cdot w^* + \gamma$
- We'll also get a handle on the growth of $||w_i||_2^2$ If we predict $w_i \cdot X > 0$ and make a mistake we have, since $||X||_2^2 = 1$

$$||w_{i+1}||_2^2 = ||w_i + X||_2^2$$

$$= ||w_i||_2^2 + 2w_i \cdot X + ||X||_2^2$$

$$\leq ||w_i||_2^2 + 1$$

And we easily get the same result for the opposite case

Thus after M mistakes we have:

- $w_{M+1} \cdot w^* \ge M\gamma$
- $||w_{M+1}||_2 \le \sqrt{M}$

We can suppose $||w^*|| = 1$, we now get

$$M\gamma \le ||w_{M+1} \cdot w^*||_2 \le ||w_{M+1}||_2 \le \sqrt{M}$$

$$M \le \frac{1}{\gamma^2}$$

Remark 10.1 One of the problems we may have is that we need a nonzero margin for the perceptron to work, which we may not always have.

11 Stochastic Gradient Descent (SGD)

We want to minimize

$$F(w) = \sum_{i=1}^{n} (w^{T} X_{i} - y_{i})^{2} = \sum_{i=1}^{n} Q_{i}(w)$$

If we minimize with regular ("batch") gradient descent, we have:

$$w_{i+1} = w_i - \alpha \nabla F$$

This approach requires going through the whole dataset to advance one timestep, which is not feasible when the data gets too big. Instead we can write:

$$\nabla F = \sum_{i=1}^{n} \nabla Q_i(w)$$

And the idea is to update our classifier w_i with each datapoint, as:

$$w_{i+1} = w_i - \alpha \nabla Q_i(w)$$

We go through the whole data in this way, shuffle the data and start again. This algorithm is called stochastic gradient descent.

Because we're only making one small update at a time, we'll need more iterations to get the same precision. The following table compares both algorithm:

Remark 11.1 Newton's method iterates as $w_{i+1} = w_i - \alpha H^{-1} \nabla F$ (we called it "2 GD" in the table). We can apply the same idea as for stochastic gradient descent and iterate as $w_{i+1} = w_i - \alpha H^{-1} \nabla Q_i$ ("2 SGD" in the table)

Remark 11.2 It seems that smallest total time we get is for Newton's method. However, this involves computing a Hessian on the whole data, which is not computationally feasible when the data gets large.