
CME305 Sample Midterm II

1. Matchings and Vertex Covers

(a) Define what a matching in G is.

(b) Define what a vertex cover of G is.

(c) Let M be a maximum matching and C a minimum vertex cover.

Show that |M | ≤ |C| ≤ 2|M |.

Solution:

1. A matching M is a subset of E such that no two edges share an end-
point.

2. A vertex cover C is a subset of V such that all edges are incident to at
least one element of C.

3. Let M be a maximum matching and C a minimum vertex cover. It is
easy to see that we need at least |M | nodes to cover all the edges of
M . Hence |M | ≤ |C|. Now let us prove that V (M), the vertices in the
matching M , is a vertex cover. Assume it isn’t, then there is at least one
edge e that is not covered by V (M). It is easy to see that this implies
that M ∪ {e} is a matching so M is not maximum. Contradiction.
Furthermore, we know that |V (M)| = 2|M |, hence |C| ≤ 2|M |.

2. Traveling Salesman Problem

Assume that deciding whether a graph has a Hamiltonian cycle is NP-
Complete. Prove that the Traveling Salesman Problem is NP-Hard.

Solution: As defined in class the TSP problem defines a complete graph
Kn with a cost function c : E → <+ and asks to find a cycle that visits
all vertices exactly once and such that the cost of the cycle is minimized.

We are now going to show how to solve Hamiltonian Cycle on G by using
TSP and a polynomial amount of work. For this, we will use the decision
version of TSP, which is “is there a TSP of cost at most k?”.

1

We reduce Hamiltonian cycle HC to TSP i.e. show HC ≤P TSP . Given
G(V, E) with |V | = n we define c(e) = 1 for all e ∈ E. Then we add
edges E ′ to G to make G a complete graph and assign c(e) = 2 for all
e ∈ E ′. We can do this in polynomial time. Now given this cost, if the
answer to is there a TSP cycle of cost at most n is “yes”, then we know
there is a cycle that visits all nodes exactly once. The edges it uses are
from E (given the cost function we created), hence we can say for sure
that there is a Hamiltonian Cycle in G. Given that Hamiltonian Cycle is
NP-Complete, the decision version of TSP is NP-Complete, hence TSP is
NP-Hard.

3. Lecture Attendance Planning

A group of students want to minimize their lecture attendance by sending
only one of the group to each of the n lectures. We have the following
constraints:

• Each of the n lectures should be covered.

• Lecture i starts at time ai and ends at time bi.

• It takes rij time to commute from lecture i to lecture j.

• Assume all times rij as well as the duration of the lectures are in
minutes and integers.

Minimize the number of students that will attend lectures i.e. develop a
flow based algorithm to identify the minimum number of students needed
to cover all n lectures.

Solution: We are going to solve this problem using a maximum matching
on a bipartite graph. First observe that minimizing the number of students
attending courses is equivalent to maximizing the number of classes that
a given student can attend. If classes i and j are such that one can go to
class i, commute to class j and still be on-time, then we only need one
student to go to both classes. Let us now build the graph:

For each lecture i, set two nodes xi and yi. X = {x1, . . . , xn} and Y =
{y1, . . . , yn} are our partitions. The edge (xi, yj) exists if i 6= j and one
can go to class i and then to class j. More formally i 6= j and aj ≥ bi +rij.

Building such graph takes at most 2n× 3n2 steps, polynomial in n.

2

Let M be a maximum matching in G(X, Y, E). We claim that the min-
imum number of students needed is n − |M |. We can prove this by con-
tradiction.

Assume you can go to all the lectures with n−p < n−|M | students. Then
that means that we can “reuse” p students. Let I = {i1, . . . , ip} be the
set of lectures where we are reusing a student (i.e. the set of lectures that
at the end the student will go to another lecture). Let J = {j1, . . . , jp}
be the set of lectures they are attending afterwards. It is easy to see that
M ′ = {(xi1, yj1),, (xip, yjp)} is a matching in G. But p > |M |, which is
a contradiction.

We can find such matching using a flow algorithm, just like we saw in
class.

3

