Factorbird: a Parameter Server Approach to Distributed Matrix Factorization

Sebastian Schelter, Venu Satuluri, Reza Zadeh Distributed Machine Learning and Matrix Computations workshop in conjunction with NIPS 2014

Latent Factor Models

- Given M
 - sparse
 - $-n \times m$
- Returns *U* and *V*
 - $-\operatorname{rank} k$
- Applications
 - Dimensionality reduction
 - Recommendation
 - Inference

Seem familiar?

$$\min_{U,V} \sum_{(i,j)\in M} (m_{ij} - u_i^T v_j)^2 + \lambda \left(||u_i||^2 + ||v_j||^2 \right)$$
SVD!

• So why not just use SVD?

Problems with SVD

• (Feb 24, 2015 edition)

More detail....

- Initialize W,H randomly
 - not at zero ☺

$$\mathsf{M} = \begin{pmatrix} 1 & 2 & \cdots & d \\ 2 & 3 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ d & 1 & \cdots & d-1 \end{pmatrix}$$

Choose a random ordering (random sort) of the points in a stratum in each "sub-epoch"

- Pick strata sequence by permuting rows and columns of M, and using M'[k,i] as column index of row i in subepoch k
- Use "bold driver" to set step size:
 - increase step size when loss decreases (in an epoch)
 - decrease step size when loss increases
- Implemented in Hadoop and R/Snowfall

Revamped loss function

- g global bias term
- b^{U_i} user-specific bias term for user *i*
- b^{V}_{j} item-specific bias term for item j
- prediction function

$$p(i, j) = g + b^{U}_{i} + b^{V}_{j} + u^{T}_{i}v_{j}$$

• a(i, j) – analogous to SVD's m_{ij} (ground truth)

New loss function:

$$\min_{g,b^U,b^V,U,V} \frac{1}{2} \left(\sum_{i,j \in M} w(i,j) (p(i,j) - a(i,j))^2 \right) + \frac{\lambda}{2} \left(g^2 + \|b^U\|^2 + \|b^V\|^2 + \|U\|_F^2 + \|V\|_F^2 \right)$$

Algorithm

Algorithm 1: Matrix Factorization using SGD.

```
1 randomly initialize U and V
```

```
2
 3 while not converged do
           randomly pick edge (i, j)
 5
           // compute weighted prediction error
          e_{ij} \leftarrow w(i,j)(a(i,j) - p(i,j))
 6
           // update biases
 g \leftarrow g - \eta \left( e_{ij} + \lambda g \right)
 9 b_i^U \leftarrow b_i^U - \eta \left(e_{ij} + rac{\lambda}{n_i} b_i^U 
ight)
       b_j^V \leftarrow b_j^V - \eta \left( e_{ij} + \frac{\lambda}{n_j} b_j^V \right)
10
11
           // update factors
12 u_i \leftarrow u_i - \eta \left( e_{ij} \ v_j + \frac{\lambda}{n_i} u_i \right)
13 v_j \leftarrow v_j - \eta \left( e_{ij} \ u_i + \frac{\lambda}{n_j} v_j \right)
```

Problems

- 1. Resulting *U* and *V*, for graphs with millions of vertices, still equate to hundreds of gigabytes of floating point values.
- 2. SGD is inherently sequential; either locking or multiple passes are required to synchronize.

Problem 1: size of parameters

Solution: Parameter Server architecture

parameter machines

learner machines

Problem 2: simultaneous writes

• Solution: ...so what?

HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent

Feng Niu

leonn@cs.wisc.edu

Benjamin Recht brecht@cs.wisc.edu

ch

Christopher Ré
chrisre@cs.wisc.edu

Stephen J. Wright

swright@cs.wisc.edu Computer Sciences Department University of Wisconsin-Madison Madison, WI 53706

Algorithm 1 HOGWILD! update for individual processors

- 1: **loop**
- 2: Sample e uniformly at random from E
- 3: Read current state x_e and evaluate $G_e(x_e)$
- 4: **for** $v \in e$ **do** $x_v \leftarrow x_v \gamma G_{ev}(x_e)$
- 5: end loop

Lock-free concurrent updates?

Assumptions

- 1. f is Lipshitz continuously differentiable
- 2. *f* is **strongly convex**
- 3. Ω (size of hypergraph) is **small**
- 4. Δ (fraction of edges that intersect any variable) is **small**
- 5. ρ (sparsity of hypergraph) is **small**

Factorbird Architecture

Co-partition M and V according to the number of learner machines

Co-locate partitions of M and V on learner machines

Parameter server architecture

- Open source!
 - -http://parameterserver.org/

Factorbird Machinery

- memcached Distributed memory object caching system
- finagle Twitter's RPC system
- HDFS persistent filestore for data
- Scalding Scala front-end for Hadoop MapReduce jobs
- Mesos resource manager for learner machines

Factorbird stubs

```
trait Learner {
 def initialize (factors: Factor Vector): Unit
 def update(u_i: FactorVector, v_j: FactorVector,
            a_ij: Float, n_i: Int, n_j: Int, w_ij: Float): Float
trait Predictor {
 def predict(u_i: FactorVector, v_j: FactorVector): Float
trait LossEstimator {
 def estimateRegularizationComponent(
   numRowsOfU: Int, sampleOfU: Iterator[FactorVector],
   numColumnsOfV: Int, sampleOfV: Iterator[FactorVector]): Double
 def estimateErrorComponent(numEdges: Long,
   sampleOfEdges: Iterator[Edge], partitionOfU: FactorMatrix,
   partitionOfV: FactorMatrix): Double
```

Model assessment

- Matrix factorization using RMSE
 - Root-mean squared error

$$\mathrm{RMSD}(\hat{\theta}) = \sqrt{\mathrm{MSE}(\hat{\theta})} = \sqrt{\mathrm{E}((\hat{\theta} - \theta)^2)}.$$

- SGD performance often a function of hyperparameters
 - $-\lambda$: regularization
 - η: learning rate
 - k: number of latent factors

[Hyper]Parameter grid search

 aka "parameter scans:" finding the optimal combination of hyperparameters

-Parallelize!

Figure 4: Packing many models into one for hyperparameter search.

- "RealGraph"
 - Not a dataset; a framework for creating graph of user-user interactions on Twitter

Figure 1: Twitter RealGraph Framework.

Kamath, Krishna, et al. "RealGraph: User Interaction Prediction at Twitter." User Engagement Optimization Workshop@ KDD. 2014.

- Data: binarized adjacency matrix of subset of Twitter follower graph
 - -a(i, j) = 1 if user *i* interacted with user *j*, 0 otherwise
- All prediction errors weighted equally (w(i, j) = 1)

- 100 million interactions
- 440,000 [popular] users

80% training, 10% validation, 10% testing

Figure 5: Prediction quality on held-out data with increasing model complexity.

- k = 2
- Homophily

Figure 6: Plot of a selection of twitter users as positioned by a factorization with k=2 of a sample of RealGraph.

- Scalability of Factorbird
 - large RealGraph subset
 - -229M x 195M (44.6 quadrillion)
 - -38.5 billion non-zero entries

- Single SGD pass through training set: ~2.5 hours
- ~ 40 billion parameters

Important to note

As with most (if not all) distributed platforms:

@SpectralFilter cool! I'd emphasize that this architecture only makes sense if the model is larger than memory. Otherwise its overkill.

Future work

- Support streaming (user follows)
- Simultaneous factorization
- Fault tolerance
- Reduce network traffic
- s/memcached/custom application/g
- Load balancing

Strengths

- Excellent extension of prior work
 - -Hogwild, RealGraph
- Current and [mostly] open technology
 - -Hadoop, Scalding, Mesos, memcached
- Clear problem, clear solution, clear validation

Weaknesses

- Lack of detail, lack of detail, lack of detail
 - How does number of machines affect runtime?
 - What were performance metrics of the large RealGraph subset?
 - What were some of the properties of the dataset (when was it collected, how were edges determined, what does "popular" mean, etc)?
 - How did other factorization methods perform by comparison?

Questions?

