Large-Scale Matrix Operations
Using a Data Flow Engine

Reza Zadeh

- a-. ™A

CIViE

MapReduce for Matrix Operations

Matrix-vector multiply

Power iteration (e.g. PageRank)
Gradient descent methods
Stochastic SVD

Tall skinny QR

Many others!

Limitations of MapReduce

MapReduce is great at one-pass computation,
out inefficient for multi-pass algorithms

No efficient primitives for data sharing
» State between steps goes to distributed file system
» Slow due to replication & disk storage
» No control of data partitioning across steps

Example: lterative Apps

file system file system file system file system
read write read write
Input

file system

— > result 1
read y

— > result 2

— result 3
Input ,

[Commonly spend 90% of time doing |/O]

Example: PageRank

Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page

adjacency lists and rank vector

Same file grouped
over and over

Neighbors
(id, edges)

Ranks
(id, rank) .

iteration 1 iteration 2 iteration 3

Spark Programming Model

Extends MapReduce with primitives for

efficient data sharing
» “Resilient distributed datasets”

APIs in Java, Scala & Python

Resilient Distributed Datasets (RDDs)

Collections of objects stored across a cluster
User-controlled partitioning & storage (memory, disk, ...)
Automatically rebuilt on failure

urls = spark.textFile(“hdfs://...”)

records = urls.map(lambda s: (s, 1))

counts = records.reduceByKey(lambda a, b: a + b)
bigCounts = counts.filter(lambda (url, cnt): cnt > 10)

map reduce filter
bigCounts.cache()

bigCounts.filter(
lambda (k,v): “news” in k).count()

Input file

bigCounts.join(otherPartitionedRDD)

Performance

W’ | ' ' °E
K-Means Clustering 41 >

0 30 60 90 120 150 180

110
Logistic Regression

0.96

0 25 50 75 100 125

Time per lteration (s)

W Hadoop
“ Spark

PageRank

Using cache(), keep neighbors in RAM

Using partitioning, avoid repeated hashing

partitionBy

@ b

Neighbors @ \

16, 60069 @%\\ N\ \
- Ve
Ranks

(id, rank) E

join join join

PageRank Results

200 171

23

_5 ! “ Hadoop

-'é' 150 -

o)

= u Basic Spark

Q 100 - 79

o

£ I Spark + Controlled

= 50 7 . 23 Partitioning
O _

