
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#1 – Due at the beginning of class Thursday 01/21/16

1. Prove that at least one of G and G is connected. Here, G is a graph on the vertices of
G such that two vertices are adjacent in G if and only if they are not adjacent in G.

Solution: Let G be a disconnected graph in which case we can decompose it into
k connected components C1, C2, . . . , Ck. We want to show that G is connected i.e.
there is a path between any u and v in G. In the case that u and v are in different
components we know that there exist an edge (a path of length one) between them in
G. In the case that u and v are in the same component, say Ci, we can construct a
path of two edges between them in G as follows. Pick any vertex w from some other
component Cj for j 6= i and note that edges {u,w} and {w, v} are in G. Thus u,w, v
is a path in G and hence G is connected.

2. A vertex in G is central if its greatest distance from any other vertex is as small as
possible. This distance is the radius of G.

(a) Prove that for every graph G

rad G ≤ diam G ≤ 2 rad G

Solution: Since the diameter is the longest shortest path in the graph, and the
radius is just a particular shortest path, we have rad G ≤ diam G. Now, since
we can always reach any vertex t by going to the center first, then going to t,
incurring a cost of at most twice the radius, we have diam G ≤ 2 rad G.

(b) Prove that a graph G of radius at most k and maximum degree at most d ≥ 3
has fewer than d

d−2(d− 1)k vertices.

Solution: Let z be a central vertex in G, and let Di denote the set of vertices
of G at distance i from z. Then ∪ki=0Di is all the vertices in the graph. Clearly,
|D0| = 1 and |D1| ≤ d. For i ≥ 1 we have |Di+1| ≤ (d − 1)|Di|, because every
vertex in Di+1 is a neighbor of a vertex in Di (why?), and each vertex in Di has
at most d − 1 neighbors in Di+1 (since it has another neighbor in Di−1). Thus
Di+1 ≤ d(d− 1)i for all i < k by induction, giving

|G| ≤ 1 + d
k−1∑
i=0

(d− 1)i = 1 +
d

d− 2
((d− 1)k − 1) <

d

d− 2
(d− 1)k

3. A random permutation π of the set {1, 2, . . . , n} can be represented by a directed graph
on n vertices with a directed arc (i, πi), where πi is the i’th entry in the permutation.
Observe that the resulting graph is just a collection of distinct cycles.

(a) What is the expected length of the cycle containing vertex 1?

Solution: Consider the construction of the directed graph where we start at
vertex 1. Each step we select an unmarked vertex at random and move to that
vertex. We then mark that vertex before repeating the process. Once this con-
struction marks vertex 1 we have a cycle. Let |C| denote the length of this cycle.
Then:

E(|C|) = 1× 1

n

+ 2× n− 1

n

1

n− 1

+ . . .

+ n× n− 1

n

n− 2

n− 1
. . .

1

2

1

1

=
n∑

i=1

i
1

n

=
1

n

n(n+ 1)

2

=
1

2
(n+ 1)

(b) What is the expected number of cycles?

Solution: Let f(n) denote the expected number of cycles in a graph on n nodes.
It is clear that f(1) = 1.

Consider f(n) given f(n − 1). With probability 1/n the new node permutes to
itself resulting in an expected number of cycles of 1 + f(n − 1) and with the
remaining probability the new node permutes to a node other than itself, this
case then reduces to the n− 1 case. Hence:

f(n) =
1

n

(
1 + f(n− 1)

)
+
n− 1

n
f(n− 1) =

1

n
+ f(n− 1)

It follows recursively that f(n) =
∑n

i=1 1/i which is exactly equal to the nth
harmonic number H(n).

4. Let v1, v2, . . . , vn be unit vectors in Rn. Prove that there exist α1, α2, . . . , αn ∈ {−1, 1}
such that

||α1v1 + α2v2 + . . .+ αnvn||2 ≤
√
n

Solution: This can be shown geometrically using similar ideas to Pythagoras’ Theo-
rem. Consider the cosine rule:

‖αivi + αjvj‖22 = ‖αivi‖22 + ‖αjvj‖22 − 2‖αivi‖2‖αjvj‖2 cos θ

Where θ is the angle between αivi and αjvj.

2

Fix αi. Then we can choose αj such that θ ≤ π/2. Hence cos θ ∈ [0, 1]. It follows that,
given αi we can choose αj such that:

‖αivi + αjvj‖22 ≤ ‖αivi‖22 + ‖αjvj‖22

Applying this result recursively gives:

‖α1v1 + α2v2 + . . .+ αnvn‖22 ≤ ‖α1v1‖22 + ‖α2v2‖22 + . . .+ ‖αnvn‖22
= α2

1‖v1‖22 + α2
2‖v2‖22 + . . .+ α2

n‖vn‖22
= n

||α1v1 + α2v2 + . . .+ αnvn||2 ≤
√
n

5. Consider a graph G on 2n vertices where every vertex has degree at least n. Prove
that G contains a perfect matching.

Solution: We will prove this in a slightly roundabout way: we first show that G
must contain a Hamiltonian path, and then note that a Hamiltonian path contains our
desired perfect matching. (A Hamiltonian path is a path which contains every node
of the graph.) A direct proof of this is possible, but this proof is shorter and more
elegant.

Consider the longest path P = (v1, v2, . . . , vk) in G. All neighbors w of v1 must be
elements of P , otherwise the longer path (w, v1, . . . , vk) in G would contradict the
definition of P . Similarly, all neighbors of vk must also be in P . Now since G is simple,
we note that all ≥ n neighbors of v1 must be distinct and lie in P , thus we have the
bounds n + 1 ≤ k ≤ 2n on the length of P , where in the lower bound we have also
accounted for v1 itself.

We claim that there exists j ∈ {1, . . . , k − 1} such that vj and vj+1 are neighbors
of vk and v1 respectively. Suppose for contradiction that this is not the case. Let
S = {vi|vk ∼ vi} be the set of all neighbors of vk in P . Let T = {vi−1|v1 ∼ vi} be the
set of all path vertices immediately preceding the neighbors of v1 in P . Note that S
and T are disjoint by our assumption. Since v1 and vk have at least n neighbors in P ,
we have

|S|+ |T | ≥ n+ n = 2n ≥ k.

But we also know that both S and T are subsets of {v1, . . . , vk−1} so |S∪T | = |S|+|T | ≤
k − 1, a contradiction. Thus there exists j such that v1 ∼ vj+1 and vk ∼ vj.

Then we have the cycle C = (v1, v2, . . . , vj, vk, vk−1, . . . , vj+1, v1) in G which contains
each vertex of P exactly once. Now we claim that k = 2n; in that case C contains our
desired Hamiltonian path of G. To see this consider a vertex x 6∈ C. Since G is simple
and |C| = k ≥ n + 1, one of the n neighbors of x, call it y must lie in C. But then
cutting either one of the edges in C incident to y and including the edge {x, y} would
result in a path longer than P , contradicting our original longest path assumption.
Thus, our cycle C must have length 2n– it must contain a Hamiltonian path.

3

Finally, we prove that the Hamiltonian path found above contains a perfect matching.
Let the Hamiltonian path P be (v1, v2, . . . , v2n). Choose the edges (v1, v2), (v3, v4), ...(v2i−1, v2i), ...,
(v2n−1, v2n). These edges are all in the Hamiltonian path, and every node in the path is
present in exactly one of these edges. As the path contains every vertex in the graph,
each node of the graph is the endpoint of exactly one of the edges. Thus, this is a
perfect matching in the graph, as desired.

6. Let G = (V,E) be a graph and w : E → R+ be an assignment of nonnegative weights
to its edges. For u, v ∈ V let f(u, v) denote the weight of a minimum u− v cut in G.

(a) Let u, v, w ∈ V , and suppose f(u, v) ≤ f(u,w) ≤ f(v, w). Show that f(u, v) =
f(u,w), i.e., the two smaller numbers are equal.

Solution: Let c = min(f(u,w), f(w, v)). Consider the two ends of the smallest
path between u and v. We can route c units of flow from u to w and then from
w to v. This means f(u, v) ≥ c = min(f(u,w), f(w, v)) = f(u,w), which is only
possible if f(u, v) = f(u,w).

(b) Show that among the
(
n
2

)
values f(u, v), for all pairs u, v ∈ V , there are at most

n− 1 distinct values.

Solution: We prove this by induction on the number of nodes. The result is
clearly true for a graph with 3 nodes from part a. Assume the result for all
graphs G′ of size n, and consider a graph G with n + 1 nodes. There will be a
largest edge, pick one of its two vertices, call it v. Order the edges incident upon
v in decreasing order: f1, f2, . . . , fn. So f1 is the largest edge in G. Note that the
fi are sides of triangles of all whom have one edge in the smaller graph G′, where
there are only n− 2 distinct edges by induction hypothesis. We argue that other
than f1, all the other fi are equal to some edge in G′, thus the number of distinct
edges in G can only one larger, with the contribution coming from f1. This is true
because of the decreasing ordering on the f ′is and the triangle property from part
a, enforcing each f2, . . . , fn be equal to some edge in G′. Thus the addition of v
can only add one new distinct edge weight: f1, making for at most n− 1 distinct
weights.

7. Let T be a spanning tree of a graph G with an edge cost function c. We say that T has
the cycle property if for any edge e′ /∈ T , c(e′) ≥ c(e) for all e in the cycle generated
by adding e′ to T . Also, T has the cut property if for any edge e ∈ T , c(e) ≤ c(e′) for
all e′ in the cut defined by e. Show that the following three statements are equivalent:

(a) T has the cycle property.

(b) T has the cut property.

(c) T is a minimum cost spanning tree.

Remark 1: Note that removing e ∈ T creates two trees with vertex sets V1 and V2.
A cut defined by e ∈ T is the set of edges of G with one endpoint in V1 and the other
in V2 (with the exception of e itself).

4

Solution: In order to show that (a), (b), and (c) are equivalent, it is enough to show:
(a) ⇔ (c), and (b) ⇔ (a).

(c) ⇒ (a): By contradiction suppose T does not have the cycle property: there exists
e′ 6∈ T such that T ∪ {e′} has a cycle C in which there exists e ∈ T and e ∈ C where
c(e) > c(e′). Let tree T ′ be the tree obtained by adding e′ to T and removing e; T ′ is a
tree with cost strictly less than cost of T which is contradicting with T being an MST.

(a) ⇒ (c): By contradiction suppose T is not an MST: let e′ be the first edge that
was picked by Kruskal’s algorithm but does not belong to T . Adding e′ to T would
create cycle C. Since T has cycle property, c(e) ≤ c(e′), e ∈ C. Therefore, all e ∈ C,
e 6= e′ have been visited by the Kruskal’s algorithm. We have two cases:

case 1: All e ∈ C\{e′} were picked by the algorithm. In this case the algorithm would
not pick e′ because it creates a cycle with the existing edges.

case 2: There exists e∗ ∈ C, e∗ 6= e′ such that it was not picked by the algorithm. The
reason for not picking an edge is that it would create a cycle with the existing edges.
However, since e′ was the first edge picked by the algorithm that does to belong to T ,
this would mean that T has a cycle, which is a contradiction.

(a) ⇒ (b): By contradiction suppose T does not have the cut property: there exists
e ∈ T such that there exits edge e′ = (v1, v2) such that v1 ∈ V1 and v2 ∈ V2 (V1 and V2
are the set of vertices of the two connected components after removing e, see Remark
1.), and c(e′) < c(e). Since T is connected graph there exist path PT between v1 and
v2 such that all the edges of PT belong to T . Adding e′ to PT creates a cycle in which
there exist e ∈ T where c(e) > c(e′) which is contradicting with T having the cycle
property.

(b)⇒ (a): By contradiction suppose T does not have the cycle property: there exists
edge e′ such that when adding it to T and creating cycle C, there exists e ∈ C, where
c(e) > c(e′). In T , if we remove e, we have two connected components with vertex sets
V1 and V2. Let v1, v2 be the endpoints of e, where v1 ∈ V1 and v2 ∈ V2. Since e ∈ C
there exists another path between v1 and v2 therefore at least one edge from C belongs
to cut (V1, V2); since all the edges of C belong to T except e′and T ∩ cut(V1, V2) = ∅, e′
should belong to cut(V1, V2). However, c(e′) < c(e), which contradicts with T having
the cut property.

8. Prove that there is an absolute constant c > 0 with the following property. Let A be
an n×n matrix with pairwise distinct entries. Then there is a permutation of the rows
of A so that no column in the permuted matrix contains an increasing subsequence of
length c

√
n.

Solution: Let A = (aij)n×n be a matrix with pairwise distinct entries. Let π ∈ Gn be
a random permutation of [n]. For ever c

√
n-tuple S = (s1, s2, . . . , sc√n) of elements of

[n], let XS be the event that the sequence (a1,s1 , a1,s2 , . . . , a1,sc√n
) is increasing. Since

all entries of A are distinct, there is exactly one tuple S for which the sequence formed
is increasing. Then P [XS] = 1/(c

√
n)!. Let YS be the indicator random variable for

5

event XS, and let

Y =
∑

S⊆[n],|S|=c
√
n

YS

be the number of increasing sub-sequences of length c
√
n in the first column. By

linearity of expectations:

E[Y] =
∑

S⊆[n],|S|=c
√
n

E[YS]

=
∑

S⊆[n],|S|=c
√
n

P (XS)

=
∑

S⊆[n],|S|=c
√
n

1

(c
√
n)!

=

(
n

c
√
n

)
1

(c
√
n)!

Again by linearity of expectation, the expected number of increasing subsequences of

length c
√
n in the columns of A is upper bounded by n

(n
c
√
n)

(c
√
n)!

. This is less than

n

(
ne
c
√
n

)c√n(
c
√
n

e

)c√n = n
(e2
c2

)c√n
by Stirling’s approximation.

For any c > e, and any sufficiently large value of n, such an upper bound is less than
1, implying that E[Y] < 1. Hence there is a permutation that has less than E[Y] < 1
increasing subsequences of length c

√
n in any column. I.e.: it must have zero increasing

subsequences of size c
√
n.

9. At lunchtime it is crucial for people to get to the food trucks as quickly as possible.
The building is represented by a graph G = (V,E), where each room, landing, or other
location is represented by a vertex and each corridor or stairway is represented by an
edge. Each corridor has an associated capacity c, meaning that at most c people can
pass through the corridor at once. Traversing a corridor from one end to the other
takes one timestep and people can decide to stay in a room for the entire timestep.
Suppose all people are initially in a single room s, and that the building has a single
exit t. Give a polynomial time algorithm to find the fastest way to get everyone out
of the building.

Solution: We solve this problem by modifying this graph, and then applying the
Ford-Fulkerson algorithm. First, fix a ”deadline” time k, such that we need to empty
the building by time k, under the conditions above. We will develop a polynomial time
algorithm for this problem. Note that once we have this algorithm we can solve our
problem by increasing k one by one until we find the smallest value such that everyone
can move out. Let the total number of people equal P .

6

We modify our graph as follows. For each room r ∈ V , make k+1 copies of it r0, r1, ...rk.
In our modified graph, these will correspond to the room r at each individual time step.
For each pair of rooms r and w with a hallway of capacity crw between them, create
the directed edges with weight crw each ri → wi+1 and wi → ri+1, for each time
i = 0, 1, 2.....k− 1. These edges correspond to the act of moving from room r to w (or
from w to r) in some timestep. For each room r, add the directed edges with weight P
ri → ri+1 for each time i = 0, 1, 2.....k− 1. Finally, add a single room t, and connect tk
to t with an edge of weight P . These edges correspond to the act of staying in a room
for a single timestep. On this modified graph, run the Ford-Fulkerson algorithm with
source w0 and target t. We first show that this algorithm will give us an evacuation
plan if one exists.

First, we prove that if a plan existed which evacuated the building in k timesteps, the
scheme above will return a flow of size P or more. This is fairly obvious: if we route
units of flow as we route people in such a scheme, and then send all P units of flow from
tk to t, we will clearly obtain a flow of size P . As Ford-Fulkerson finds the maximum
flow of the graph, it must find a flow of greater size than this, and so Ford-Fulkerson
finds a flow of size greater than or equal to P in our graph, as desired.

Now, we prove that if Ford-Fulkerson finds a flow of size P or greater, we can convert
this to a valid evacuation plan to get everyone out of the building in k timesteps. Note
that the flow in this case must have value exactly P , since the cut defined by t has
size P . We convert the obtained flow as follows. For every timestep i = 1...k, look for
all pairs of rooms r and w such that people are moving from ri−1 to wi and from wi−1
to ri. The problem with this is that although no more than crw people are crossing
in either direction, the total number of people utilizing the hallway between r and w
may be greater than crw. To remedy this, we do the following: for all rooms r and
w and all times k, if a people are ”swapping” from r to w, make those people stay in
their original room for that timestep and let the rest cross the hallway as normal. We
see that this operation does not change the number of people in every room after the
ith timestep. It is easy to see that after every change has been made, we are left with
another nonnegative integer-weighted flow, and the number of people in each room at
each timestep remains the same. Clearly, then, the flow obtained after all of the swaps
still has size P . We can then convert this into an evacuation plan by routing each
person as a distinct unit of flow in the algorithm.

Thus, the algorithm will create a scheme to empty the building in k time steps if such
a scheme exists. Ford-Fulkerson’s runtime on a graph with m edges and maximum
flow f is O(mf). If we assume our original graph has m edges, our modified graph
has km edges. Since the maximum flow of this graph is at most P , the runtime of
Ford-Fulkerson on the modified graph is O(kmP). In the optional cleanup stage, we
look at each of the m pairs of connected edges at each of the k timesteps and check if
there is a swap between them. Clearly, the entire phase takes O(mk) time. Thus, this
algorithm runs in polynomial time O(kmP). Via our original observation, increasing
k one by one in this algorithm will give us a polynomial time algorithm for the original
problem, as desired.

7

