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Estimating prediction error
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Estimating prediction error

We saw how we can estimate prediction error using validation or
test sets.

But what can we do if we don’t have enough data to estimate test
error?

In this set of notes we discuss how we can use in-sample estimates
to measure model complexity.
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Training error

The first idea for estimating prediction error of a fitted model
might be to look at the sum of squared error in-sample:

Errtr =
1

n

n∑
i=1

(Yi − f̂(Xi))
2 =

1

n

n∑
i=1

r2i .

This is called the training error; it is the same as 1/n× sum of
squared residuals we studied earlier.
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Training error vs. prediction error

Of course, based on our discussion of bias and variance, we should
expect that training error is too optimistic relative to the error on a
new test set.

To formalize this, we can compare Errtr to Errin, the in-sample
prediction error:

Errin =
1

n

n∑
i=1

E[(Y − f̂( ~X))2|X,Y, ~X = Xi].

This is the prediction error if we received new samples of Y
corresponding to each covariate vector in our existing data.
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Training error vs. test error

Let’s first check how these behave relative to each other.

Use the same type of simulation as before:

I Generate 100 X1, X2 ∼ N(0, 1), i.i.d.

I Let Yi = 1 +Xi1 + 2Xi2 + εi, where εi ∼ N(0, 5), i.i.d.

I Fit a model f̂ using OLS, and the formula Y ~ 1 + X1 + X2.

I Compute training error of the model.

I Generate another 100 test samples of Y corresponding to
each row of X, using the same population model.

I Compute in-sample prediction error of the fitted model on the
test set.

I Repeat in 500 “parallel universes”, and create a plot of the
results.
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Training error vs. test error

Results:
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Mean of Errin − Errtr = 1.42.
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Training error vs. test error

If we could somehow correct Errtr to behave more like Errin, we
would have a way to estimate prediction error on new data (at
least, for covariates Xi we have already seen).

Here is a key result towards that correction.1

Theorem

E[Errin|X] = E[Errtr|X] +
2

n

n∑
i=1

Cov(f̂(Xi), Yi|X).

In particular, if Cov(f̂(Xi), Yi|X) > 0, then training error
underestimates test error.

1This result holds more generally for other measures of prediction error, e.g.,
0-1 loss in binary classification.
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Training error vs. test error: Proof [∗]
Proof: If we expand the definitions of Errtr and Errin, we get:

Errin − Errtr =
1

n

n∑
i=1

(
E[Y 2| ~X = Xi]− Y 2

i

− 2(E[Y | ~X = Xi]− Yi)f̂(Xi)
)

Now take expectations over Y. Note that:

E[Y 2|X, ~X = Xi] = E[Y 2
i |X],

since both are the expectation of the square of a random outcome
with associated covariate Xi. So we have:

E[Errin − Errtr|X] = − 2

n

n∑
i=1

E
[
(E[Y | ~X = Xi]− Yi)f̂(Xi)

∣∣X].
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Training error vs. test error: Proof [∗]

Proof (continued): Also note that E[Y | ~X = Xi] = E[Yi|X], for
the same reason. Finally, since:

E[Yi − E[Yi|X]|X] = 0,

we get:

E[Errin − Errtr|X] =
2

n

n∑
i=1

(
E
[
(Yi − E[Y | ~X = Xi])f̂(Xi)

∣∣X]
− E[Yi − E[Yi|X]|X]E[f̂(Xi)

∣∣X]
)
,

which reduces to (2/n)
∑n

i=1Cov(f̂(Xi), Yi|X), as desired.
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The theorem’s condition

What does Cov(f̂(Xi), Yi|X) > 0 mean?

In practice, for any “reasonable” modeling procedure, we should
expect our predictions to be positively correlated with our outcome.
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Example: Linear regression

Assume a linear population model Y = ~Xβ + ε, where
E[ε| ~X] = 0, Var(ε) = σ2, and errors are uncorrelated.

Suppose we use a subset S of the covariates and fit a linear
regression model by OLS.

Recall that the bias-variance tradeoff is:

E[Errin|X] = σ2 +
1

n

n∑
i=1

(Xiβ − E[f̂(Xi)|X])2 +
|S|
n
σ2.

But this is hard to use to precisely estimate prediction error in
practice, because we can’t compute the bias.
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Example: Linear regression

The theorem gives us another way forward. For linear regression
with a linear population model we have:

n∑
i=1

Cov(f̂(Xi), Yi|X) = |S|σ2.

In other words, in this setting we have:

E[Errin|X] = E[Errtr|X] +
2|S|
n
σ2.
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Model complexity for linear regression
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A model complexity score

The last result suggests how we might measure model complexity:

I Estimate σ2 using the sample standard deviation of the
residuals on the full fitted model, i.e., with S = {1, . . . , p};
call this σ̂2.2

I For a given model using a set of covariates S, compute:

Cp = Errtr +
2|S|
n
σ̂2.

This is called Mallow’s Cp statistic. It is an estimate of the
prediction error.

2For a model with low bias, this will be a good estimate of σ2.
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A model complexity score

Cp = Errtr +
2|S|
n
σ̂2.

How to interpret this?

I The first term measures fit to the existing data.

I The second term is a penalty for model complexity.

So the Cp statistic balances underfitting and overfitting the data
(bias and variance).

16 / 34



AIC, BIC

Other model complexity scores:

I Akaike information criterion (AIC). In the linear population
model with normal ε, this is equivalent to:

n

σ̂2

(
Errtr +

2|S|
n
σ̂2
)
.

I Bayesian information criterion (BIC). In the linear population
model with normal ε, this is equivalent to:

n

σ̂2

(
Errtr +

|S| lnn
n

σ̂2
)
.

Both are more general, and derived from a likelihood approach.
(More on that later.)
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AIC, BIC

Note that:

I AIC is the same (up to scaling) as Cp in the linear population
model with normal ε.

I BIC penalizes model complexity more heavily than AIC.
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AIC, BIC in software [∗]

In practice, there can be significant differences between the actual
values of Cp, AIC, and BIC depending on software; but these don’t
affect model selection.

I The estimate of sample variance σ̂2 for Cp will usually be
computed using the full fitted model (i.e., with all p
covariates), while the estimate of sample variance for AIC and
BIC will usually be computed using just the fitted model being
evaluated (i.e., with just |S| covariates). This typically has no
substantive effect on model selection.

I In addition, sometimes AIC and BIC are reported as the
negation of the expressions on the previous slide, so that
larger values are better; or without the scaling coefficient in
front. Again, none of these changes affect model selectin.
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Cross validation

20 / 34



Cross validation

Accuracy of Cp, AIC, and BIC depends on some knowledge of
population model (in general, though they are often used even
without this).

What general tools are avialable that don’t depend on such
knowledge?

Cross validation is a simple, widely used technique for estimating
prediction error of a model, when data is (relatively) limited.
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K-fold cross validation

K-fold cross validation (CV) works as follows:

I Divide data (randomly) into K equal groups, called folds. Let
Ak denote the set of data points (Yi,Xi) placed into the k’th
fold.3

I For k = 1, . . . ,K, train model on all except k’th fold. Let
f̂−k denote the resulting fitted model.

I Estimate prediction error as:

ErrCV =
1

K

K∑
k=1

 1

n/K

∑
i∈Ak

(Yi − f̂−k(Xi))
2

 .

In words: for the k’th model, the k’th fold acts as a validation set.
The estimated prediction error from CV ErrCV is the average of the
test set prediction errors of each model.

3For simplicity assume n/K is an integer.
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K-fold cross validation
A picture:
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Using CV

After running K-fold CV, what do we do?

I We then build a model from all the training data. Call this f̂ .

I The idea is that ErrCV should be a good estimate of Err, the
generalization error of f̂ .4

So with that in mind, how to choose K?

I If K = N , the resulting method is called leave-one-out (LOO)
cross validation.

I If K = 1, then there is no cross validation at all.

I In practice, in part due to computational considerations, often
use K = 5 to 10.

4Recall generalization error is the expected prediction error of f̂ on new
samples.
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How to choose K?

Bias and variance play a role in choosing K.

Let’s start with bias: How well does ErrCV approximate Err?

I When K = N , the training set for each f̂−k is nearly the
entire training data.
Therefore ErrCV will be nearly unbiased as an estimate of Err.

I When K � N , since the models use much less data than the
entire training set, each model f̂−k has higher generalization
error; therefore ErrCV will tend to overestimate Err.
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How to choose K?

Bias and variance play a role in choosing K.

Now let’s look at variance: How much does ErrCV vary if the
training data is changed?

I When K = N , because the training sets are very similar
across all the models f̂−k, they will tend to have strong
positive correlation in their predictions.
This contributes to higher variance.

I When K � N , the models f̂−k are less correlated with each
other, reducing variance. On the other hand, each model is
trained on significantly less data, increasing variance (e.g., for
linear regression, the variance term increases if n decreases).

The overall effect depends on the population model and the model
class being used.
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Leave-one-out CV and linear regression

Leave-one-out CV is particularly straightforward for linear models
fitted by OLS: there is no need to refit the model at all. This is a
useful computational trick for linear models.

Theorem
Given training data X and Y, let H = X(X>X)−1X> be the hat
matrix, and let Ŷ = HY be the fitted values under OLS with the
full training data.
Then for leave-one-out cross validation:5

ErrLOOCV =
1

n

n∑
i=1

(
Yi − Ŷi
1−Hii

)2

.

Interpretation: Observations with Hii close to 1 are very
“influential” in the fit, and therefore have a big effect on
generalization error.

5It can be shown that Hii < 1 for all i.
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LOO CV and OLS: Proof sketch [∗]

I Let f̂−i be the fitted model from OLS when observation i is
left out.

I Define Zj = Yj if j 6= i, and Zi = f̂−i(Xi).

I Show that OLS with training data X and Z has f̂−i as
solution.

I Therefore f̂−i(Xi) = (HZ)i.

I Now use the fact that:

(HZ)i =
∑
j

HijZj = (HY)i −HiiYi +Hiif̂
−i(Xi).
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A hypothetical example

I You are given a large dataset with many covariates. You carry
out a variety of visualizations and explorations to conclude
that you only want to use p of the covariates.

I You then use cross validation to pick the best model using
these covariates.

I Question: is ErrCV a good estimate of Err in this case?
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A hypothetical example (continued)

No – You already used the data to choose your p covariates!

The covariates were chosen because they looked favorable on the
training data; this makes it more likely that they will lead to low
cross validation error.

Thus in this approach, ErrCV will typically be lower than true
generalization error Err.6

MORAL: To get unbiased results, any model selection must
be carried out without the holdout data included!

6Analogous to our discussion of validation and test sets in the
train-validate-test approach.
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Cross validation in R

In R, cross validation can be carried out using the cvTools

package.

> library(cvTools)

> cv.folds = cvFolds(n, K)

> cv.out = cvFit(lm, formula = ...,

folds = cv.folds, cost = mspe)

When done, cv.out$cv contains ErrCV. Can be used more
generally with other model fitting methods.
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Simulation: Comparing Cp, AIC, BIC, CV

Repeat the following steps 10 times:

I For 1 ≤ i ≤ 100, generate Xi ∼ uniform[−3, 3].
I For 1 ≤ i ≤ 100, generate Yi as:

Yi = α1Xi + α2X
2
i − α3X

3
i + α4X

4
i − α5X

5
i + α6X

6
i + εi,

where εi ∼ uniform[−3, 3].
I For p = 1, . . . , 20, we evaluate the model

Y ~ 0 + X + I(X^2) + ... + I(X^p) using Cp, BIC, and
10-fold cross validation.7

How do these methods compare?

7We leave out AIC since it is exactly a scaled version of Cp.
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Simulation: Visualizing the data
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Simulation: Comparing Cp, AIC, BIC, CV
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