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Latent Factor Models

e Glven M
— sparse
—nxXm

« Returns Uand V
—rank k

* Applications

— Dimensionality
reduction

— Recommendation

— Inference



Seem familiar?

min D (myg —ulv;)” + A (llwill? + [[o;]?)
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* So why not just use SVD?



Problems with SVD
* (Feb 24, 2015 edition)

d SVD: Drawbacks

M= | .. ) + Optimal low-rank approximation
Do : in terms of Frobenius norm

Initialize W,H randomly

— not at zero © - Interpretability problem:
(Loose a random ordes#fg (random sort) of the points — A singular vector specifies a linear
inas ch “sub-epoch o1 sput columns or rows

* Pick strata sequence by permuting rows and columns
of M, and using M’[k,i] as column index of row i in
subepoch k

* Use “bold driver” to set step size:
— increase step size when loss decreases (in an epoch)
— decrease step size when loss increases

* Implemented in Hadoop and R/Snowfall

Phttp://www.mmds.org




Revamped loss function

* g-global bias term

» bY. —user-specific bias term for user i

* b'; -item-specific bias term for item j

* prediction function
p(ij) =g+ b";+b"+u"y,
* a(i, j) - analogous to SVD’s m;; (ground truth)

* New loss function:
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Algorithm

Algorithm 1: Matrix Factorization using SGD.

o

randomly initialize U and V'

while not converged do
4 randomly pick edge (¢, j)

w

// compute weighted prediction error
6 | ey < w(i,j)(a(i,j) —p(i, 7))

// update biases
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// update factors
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Problems

1. Resulting Uand V, for graphs with millions of
vertices, still equate to hundreds of gigabytes
of floating point values.

2. SGD is inherently sequential; either locking or
multiple passes are required to synchronize.



Problem |:size of parameters

e Solution: Parameter Server architecture

parameter machines

learner machines



Problem 2:simultaneous writes

e Solution: ...so what?

HOGWILD!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent

Feng Niu Benjamin Recht Christopher Ré
leonn@cs.wisc.edu brecht@cs.wisc.edu chrisre@cs.wisc.edu

Stephen J. Wright
swright@cs.wisc.edu
Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706

Algorithm 1 HOGWILD! update for individual processors
1: loop
2:  Sample e uniformly at random from £
3:  Read current state x. and evaluate G (x.)
4: forveedox, — x, — VG ()
5: end loop




Lock-free concurrent updates?

* Assumptions

1. fis Lipshitz continuously differentiable
2. fis strongly convex
3. () (size of hypergraph) is small

4. A (fraction of edges that intersect any
variable) is small

5. p (sparsity of hypergraph) is small



Factorbird Architecture

mathematical view partitioning scheme systems view

-*

Co-partition M and V Co-locate partitions of M
according to the number and V on learner machines

of learner machines



Parameter server architecture

* Open source!
—http:// parameterserver org/

NP-Swels




Factorbird Machinery

* memcached - Distributed memory object
caching system

* finagle - Twitter’s RPC system
 HDFS - persistent filestore for data

* Scalding - Scala front-end for Hadoop
MapReduce jobs

* Mesos - resource manager for learner
machines



Factorbird stubs

trait Learner {
def initialize (factors: FactorVector): Unit
def update(u_i: FactorVector, v_3j: FactorVector,
a_1j: Float, n_i: Int, n_7Jj: Int, w_1ij: Float): Float

trait Predictor {
def predict (u_i: FactorVector, v_7j: FactorVector): Float

}

trait LossEstimator {
def estimateRegularizationComponent (
numRowsOfU: Int, sampleOfU: Iterator[FactorVector],
numColumnsOfV: Int, sampleOfV: Iterator[FactorVector]): Double

def estimateErrorComponent (numEdges: Long,
sampleOfEdges: Iterator[Edge], partitionOfU: FactorMatrix,
partitionOfV: FactorMatrix) : Double




Model assessment

* Matrix factorization using RMSE
—Root-mean squared error

—

RMSD(#) = y/ MSE(6) = \/E((6 — 6)?).

* SGD performance often a function of
hyperparameters

—A: regularization
—1: learning rate

— k: number of latent factors



[Hyper]Parameter grid search

* aka “parameter scans:” finding the optimal
combination of hyperparameters

— Parallelize!

(cxk) xXn

m X (cx* k)
(N1, A1) (N1, A2) (N2, A1) (N2, A2) (N1, A1)

(N1, A2)
(N2, A1)

(N2, A2)

Figure 4: Packing many models into one for hyperparameter search.



Experiments

* “RealGraph”

—Not a dataset; a framework for creating
graph of user-user interactions on Twitter

Graph Generation Model Learning Applications

| [Recommendation,
Personalize Realtime Search,
Pagerank Typeahead

Follow Graph +
addressbook +

Training
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Figure 1: Twitter RealGraph Framework.

Kamath, Krishna, et al. "RealGraph: User Interaction Prediction at Twitter." User Engagement
Optimization Workshop@ KDD. 2014.



Experiments

* Data: binarized adjacency matrix of subset of
Twitter follower graph

—a(l, j) = 1if user i interacted with user j, 0
otherwise

 All prediction errors weighted equally (w(j, j)
=1)

* 100 million interactions
* 440,000 [popular] users



Experiments

* 80% training, 10% validation, 10% testing
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Figure 5: Prediction quality on held-out data
with increasing model complexity.



Experiments

¢« k=2
* Homophily

factor 2
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Figure 6: Plot of a selection of twitter users as
positioned by a factorization with £k = 2 of a
sample of RealGraph.



Experiments

 Scalability of Factorbird
—large RealGraph subset
—229M x 195M (44.6 quadrillion)
—38.5 billion non-zero entries

* Single SGD pass through training set: ~2.5
hours

* ~ 40 billion parameters



Important to note

* As with most (if not all) distributed platforms:

1 1 Sebastian o8  Following
sscdotopen

@SpectralFilter cooll I'd emphasize that this
architecture only makes sense if the model
IS larger than memory. Otherwise its overkill.

FAVORITE J
1



Future work

* Support streaming (user follows)

* Simultaneous factorization

* Fault tolerance

* Reduce network traffic

* s/memcached/custom application/g
* Load balancing



Strengths

* Excellent extension of prior work
—Hogwild, RealGraph

* Current and [mostly]| open technology
—Hadoop, Scalding, Mesos, memcached

* Clear problem, clear solution, clear validation



Weaknesses

 Lack of detail, lack of detail, lack of detail
— How does number of machines affect runtime?

— What were performance metrics of the large
RealGraph subset?

— What were some of the properties of the
dataset (when was it collected, how were edges
determined, what does “popular” mean, etc)?

— How did other factorization methods perform
by comparison?



Questions?




