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Generalization
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Where did our data come from?

Throughout the lecture:
» Y is the vector of n observed outcomes

» X is the corresponding matrix of covariates: n rows, with p
covariates in each row

What process generated X and Y ?
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Population vs. sample

The observed data we have, Y and X, are referred to as the
sample.

These came from some system or data-generating process, that we
refer to as the population.

Think of surveys: we try to understand the broader population
through a smaller sample.
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The population model: A probabilistic view

How do we reason about the population? Using a probabilistic
model.

» There is a probability distribution of X = (X1,...,X,) in the
population.

» And Y has a conditional probability distribution given X
Together, these give a joint distribution over X and Y.

Example: the linear normal population model.
Y =00+ 51 X1+ -+ BpXp+e,

where X is jointly multivariate normal, and ¢ is normal with zero
mean, independent of X.

5/32



Example

Suppose in a population that father’s heights are normally
distributed with mean 69 inches and variance 4 inches.

Suppose that if a father has height X = z, his child’s height is
normally distributed with mean 40 4 0.4 x x and variance 3 inches.

Then the population model is that:
Y=40+04x X +¢

where X ~ N(69,4), € ~ N(0,3), and X and ¢ are independent.
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Generalization

The following reaction is quite common:

Wait, you're saying that the covariates and outcomes are
random? Then why do | have a fixed dataset that | can
see, that is definitively not random?

The idea is that we use the sample (the dataset) we have to reason
about the population.

This is called generalization.

7/32



Generalization

The first step to reasoning about the population is to build a fitted
model. a function f that uses X and Y to capture the relationship
between X and Y in the population:

A key example is the OLS approach to linear regression we have
been studying:
» Given the data X and Y, find coefficients B such that
Y — X032 is minimized.

> f()?) = ZijXj'
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Prediction and inference

What are statements we want to make using f? They fall into two
classes:
> Prediction. Given a new X that is observed, what is our
“best” guess of the corresponding Y7
— Predicting that Y will be f(X).
» Inference. Describe the population model: the joint
distribution of X and Y.
= Interpreting the structure of f
It may seem puzzling that these are different: can we make good
predictions without good inference?
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Example: Breast cancer risk and wealth

Consider the following story:

Breast Cancer Risk Associated With Wealth
By JOY VICTORY - Dec.1, 2005
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‘Women who live in regions of the United States known as breast cancer "hot spots" may have
an increased risk because of personal wealth and not pollution or electrical wires, researchers
say.

Deborah Winn, a scientist with the National Institutes of Health, states in the December issue
of the journal Nature Reviews Cancer that the most likely reason that women in certain
communities - such as Long Island or San Francisco -- have increased breast cancer risk is
that those areas are populated by wealthy women. Winn's article analyzes a series of studies
conducted by the Long Island Breast Cancer Study Project in New York.

These women tend to have children later, have fewer children, and are more likely to receive
costly replacement hormone therapy - all of which are linked to increased breast cancer risk.
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Example: Breast cancer risk and wealth

What can we say?

» Wealth is predictive of breast cancer.
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» The reason certain women have breast cancer is that they are
wealthier.
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Example: Breast cancer risk and wealth

What can we say?

>

>

>

Wealth is predictive of breast cancer.
Breast cancer is predictive of wealth.

The reason certain women have breast cancer is that they are
wealthier.

The reason certain women are wealthier is that they have
breast cancer.

If wealth increases, then incidence of breast cancer increases.

If we made everyone poorer, there would be fewer cases of
breast cancer.

Moral:

Prediction relies on correlation, not causation.
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Example: Education and income

David Card, in his paper “The Causal Effect of Education on
Earnings™:

In the absence of experimental evidence, it is very
difficult to know whether the higher earnings observed for
better educated workers are caused by their higher
education, or whether individuals with greater earning
capacity have chosen to acquire more schooling.
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Example: Internet marketing

Suppose a customer sees multiple channels of advertising from you:
a social media ad, a display ad, a promoted tweet, e-mail ad, etc..

At the time of placing ads, you have demographic information
about the customer.
» Prediction asks: Will this customer purchase or not? How
much is this customer going to spend?
» Inference asks: Which campaign is most responsible for the
customer’s spend?

Often you can make great predictions, even if you cannot infer the
value of the different campaigns.?

1The latter problem is the attribution problem.
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Prediction
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The prediction problem

In this part of the class we focus only on the prediction problem:

Given data X and Y, construct a fitted model f so that given a
new covariate vector X from the population, the prediction error
between f(X) and the corresponding Y is minimized.

How do we measure prediction error?
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Classification vs. regression

Two broad classes of problems:
1. Regression: Y is a continuous variable (numeric). Examples:

» Predict wealth given demographic factors

Predict customer spend given profile

Predict earthquake magnitude given seismic characteristics

Predict level of antigen given biological markers

2. Classification: Y is a categorical variable (factor). Examples:
» Is this e-mail spam or not?

What zip code does this handwriting correspond to?

Is this customer going to buy an item or not?

Does this patient have the disease or not?

vV vy

vV vy
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Prediction error

Measurement of prediction error depends on the type of prediction
problem.
For regression, examples of prediction error measures include:

» Squared error (Y — f(X))%;

» Absolute deviation |Y — f(X)].

For classification, a common example of prediction error is 0-1 loss:
the error is 1 if Y # f(X), and 0 otherwise.
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Prediction error

For now we will focus on regression with squared error as our
measure of prediction error.

Suppose we are given data X and Y. What should we aim to do?
Minimize the generalization error (or test error):

E[(Y — f(X))*1X, Y].
l.e.: "Minimize prediction error on new data.”

Note that in this definition we condition on X and Y: the data is
given.

The only randomness is in the new sample X and Y .2

2There are other forms of generalization error; e.g., you might also assume

the new X is also known. We will return to this later.
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Training vs. validation vs. testing

With enough data, we can build effective predictive models as
follows:

1. Separate data into three groups: training, validation, and test.
2. Use training data to fit different models (f's).

3. Use validation data to estimate generalization error of the
different models, and pick the best one.

4. Use test data to assess performance of the chosen model.

Question: Why do we need to separate validation data and test
data?
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Validation

The validation step estimates the generalization error of the
different models, and chooses the best one.
Formally:

» Suppose samples (Xl,f/l), ce (Xk,f/k) in the validation set.

» For each fitted model f estimate the generalization error as
follows:

= (Y- f(X)” (1)

» Choose the model with the smallest generalization error
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Validation

Why does this work?
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Testing

Importantly, the validation error of the best model in the validation
step is typically an underestimate estimate of the true
generalization error. Why?

Consider this example:
» Suppose two i.i.d. random variables Z1, Z>.
» We choose the minimum.
» Is E[min{Z;, Z5}] the same as E[Z;] or E[Z5]? No: it is less
than both.

Key point: Expected value of the minimum is smaller than the
minimum of the expected value.
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Testing

Importantly, the validation error of the best model in the validation
step is typically an underestimate of the true generalization error.
Why?

23/32



Testing

To obtain an accurate (i.e., unbiased) estimate of the
generalization error of the selected model, we use another holdout
set, called the test set.

Suppose that samples (Xk+1,}~/k+1), ol (5(@,17@) are in the test
set.

Let f* be selected model. Then an unbiased estimate of
generalization error is:

l
e S X))
i=k+1

Note that in some instances, an estimate of generalization error is
not needed, so there is no test set; in that case the terms
“validation set” and “test set” are sometimes used interchangeably.
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Train, validate, test: Linear regression

Suppose we are given a large dataset with p covariates per
observed outcome.

We can build a predictive linear regression model as follows:

1. Separate data into three groups: training, validation, and test.

2. Use the training data to build a collection of linear regression
models, using different sets of covariates, higher order terms,
interactions, transformed variables, regularization, etc.

3. Use validation data to estimate generalization error of the
different models, and pick the best one.

4. Use test data to assess performance of the chosen model.
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Example: Model selection, validation, and testing

For this example, we generate 300 X3, X as i.i.d. N(0,1) random
variables.

We then generate 300 Y random variables as:
Yi=1+2X; +3Xi2 + &,

where ¢; are i.i.d. N(0,5) random variables.
The training, validation, and test separation is 100/100,/100
samples, respectively.
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Example: Model selection, validation, and testing

We trained the following five models, then ran them through the

validation and test set.

For each we computed the square root of the mean squared
prediction error (RMSE).3

Model Training | Validation | Test
Y © 1+ X1 5.590 5.990 6.381
Y © 1+ X2 4.982 5.728 5.213
Y © 1+ X1+ X2 4.383 5.487 4.885
Y "1+ X1+ X2+

I(X172) + I(X272) 4.329 5.492 4.946
Y "1+ X1+ X2+

I(X172) + I(X272) +

I(X1°6) + I(X275) 4.162 5.668 5.248

3RMSE = “root mean squared error”
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The models

> display(fm1)
Im(formula =Y ~ 1 + X1,
coef.est coef.se
(Intercept) 0.97 0.57
X1 2.06 0.48
n = 100, k = 2
residual sd = 5.65, R-Squared = 0.16
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The models

> display(fm2)
Im(formula =Y ~ 1 + X2,
coef.est coef.se
(Intercept) 0.57 0.50
X2 3.51 0.50
n = 100, k = 2
residual sd = 5.03, R-Squared = 0.33
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The models

> display(fm3)
Im(formula =Y ~ 1 + X1 + X2,
coef.est coef.se

(Intercept) 0.79 0.45
X1 2.03 0.38
X2 3.48 0.45

n =100, k = 3
residual sd = 4.45, R-Squared = 0.48
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The models

> display(fm4)

Im(formula =Y ~ 1 + X1 + X2 +

I(X1°2) + I(X272),

coef.est coef.se

(Intercept) 0.32
X1 2.15
X2 3.38
I(X1°2) -0.04
I(X2°2) 0.53

n =100, k =5

residual sd = 4.44, R-Squared = 0.49

0.64
0.40
0.45
0.28
0.35
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The models

> display(fm5)

Im(formula =Y ~ 1 + X1 + X2 +
I(X172) + I(X272) + ...
I(X1°5) + I(X275),

coef.est coef.se

(Intercept) 0.18 0.77
X1 0.34 1.23
X2 5.18 1.32
I(X1°2) 0.05 0.73
I(X2°2) 0.74 0.90
I(X1°3) 0.86 0.73
I(X273) -1.25 0.96
I(X1°4) 0.01 0.13
I(X274) -0.02 0.18
I(X1°5) -0.07 0.09
I(X2°5) 0.14 0.14

n = 100, k = 11
residual sd = 4.41, R-Squared = 0.53
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