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Frequentist inference
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Thinking like a frequentist

Suppose that for some population distribution with parameters θ,
you have a process that takes observations Y and constructs an
estimator θ̂.

How can we quantify our uncertainty in θ̂?

By this we mean: how sure are we of our guess?

We take a frequentist approach: How well would our procedure
would do if it was repeated many times?
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Thinking like a frequentist

The rules of thinking like a frequentist:

I The parameters θ are fixed (non-random).

I Given the fixed parameters, there are many possible
realizations (“parallel universes”) of the data given the
parameters.

I We get one of these realizations, and use only the universe we
live in to reason about the parameters.
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The sampling distribution

The distribution of θ̂ if we carry out this “parallel universe”
simulation is called the sampling distribution.

The sampling distribution is the heart of frequentist inference!
Nearly all frequentist quantities we derive come from the sampling
distribution.

The idea is that the sampling distribution quantifies our
uncertainty, since it captures how much we expect the estimator to
vary if we were to repeat the procedure over and over (“parallel
universes”).
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Example: Flipping a biased coin

Suppose we are given the outcome of 10 flips of a biased coin, and
take the sample average of these ten flips as our estimate of the
true bias q.

What is the sampling distribution of this estimator?
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Example: Flipping a biased coin
Suppose true bias is q = 0.55.
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Example: Flipping a biased coin

100,000 parallel universes, with n = 10 flips in each:
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Example: Flipping a biased coin

1 universe with n = 1000 flips:
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Example: Flipping a biased coin

The sampling distribution is what we get if the number of parallel
universes →∞.

In this case: the sampling distribution is 1
nBinomial(n, q).

Note that:

I In this case, the mean of the sampling distribution is the true
parameter. This need not always be true.

I The standard deviation of the sampling distribution is called
the standard error (SE) of the estimator.1

I The sampling distribution looks asymptotically normal as
n→∞.

1We also use the term “standard error” to refer to an estimate of the true
SE, computed from a specific sample. In this case we write ŜE to clarify the
dependence on the observed data.
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Analyzing the MLE
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Bias and consistency of the MLE

The MLE may not be unbiased with finite n. However, the MLE is
asymptotically unbiased when the amount of data grows. This is
called consistency.

Theorem
The MLE is consistent:

As n→∞,
lim
n→∞

EY[θ̂MLE|θ] = θ.

In words: The mean of the sampling distribution of the MLE
converges to the true parameter.
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Asymptotic normality of the MLE

Theorem
For large n, the sampling distribution of the MLE θ̂MLE is
approximately a normal distribution (with mean that is the true
parameter θ).

The variance, and thus the standard error, can be explicitly
characterized in terms of the Fisher information of the population
model; see Theorem 9.18 in [AoS].
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Example 1: Biased coin flipping
Let q̂MLE be MLE estimate of q, the bias of the coin; recall it is
just the sample average:

q̂MLE =
1

n

n∑
i=1

Yi = Y .

I q̂MLE is unbiased, regardless of n.

I The standard error of q̂MLE can be computed directly:

SE =
√
Var(q̂MLE) =

√√√√ 1

n2

n∑
i=1

q(1− q) =
√
q(1− q)

n
.

I We can estimate the standard error of q̂ by
ŜE =

√
q̂MLE(1− q̂MLE)/n.

I For large n, q̂MLE is approximately normal, with mean q and

variance ŜE
2
.
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Example 2: Linear normal model

Recall that in this case, β̂MLE is the OLS solution.

I It is unbiased (see Lecture 5), regardless of n.

I The covariance matrix of β̂ is given by σ2(X>X)−1. (Using
similar analysis to Lecture 5.)
In particular, the standard error SEj of β̂j is σ times the
square root of the j’th diagonal entry of this matrix.

I To estimate this covariance matrix (and hence SEj), we use
an estimator σ̂2 for σ2.

I For large n, β̂ is approximately normal.
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Example 2: Linear normal model

What estimator σ̂2 to use?

Recall that σ̂2MLE is the following sample variance:

σ̂2MLE =
1

n

n∑
i=1

r2i .

But this is not unbiased! In fact it can be shown that:

EY[σ̂2MLE|β, σ2,X] =
n− p
n

σ2.
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Example 2: Linear normal model

In other words, σ̂2MLE underestimates the true error variance.

This is because the MLE solution β̂ was chosen to minimize
squared error on the training data. We need to account for this
“favorable selection” of the variance estimate by “reinflating” it.
So an unbiased estimate of σ2 is:

σ̂2 =
1

n− p

n∑
i=1

(Yi −Xiβ̂)
2.

The quantity n− p is called the degrees of freedom (DoF).
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Example 2: Linear normal model

R output after running a linear regression:

lm(formula = Ozone ~ 1 +

Solar.R + Wind + Temp,

data = airquality)

coef.est coef.se

(Intercept) -64.34 23.05

Solar.R 0.06 0.02

Wind -3.33 0.65

Temp 1.65 0.25

---

n = 111, k = 4

residual sd = 21.18, R-Squared = 0.61
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Example 2: Linear normal model

In the case of simple linear regression (one covariate with
intercept), we can explicitly calculate the standard error of β̂0 and
β̂1:

ŜE0 =
σ̂

σ̂X
√
n

√∑n
i=1X

2
i

n
;

ŜE1 =
σ̂

σ̂X
√
n
,

where σ̂ is the estimate of standard deviation of the error.

Note that both standard errors decrease proportional to 1/
√
n.

This is always true for standard errors in linear regression.
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Standard error vs. estimated standard error

Note that the standard error depends on the unknown
parameter(s)!

I Biased coin flipping: SE depends on q.

I Linear normal model: SE depends on σ2.

This makes sense: the sampling distribution is determined by the
unknown parameter(s), and so therefore the standard deviation of
this distribution must also depend on the unknown parameter(s).

In each case we estimate the standard error, by plugging in an
estimate for the unknown parameter(s).
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Additional properties of the MLE

Two additional useful properties of the MLE:

I It is equivariant: If you want the MLE of a function of θ, say
g(θ), you can get it by just computing g(θ̂MLE).

I It is asymptotically optimal: As the amount of data increases,
the MLE has asymptotically lower variance than any other
asymptotically normal consistent estimator of θ you can
construct (in a sense that can be made precise).
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Additional properties of the MLE

Asymptotic optimality is also referred to as asymptotic efficiency of
the MLE.

The idea is that the MLE is the most “informative” estimate of the
true parameter(s), given the data.

However, it’s important to also understand when MLE estimates
might not be efficient.

A clue to this is provided by the fact that the guarantees for MLE
performance are all asymptotic as n grows large (consistency,
normality, efficiency).

In general, when n is not “large” (and in particular, when the
number of covariates is large relative to n), the MLE may not be
efficient.
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Confidence intervals
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Quantifying uncertainty

The combination of the standard error, consistency, and
asymptotic normality allow us to quantify uncertainty directly
through confidence intervals:

In particular, for large n:

I The sampling distribution of the MLE θ̂MLE is approximately
normal with mean θ, and standard deviation ŜE.

I A normal distribution has ≈ 95% of its mass within 1.96
standard deviations of the mean.

I Therefore, in 95% of our “universes”, θ̂MLE will be within
1.96 ŜE of the true value of θ.

I In other words: in 95% of our universes:

θ̂MLE − 1.96 ŜE ≤ θ ≤ θ̂MLE + 1.96 ŜE.
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Confidence intervals

We refer to [θ̂MLE − 1.96 ŜE, θ̂MLE +1.96 ŜE] as a 95% confidence
interval for θ.

More generally, let zα be the unique value such that
P (Z ≤ zα) = 1− α for N (0, 1) random variable. Then:

[θ̂MLE − zα/2ŜE, θ̂MLE + zα/2ŜE]

is a 1− α confidence interval for θ.

In R, you can get zα using the qnorm function.
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Confidence intervals

Comments:

I Note that the interval is random, and θ is fixed!

I When α = 0.05, then zα/2 ≈ 1.96.

I Confidence intervals can always be enlarged; so the goal is to
construct the smallest interval possible that has the desired
property.

I Other approaches to building 1− α confidence intervals are
possible, that may yield asymmetric intervals.
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Example: Linear regression

In the regression Ozone ~ 1 + Solar.R + Wind + Temp, the
coefficient on Temp is 1.65, with ŜE = 0.25.

Therefore a 95% confidence interval for this coefficient is:
[1.16, 2.14].
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Example: Linear regression

If zero is not in the 95% confidence interval for a particular
regression coefficient β̂j , then we say that the coefficient is
statistically significant at the 95% level.

Why?

I Suppose the true value of βj is zero.

I Then the sampling distribution of β̂j is approximately

N (0, ŜE
2

j ).

I So the chance of seeing β̂j that is more than 1.96ŜEj away
from zero is ≤ 5%.

I In other words: this event is highly unlikely if the true
coefficient were actually zero.

(This is our first example of a hypothesis test; more on that later.)
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2

j ).

I So the chance of seeing β̂j that is more than 1.96ŜEj away
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More on statistical significance: A picture

30 / 36



More on statistical significance

Lots of warnings:

I Statistical significance of a coefficient suggests it is worth
including in your regression model; but don’t forget all the
other assumptions that have been made along the way!

I Conversely, just because a coefficient is not statistically
significant, does not mean that it is not important to the
model!

I Statistical significance is very different from practical
significance! Even if zero is not in a confidence interval, the
relationship between the corresponding covariate and the
outcome may still be quite weak.
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Concluding thoughts on frequentist
inference
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A thought experiment

You run business intelligence for an e-commerce startup.

Every day t your marketing department gives you the number of

clicks from each visitor i to your site that day (V
(t)
i ), and your

sales department hands you the amount spent by each of those

visitors (R
(t)
i ).

Every day, your CEO asks you for an estimate of how much each
additional click by a site visitor is “worth”.2

So you:

I Run a OLS linear regression of R(t) on V(t).

I Compute intercept β̂
(t)
0 and slope β̂

(t)
1 .

I Report β̂
(t)
1 .

But your boss asks: “How sure are you of your guess?”

2Ignore seasonality: let’s suppose the true value of this multiplier is the
same every day.
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A thought experiment

Having taken MS&E 226, you also construct a 95% confidence

interval for your guess β̂
(t)
1 each day:

C(t) = [β̂
(t)
1 − 1.96 ŜE

(t)

1 , β̂
(t)
1 + 1.96 ŜE

(t)

1 ].

You tell your boss:

“I don’t know what the real β1 is, but I am 95% sure it
lives in the confidence interval I give you each day.”

After one year, your boss goes to an industry conference and
discovers the true value of β1, and now he looks back at the
guesses you gave him every day.
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A thought experiment
How does he evaluate you? A picture:
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The benefit of frequentist inference

This example lets us see why frequentist evaluation can be helpful.

More generally, the meaning of reporting 95% confidence intervals
is that you “trap” the true parameter in 95% of the claims that
you make, even across different estimation problems. (See Section
6.3.2 of [AoS].)

This is the defining characteristic of estimation procedures with
good frequentist properties: they hold up to scrutiny when
repeatedly used.
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