CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)
HW#2 — Due at the beginning of class Thursday 02/05/15

1. (Kleinberg Tardos 7.27) Some of your friends with jobs out West decide they really
need some extra time each day to sit in front of their laptops, and the morning commute
from Woodside to Palo Alto seems like the only option. So they decide to carpool to
work. Unfortunately, they all hate to drive, so they want to make sure that any carpool
arrangement they agree upon is fair and doesn’t overload any individual with too much
driving. Some sort of simple round-robin scheme is out, because none of them goes to
work every day, and so the subset of them in the car varies from day to day.

Here’s one way to define fairness. Let the people be labeled S = {p1,...,px}. We say
that the total driving obligation of p; over a set of days is the expected number of times
that p; would have driven, had a driver been chosen uniformly at random from among
the people going to work each day. More concretely, suppose the carpool plan lasts for
d days, and on the i"* day a subset S; C S of the people go to work. Then the above
definition of the total driving obligation A; for p; can be written as A; = Zi:pj es; ﬁ
Ideally, we’d like to require that p; drives at most A; times; unfortunately, A; may
not be an integer.

So let’s say that a driving schedule is a choice of a driver for each day — that is, a
sequence pi,, Diy, - - -, Di, With p;, € S; — and that a fair driving schedule is one in
which each p; is chosen as the driver on at most [A;] days.

(a) Prove that for any sequence of sets S, ..., Sy, there exists a fair driving schedule.

(b) Give an algorithm to compute a fair driving schedule with running time polyno-
mial in £ and d.

Solution: We convert the problem into a network flow problem. First we construct a
graph as follows. We denote the vertex p; as the i-th driver. Moreover we denote the
vertex g; as the j-th day. If p; can drive on the j-th day, we simply draw a directed
edge from p; to g; of capacity 1. Finally we draw a source s which connects each p;
with capacity [A;] and a sink which connects each ¢; with capacity 1. It is easy to
find that computing a fair driving schedule is equivalent to computing the maximum
flow problem. The only thing we need to do is to prove that the value of the maximum
flow is d.

First of all, it is obvious that for any flow f, |f| < d. Thus if we are able to find a flow
f with |f| = d, we are done. This is easy to achieve. Consider the following flow.

1 1
fz’j:_7 fsi: — < A@', szl
o ST P 2 g SIS

This flow satisfies all the constraints and have value n. Thus there exists a fair schedule.
For computing it, we simply adopt the Ford algorithm.

2. Recall Karger’s algorithm for the global min-cut problem. In this problem we modify
the algorithm to improve its running time.

(a)

Prove that if we stop the original Karger’s algorithm when the remaining number
of vertices is

max{[1+n/\/§w,2} :

the probability that we have contracted an edge in the min-cut is less than 1/2.
Lets call this procedure Partial Karger.

Solution: Denote A as the event that we do not contract an edge in the min
cut. Suppose we stop at the k-th step, then:

P(NE A;) >

If we set k =n — {n/\/@)—‘ — 1, we have:

[/ V)| ([V)] +1)

PV n(n—1)
o n/V2n/vV2+1) 1
- n(n —1) -2

Now suppose we apply Partial Karger to two copies of GG to produce graphs G,
and G5. We then recursively apply these steps to G7 and GG, and so on until each
recursive call returns a graph on two vertices. If 7(n) is the running time of this
process as a function of the number of vertices n of GG, derive a recursive equation
for r(n) and solve it to obtain an explicit expression for the running time (you
may use O(+) notation to simplify your recursive equation).

Solution: The operation cost for contracting a single edge is O(n). Thus the
operation cost for partial Kager is O(n?). By recursion we have:

r(n) = 2r(n/v2) + 0(n)
By Master’s Theorem we obtain r(n) = O(n%logn).

Show that the algorithm in part (b) produces O(n?) contracted graphs on two
vertices each. Prove that the probability that at least one of them contains a
global min-cut is at least 1/log(n) up to a multiplicative constant.

Hint: Think of the recursion as a binary tree with paths leading to the O(n?)
leaves representing the two-vertex contracted graphs.

Solution: By using partial Karger’s algorithm, we obtain graphs G, G5 from
the original graph G. Here G, G, have {n/ \/ZZ)-‘ vertices. We continue using

partial Karger’s algorithm, so that GGy, G5 keep branching. In the end we get a
binary tree. The height of the tree is log sn. Thus the total number of leaves is

O(QIOgﬁ” = O(n?). Now we proceed to prove that the probability that at least
one of the leaves contains a global min cut is greater than c¢/logn. We denote

2

such probability as f(n). Moreover we denote p as the probability in part (a).
We know from part (a) that p < 1/2.

We consider 1 — f(n), which is the probability that none of the leaves contains a
global min cut. Since the algorithm G branches to G; and GG5. By independence
we only consider the probability that none of GG;’s leaves contains a global min
cut. There are two cases that can make this happen. (1) We contracted an edge
in the min cut when we derive G; from G using Karger’s algorithm, which has
probability p. (2) We did not contract an edge in the min cut when we derive G,
from G, but we unfortunately contracted a min-cut-edge in the following steps,
which has probability (1 — p)(1 — f(nsqrt2). Thus we have:

L—f(n)=(p+ (1 —=p) (1~ f(n/v2))* = (1~ (1-p)f(n/v2)

1 1
< (1= S/ V2P = 1= [(0/V2) + [0/ V2)
Thus, f(n) > f(n/v2) — 1f?(n/v/2). We prove by induction that f(n) > ¢/logn
for some small ¢. Here we take the logarithm under base v/2. Suppose this holds
for k > n, then for k£ = n, we have:

02

c
> _
“logn —1/2 4(logn — 1/2)?

F0) 2 f0/V3) = (VD)

We want to prove that the right hand side is less than ¢/logn, that is:

C 02 C

_ <
logn —1/2 4(logn — 1/2)? ~ logn

This is equivalent to @ < ¢. If we choose ¢ to be less than 2, then this indeed

holds. Thus we completed the induction process.

(d) Compare the running time of the above algorithm to Karger’s original given the
same probability of failure.
Solution: For the partial Karger’s algorithm, the success probability is ¢/logn.
Thus we need to run it logn times to achieve constant success rate. The total
run time is O(n?logn) times O(logn), which is O(n?log®n) time. For traditional
Karger’s algorithm, the total run time is O(n*mlogn). Obviously, partial Karger’s
algorithms is significantly smaller.

3. An independent set in a graph is a set of vertices with no edges connecting them.
Let G be a graph with nd/2 edges (d > 1), and consider the following probabilistic
experiment for finding an independent set in G: delete each vertex of G (and all its
incident edges) independently with probability 1 — 1/d.

(a) Compute the expected number of vertices and edges that remain after the deletion
process. Now imagine deleting one endpoints of each remaining edge.

3

Solution. Each node survives with probability 1/d. Thus the expected number of
nodes is n/d. Each edge survives with probability 1/d? (both its ends must survive
independently). Thus the expected number of edges is nd/2 x 1/d* = n/2d.

(b) From this, infer that there is an independent set with at least n/2d vertices in
any graph with on n vertices with nd/2 edges.

Solution. After applying this sampling, we create an independent set as follows:
for each edge in the resulting graph, delete one of the endpoints. After doing
this for each edge, none of the remaining vertices are connected by any edges, i.e.
form an independent set. If G’ = (V’, E’) is the graph we obtain after sampling,
we expect the size of the independent set to be

Elsize of independent set] = E[|V'| — |E'|| =n/d —n/2d = n/2d

Since there will be at least one outcome with a value equal to (or greater than)
the expectation, by the probabilistic method there must be an independent set of
size > n/2d.

4. Prove that a graph can only have at most (Z) different cuts that realize the global
minimum cut value.

Solution: Suppose we run Karger’s min cut algorithm we saw in class. Let x; be the
event that the algorithm returns the i** global min cut. Suppose there are s different
min cuts, then the probabilities of realizing each in the algorithm will be disjoint (all
end with different sets of nodes at the conclusion of the algorithm). We saw in class
tha;1 for a given global min cut, the probability of returning that cut is > ﬁ So
we have:

S

2
P[returning a global min cut] = P[U]_,z;] = E Plz;] > sﬁ
n(n —
i=1

We also have that the probability of returning a global min cut is < 1, so we need the

above to be upper bounded by 1, which means s < @

5. Exhibit a graph G = (V| E)) where there are an exponential (in |V| = n, the number
of nodes) number of minimum cuts between a particular pair of vertices. Do this by
constructing a family of graphs parameterized on n and give a pair of vertices s, ¢ such
that there are exponentially many minimum cuts between s and t.

Solution. For n = 3, we simply have a path of length 2 between the two ends s and
t. For n > 3, each new vertex will be connected to s and ¢ (and nothing else) creating
an additional path of length 2 between s and t.

For general n, to separate s and ¢, we must cut one edge along every edge-disjoint path
between them. There are n — 2 paths between s and ¢, each of length 2. So we have
n — 2 binary choices, giving 2"~2 different minimum cuts.

6. Exhibit a directed graph that has cover time exponentially large in the number of
nodes. Contrast this with the cover time of undirected graphs discussed in class.

4

Solution: Consider the digraph consisting of a directed cycle (1,2, ...,n, 1), and edges
(7,1), from vertices j = 2,...,n — 1. Starting from vertex 1, the expected time for a
random walk to reach vertex n is 3 x 2772 — 2; in fact, let 7" be the hitting time at
state n. E[T|zg =n] =0, E[T|zo = 1] =E[T|x¢ = 2| + 1, E[T|zo = i| = (1/2)E[T |z =
1]+ (1/2)E[T|xg = i + 1] + 1 for i = 2,...,n — 1. Solving this linear system, we get
E[T)zo=1]=3x2"2 =2 E[T|zg =14 =3(2" 2 —-2"%) fori =2,...,n.

7. You are the sole proprietor of the company Widgets Inc., a supplier of quality widgets
to a large corporation in your country. You have just received a big order of w widgets
from the large corporation, and are preparing a shipment from your facility, s, to their
headquarters, t. Due to various idiosyncrasies in your country’s postal service, the
fastest way to deliver packages is to route them by hand and choose which postal hubs
the package will stop in before it reaches its final destination. In addition, occasionally
a hub’s computer will crash and massively delay all shipments exiting the city. Since
you have been burned by this before, you decide that you want to minimize the number
of widgets that are sent through any given city. However, since this is such a lucrative
contract for you, you also want to send as many widgets as you possibly can. Thus,
if we model our country’s postal service as a graph G with a set of hubs and cities V'
and a set of connections between hubs F, and assume that every edge in our graph
has infinite capacity (in other words, we can send as many widgets across a given
connection as we like), we would like to find the smallest number %k such that we can
route all w widgets from s to ¢t while ensuring that no city handles more than k widgets.
Find a polynomial time algorithm to do so.

Solution. To solve this problem, we note that if we had a polynomial time algorithm
to find a satisfactory routing for fixed k (or return that none exists), we could find the
smallest k with a satisfactory routing by binary searching for k. Thus, we solve the
problem of finding a satisfactory routing for fixed k. We modify our graph slightly.
For every hub h, define two new nodes h;, and h,,;. Have every connection pointing
into h now point into h;, and have every connection ponting out of A point out of hy;.
Finally, add an edge of weight k between h;, and h,,;. We do this because the weight
k edge effectively enforces that hub A handles at most k& widgets: if we tried to route
k 4+ 1 widgets into h;,, only k of them would be allowed to exit h,;. After doing this,
we compute a maximum flow between s and ¢. If the maximum flow has size less than
w, then we immediately know that no satisfactory routing plan can exist. If instead the
maximum flow is greater than w, we can simply choose to route our widgets along this
flow and get all w widgets to the target node t and ensure that no hub sees more than &
widgets, as desired. This runs in polynomial time since solving maximum flows clearly
takes polynomial time and we only do a polynomial amount of extra work to convert
the flow into a solution. To find the smallest such k£, we note that k£ is bounded by
w (we are only routing w widgets anyway), and thus binary searching for the smallest
k only requires log(w) calls to this algorithm. Thus, the final procedure still takes
polynomial time.

8. Compute the cover time of a Hamiltonian cycle with n vertices.

10.

Solution. First of all C(G) < 2m(n — 1) = 2n(n — 1), so C(G) is O(n?). Now
we compute the maximum resistance in the graph. For two points that are x and
n — x edges away from each other, the resistance between these two points are R =
m = 2(1 — x/n). The maximum of this function is achieved at z = [n/2] and
Riaz = 0(n). Then C(G) > mR,,q, implies C(G) is Q(n?). Hence C(G) is ©(n?).

. Suppose we have a 2n x 2n (n > 2) table where each cell is filled with an integer in

{1,2,3,...,2n?}. Moreover, each integer shows up exactly twice. Show that one can
pick 2n cells that satisfy all the following conditions: (1). all the numbers written in
these cells are distinct; (2). in each row exactly one cell is picked out; (3) in each
column exactly one cell is picked out.

Solution. Take a random permutation 7 of {1,2,3,...,2n}, pick out 7 (i)-th cell
from row i. Any 2n cells chosen this way satisfy condition (2) and (3). We show
that the probability of these cells satisfying condition (1) is positive: For any j €
{1,2,3,...,2n?}, the probability of picking out two j’s in our 2n cells is: 0 if the two j’s
are in the same row or column; ﬁ X ﬁ if the two j’s are in different rows and columns.
By union bound, the probability of satisfying condition (1) > 1 — 2n? x % X 2n1_1 >0
when n > 2. Therefore there is a way of choosing 2n cells that satisfies all the three
required conditions. 0

After your success selling widgets, you have grown your business and now sell widgets
of many different sizes and shapes. Shipping these widgets requires special boxes which
you have custom built by a supplier. Unfortunately, having the supplier ship you these
boxes is rather expensive, due to a large customs tax imposed on every package he
sends you. You notice that some of the smaller of the boxes you need fit inside some
of the larger ones, and seeing an opportunity to save money, you ask your supplier
to ship smaller boxes inside of larger ones. He agrees, as long as no two boxes lie
side-by-side inside of a larger one— in other words, no two boxes A and B lie inside box
C' if neither A contains B nor B contains A. (Otherwise, the two inner boxes might
damage each other during shipping.) Assuming you need n different boxes and you
know which boxes fit inside others, find a polynomial time algorithm to compute the
minimum number of separate shipments needed, and compute the algorithm’s running
time.

Solution. We note that if we have n boxes to ship and k£ boxes are nested inside
others, we only have to ship n — k different packages. Thus, an equivalent formulation
of the problem is to maximize the number of boxes that we can fit inside others. With
this, we construct a graph. Create two sets U and V, and for each box i, create the
nodes u; in U and v; in V. Now, for every pair of boxes i and j such that box j fits
inside box 4, add an edge of capacity 1 from u; to v;. Create a source node s and a
target node ¢, and connect s to every node in U and every node in V' to t with capacity
1 edges. We run the Ford-Fulkerson algorithm on this graph. This algorithm will find
us a maximal bipartite matching from U to V by taking the edges from U to V in
our returned flow. We convert this to a scheme to nest boxes as follows: for every

6

edge connecting u; to v; in the maximum bipartite matching, put box j inside box i.
We see that box ¢ is put inside another box if and only if some edge in our maximum
matching points into it. Since a maximum matching clearly maximizes the number of
such boxes, this algorithm will give us a nesting of boxes which maximizes the number
of boxes which are put inside of others. By our initial observation, this algorithm thus
minimizes the number of needed packages, as desired.

To analyze runtime, we first note that the runtime of the Ford-Fulkerson algorithm is
O(mF'), where m is the number of edges and F' is the size of the maximum flow. Since
U and V both have size n, there are clearly at most n? edges between them. Since
there are n edges connecting each of s and ¢, we have that m = O(n?). Now, we note
that the set t corresponds to a s — t cut of size n. By min-cut max-flow, we conclude
that the maximum s —t flow is bounded by n. Thus, the runtime of the Ford-Fulkerson
algorithm for this problem is O(mF) = O(n?). Finally, since our step to convert the
maximum matching to a nesting of boxes looks at at most every edge in the matching,
this step clearly takes O(n), and thus the entire algorithm runs in O(n?) time.

