
Dogwild! — Distributed Hogwild for CPU & GPU

Cyprien Noel
Flickr Vision & Machine Learning Group

Yahoo! Inc
cypof@yahoo-inc.com

Simon Osindero
Flickr Vision & Machine Learning Group

Yahoo! Inc
osindero@yahoo-inc.com

Abstract

Deep learning has enjoyed tremendous success in recent years. Unfortunately,
training large models can be very time consuming, even on GPU hardware. We
describe a set of extensions to the state of the art Caffe library [3], allowing train-
ing on multiple threads and GPUs, and across multiple machines. Our focus is on
architecture, implementing asynchronous SGD without increasing Caffe’s com-
plexity. We isolate parallelization from Caffe’s existing SGD code, train unmodi-
fied models, and run on commodity hardware. Isolation is achieved by extending
the Hogwild model, i.e. running parallel SGD solvers without synchronization,
by also removing synchronization between solvers and components in charge of
streaming gradients between nodes. In this modular design, components inter-
act exclusively through unsynchronized reads and writes to the weight buffer.
Each component is free to loop over the weights at a different pace, keeping both
compute and network resources fully utilized. SGD’s resiliency against gradient
loss allows further performance improvements by avoiding reliable network proto-
cols. It enables the use of multicast messages, and of low level packets streaming
through raw sockets or InfiniBand verbs. We show linear performance scaling for
small clusters on MNIST, and early results on ImageNet.

1 Introduction & Previous Work

Training a neural network for a task such as ImageNet typically takes about two weeks on a modern
GPU. Parallelizing SGD to accelerate this process is challenging. Downpour [2] and a GPUs +
InfiniBand implementation [1] successfully scaled to 16000 CPU cores and 64 GPUS respectively,
but only when training locally connected models. Downpours performance on 1600 cores for a
globally connected network is not significantly better than a single GPU [2] [8]. [8] identified a low
upper bound on the expected benefits of parallelizing SGD, even in the asynchronous case.

Nevertheless, satisfactory performance can be achieved at small scale [9] [5] [7] — for instance,
cuda-convnet2 [4] is a relatively task and hardware specific implementation, but scales efficiently to
8 GPUs.

2 Hogwild

In a Hogwild setting, multiple SGD processes run on the same weights using different shards of
training data. Each thread computes gradients using private data and layers state, but reads and
writes to a shared memory location for weights. The cache hierarchy is responsible for propagating
updates between cores. Coordination happens at two points, when the weights are read during
gradient computation (memory load), and when gradients are applied (unsynchronized addition:
load, add, store).

1



Races are expected, where loads and stores from different threads interleave and additions are lost. In
practice, our measurements show surprisingly low loss rates. Our experiment consisted of adding a
constant value during gradient update and looking at the end value. For single CPU socket machines,
no loss was measured. For two-sockets machines, where the latency between cores can be higher,
the loss stayed below 0.5% for most network sizes.

3 Distributed Hogwild

Most of the distributed SGD implementations mentioned above isolate computation and exchange of
gradients. Separation is achieved either through time, by stopping SGD during weight and gradient
exchange, or through space, by maintaining separate memory locations and switching between them
between phases. Asynchronous SGD goes further and allows weights and gradients transfers to
occur concurrently with computation. Weak coordination still occurs at the beginning and end of a
batch to launch transfers asynchronously.

This work takes inspiration from the Hogwild [6] approach to go further still in two directions.
We increase the amount of decoupling between computation and data streaming, and also tolerate
occasional gradient loss in order to use unreliable and multicast network transports. This approach
has several advantages:

• A clean and modular code base, with complete separation of the training and synchroniza-
tion code. We modified Caffe[3] to allocate all weights inline in a single buffer that can
easily be shared between components. Building a training architecture amounts to starting
a collection of SGD solvers, and a set of synchronization segments, e.g. CPU-GPU, CPU-
Ethernet, GPU-InfiniBand. A component performs a single task, and can optionally run in
its own process if the weights are mapped to /dev/shm.

• Better resource utilization, as both SGD and synchronization run continuously and at the
maximum rate allowed by the computing power and network bandwidth available. SGD
seems relatively resilient to unbalance between the two. Removing all synchronization, and
relying instead on the highly tuned modern memory hierarchies allows individual tasks to
perform faster, and might be the way to the highest possible performance.

• Very high speed networking. Unreliable transports like raw socket/packet mmap and In-
finiBand UD have very low compute and memory overhead. They can use more of the
available bandwidth, and display low and regular latency characteristics. Packets can be
sent through multicast, allowing higher performance and potentially scalability, within the
constraints of the SGD algorithm.

4 Architecture

The current model only supports data-parallelism. Model weights are replicated on all nodes, i.e.
hosts or GPUs in the cluster. The mechanism is very similar for both types of nodes. For each
segment, one of the ends is designated master, either for the whole buffer, or for a given range.
The master loops over the weight buffer, sending a set of weights at a time to all slaves. Each slave
compares its own weights to a copy. The copy did not change since the last message from the master,
so the difference is the gradient since the last synchronization. The slave updates its weights using
the master position plus the gradient, and sends the gradient to the master.

This mechanism allows nodes to apply each others gradients and return their own in one pass over
the memory. Memory is scanned in order on all nodes, which helps locality. Multicast messages can
be used on the master to keep all slave copies synchronized in one message.

According to our experiments on Hogwild, the amount of work lost due to races during concurrent
additions is negligible. In almost all cases, each sides gradient will be added to the other without
loss. The master is continuously sending the reference position, which keeps slaves within a bounded
distance.

2



5 Implementation

One of this projects goals was to run on commodity hardware. Most data center machines are
equipped with Ethernet, often a single adapter. Streaming data at the highest speed that hardware
can deliver gives rise to a surprising number of practical difficulties, both on the networking side
and for internal communication with GPUs.

6 Networking

Our first satisfying results were achieved using raw sockets, by exchanging Ethernet packets with
an Ethertype different from IP. This traffic avoids filtering and other processing that regular traffic
like UDP is subject to. In our experiments, UDP streaming at maximum speed congests the network
stack, and renders machines unreachable. TCP solutions oscillate at bandwidths well below the
hardware limits, and are subject to latency spikes.

Reliable transports and APIs like TCP, RDMA, or MPI are subject to latency spikes on Ethernet
caused by retry mechanisms. Packet ordering causes head of line blocking, and is not necessary
for distributed SGD. Our experiments showed up to 10% packet loss, but this did not seem to incur
any measurable effect on SGD speed or stability. Attempts to correct the situation by throttling, or
switching to reliable transports only lowered the convergence rate.

Another valuable optimization enabled by unreliable messaging is the use of multicast or broadcast
messages. It allows the master to iterate faster over its weights by sending each chunk only once for
all slaves, reducing the distance between weights copies, them and improving SGD efficiency.

We have not been able to benchmark reliable messaging on InfiniBand and Converged Ethernet.
They offer reliable communication, removing the need for retries on the software side. It is our un-
derstanding that reliable multicast is not provided, and that packet loss is avoided by pessimistically
allocating safe bandwidth limits. It is therefore unlikely to help our use case.

Our Ethernet implementation uses a Linux feature called packet mmap, and on InfiniBand, ibverbs.
Both APIs enable user-space networking, i.e., allow the network adapter to directly send and receive
blocks of memory mapped to the application address space, avoiding system calls and memory
copies.

7 Performance

Results on MNIST are encouraging, and show linear scaling with the number of solvers. We used
two clusters, 6 machines with 2 Xeons and 2 K-20 each over 1G Ethernet, and another with two
machines with 2 Xeons, 8 GPUs and 10G Ethernet. Learning curves as a function of wall-time are
shown in Figure 1

Validating the approach on large models like ImageNet will take more work. We are running into
various bottlenecks, including simply feeding the training data at a rate that can keep the GPUs
running. Software stability prevented us from running long jobs in time for this submission, but
we are confident that those issues can be resolved. Early results seem to show the same scalability
pattern at MNIST, as can be seen in Figure 2.

8 Future Directions

This work is still in its preliminary stages, and there are a number of ongoing directions of expansion
in terms of our capabilities as well as additional and more rigorous evaluations that we plan to make.
We outline some of these in the following subsections (and anticipate being able to present extended
results at the workshop). Furthermore, once we have reached a sufficient level of maturity, our
Dogwild code will be made available as part of the Caffe open-source package.

3



Figure 1: MNIST results. We show validation set performance as a function of wall-time.

8.1 Data Feeding

Caffe’s current data feeding implementation does not deliver sufficient bandwidth to keep 4 GPUs
fully active on ImageNet, at least on our hardware. CUDA features like asynchronous streams, and
additional pre-fetching and caching need to be experimented.

8.2 Benchmarking

This approach needs to be evaluated against synchronous techniques. We need to understand the
impact of unbalance between computation and networking that is allowed by their decoupling.

8.3 Momentum

Each solver currently allocates its own momentum buffer. We suspect momentum should be ap-
proached differently, for both performance and SGD stability reasons. On a large number of CPU
cores, a single momentum buffer could be shared by all solvers. In a distributed setting, the master
could be in charge of adding the momentum before broadcasting each new reference value.

8.3.1 Learning rate

Our approach for rate scheduling has been to sum iterations over all solvers, and considering this
as the current training progress. Synchronization is not equivalent to more iterations from a single
solver, so a better estimate needs to be investigated.

4



Figure 2: ImageNet results. We show validation set performance as a function of wall-time. Note the
“notch” in the 2-GPUs curve at approximately 100,000 seconds is due to the learning rate scheduler,
which decreases the learning rate by a factor of 10 at this point. It would occur on 1-GPU curve if
we trained longer.

8.3.2 Specialization

In a distributed setting, it might make sense for each node to perform a different computation. One
node could for example be running a second-order training algorithm to evaluate a learning rate, that
could in turn be used by other nodes to run regular SGD.

5



Acknowledgments

The authors gratefully acknowledge the support from the Vision & Machine Learning, and Produc-
tion Engineering teams at Flickr (in alphabetical order: Andrew Stadlen, Arel Cordero, Clayton
Mellina, Frank Liu, Gerry Pesavento, Huy Nguyen, Jack Culpepper, John Ko, Mehdi Mirza, Pierre
Garrigues, Rob Hess, Stacey Svetlichnaya, Tobi Baumgartner, and Ye Lu). We are also grateful for
the support of our collaborators at NVIDIA (Douglas Holt, Jonathan Cohen, and Mike Houston).

References
[1] A. Coates, B. Huval, T. Wang, D. J. Wu, B. C. Catanzaro, and A. Y. Ng. Deep learning with COTS HPC

systems. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013, pages 1337–1345, 2013.

[2] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In NIPS, 2012.

[3] Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding. http://caffe.
berkeleyvision.org/, 2013.

[4] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. CoRR, abs/1404.5997,
2014.

[5] Y. Miao, H. Zhang, and F. Metze. Distributed learning of multilingual dnn feature extractors using gpus.
Proc. Interspeech, 2014.

[6] F. Niu, B. Recht, C. R, and S. J. Wright. Hogwild: A lock-free approach to parallelizing stochastic gradient
descent. In In NIPS, 2011.

[7] T. Paine, H. Jin, J. Yang, Z. Lin, and T. S. Huang. GPU asynchronous stochastic gradient descent to speed
up neural network training. CoRR, abs/1312.6186, 2013.

[8] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. On parallelizability of stochastic gradient descent for speech
dnns. In ICASSP. IEEE SPS, May 2014.

[9] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu. Asynchronous stochastic gradient descent for dnn
training. In ICASSP’13, pages 6660–6663, 2013.

6

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/

	Introduction & Previous Work
	Hogwild
	Distributed Hogwild
	Architecture
	Implementation
	Networking
	Performance
	Future Directions
	Data Feeding
	Benchmarking
	Momentum
	Learning rate
	Specialization



