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Model selection
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Overview

Model selection refers to the process of comparing a variety of
models (using, e.g., model complexity scores, cross validation, or
validation set error.

In this lecture we describe a few strategies for model selection,
then compare them in the context of a couple of real datasets.

Throughout, our goal is prediction. Therefore we compare models
through estimates of their generalization error (“model scores”):
e.g., training error (sum of squared residuals), R2, Cp, AIC, BIC,
cross validation, validation set error, etc.
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Model selection: Goals

There are two types of qualitative goals in model selection:

I Minimize prediction error. This is our primary goal in this
lecture.

I Interpretability. We will have more to say about this in the
next unit of the class.

Both goals often lead to a desire for “parsimony”: roughly, a desire
for smaller models over more complex models.
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Subset selection

Suppose we have p covariates available, and we want to find which
p to include in a linear regression fit by OLS.

One approach is:

I For each subset S ⊂ {1, . . . , p}, compute the OLS solution
with just the subset of covariates in S.

I Select the subset that minimizes the chosen model score.

Implemented in R via the leaps package (with Cp or R2 as model
score).

Problem: Computational complexity scales exponentially with
number of covariates.
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Forward stepwise selection

Another approach:

1. Start with S = ∅.
2. Add the single covariate to S that leads to greatest reduction

in model score.

3. Repeat steps 1-2.

Implemented in R via the step function (with AIC or related
model scores).

The computational complexity of this is only quadratic in the
number of covariates (and often much less).
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Backward stepwise selection

Another approach:

1. Start with S = {1, . . . , p}.
2. Delete the single covariate from S that leads to greatest

reduction in model score.

3. Repeat steps 1-2.

Also implemented via step in R.

Also quadratic computational complexity, though it can be worse
than forward stepwise selection when there are many covariates.
(In fact, backward stepwise selection can’t be used when n ≤ p —
why?)
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Stepwise selection: A warning

When applying stepwise regression, you are vulnerable to the same
issues discussed earlier:

I The same data is being used repeatedly to make selection
decisions.

I In general, this will lead to downward biased estimates of your
prediction error.

The train-validate-test methodology can mitigate this somewhat,
by providing an objective comparison.

To reiterate: Practitioners often fail to properly isolate test data
during the model building phase!
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Regularization

Lasso minimizes:

SSE + λ

p∑
j=1

|β̂j |

where λ > 0.

Ridge regression minimizes:

SSE + λ

p∑
j=1

|β̂j |2.

where λ > 0.
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Regularization

Both lasso and ridge regression are “shrinkage” methods for model
selection:

I Relative to OLS, both lasso and ridge regression will yield
coefficients β̂ that have “shrunk” towards zero.

I The most explanatory covariates are the ones that will be
retained.

I Lasso typically yields a much smaller subset of nonzero
coefficients than ridge regression or OLS (i.e., fewer nonzero
entries in β̂).

To use these for model selection, tune λ to minimize the desired
model score.
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Intuition for lasso
Why does lasso tend to “truncate” more coefficients at zero than
ridge?
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Intuition for lasso
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Example: Crime dataset
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Crime dataset

From:
http://lib.stat.cmu.edu/DASL/Datafiles/USCrime.html

Contains data on crime rates in 47 US states in 1960.
Synthesized from government statistics.

14 / 1

http://lib.stat.cmu.edu/DASL/Datafiles/USCrime.html


Crime dataset

Variable name Description
R Crime rate: # of offenses reported to

police per million population
Age The number of males of age 14-24

per 1000 population
S Indicator variable for Southern states

(0 = No, 1 = Yes)
Ed Mean # of years of schooling x 10

for persons of age 25 or older
Ex0 1960 per capita expenditure on police

by state and local government
Ex1 1959 per capita expenditure on police

by state and local government
LF Labor force participation rate per 1000

civilian urban males age 14-24
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Crime dataset

Variable name Description
M The number of males per 1000 females
N State population size in hundred thousands
NW The number of non-whites per 1000 population
U1 Unemployment rate of urban males

per 1000 of age 14-24
U2 Unemployment rate of urban males

per 1000 of age 35-39
W Median value of transferable goods

and assets or family income in tens of $
X The number of families per 1000

earning below 1/2 the median income
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Forward stepwise regression

> fm.lower = lm(data = crime.df, R ~ 1)

> fm.upper = lm(data = crime.df, R ~ .)

> step(fm.lower,

scope = list(lower = fm.lower,

upper = fm.upper),

direction = "forward")
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Forward stepwise regression: Step 1

Start: AIC=344.58

R ~ 1

Df Sum of Sq RSS AIC

+ Ex0 1 32533 36276 316.49

+ Ex1 1 30586 38223 318.95

+ W 1 13402 55408 336.40

+ N 1 7837 60973 340.90

+ Ed 1 7171 61638 341.41

+ M 1 3149 65661 344.38

<none> 68809 344.58

+ LF 1 2454 66355 344.87

+ X 1 2205 66604 345.05

+ U2 1 2164 66646 345.08

+ S 1 565 68244 346.19

+ Age 1 551 68258 346.20

+ U1 1 175 68634 346.46

+ NW 1 73 68736 346.53
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Forward stepwise regression: Step 2

Step: AIC=316.49

R ~ Ex0

Df Sum of Sq RSS AIC

+ X 1 7398.2 28878 307.77

+ Age 1 6167.4 30109 309.73

+ M 1 2505.2 33771 315.13

+ NW 1 2324.3 33952 315.38

+ S 1 2191.0 34085 315.56

+ W 1 1808.7 34468 316.09

<none> 36276 316.49

+ Ex1 1 1461.7 34815 316.56

+ LF 1 774.8 35501 317.48

+ U2 1 178.5 36098 318.26

+ N 1 56.7 36220 318.42

+ U1 1 28.8 36247 318.45

+ Ed 1 7.7 36269 318.48
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Forward stepwise regression: Final output

Call:

lm(formula = R ~ Ex0 + X +

Ed + Age + U2 + W, data = crime.df)

Coefficients:

(Intercept) Ex0 X Ed Age U2

-618.5028 1.0507 0.8236 1.8179 1.1252 0.8282

W

0.1596

Backward stepwise regression yields the same result. Is this an
interpretable model?

20 / 1



Example: Baseball hitters
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Baseball hitters

Data taken from An Introduction to Statistical Learning.

Consists of statistics and salaries for 263 Major League Baseball
players.

We use this dataset to:

I Develop the train-test method

I Apply lasso and ridge regression

I Compare and interpret the results

We’ll use the glmnet package for this example.
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Loading the data

glmnet uses matrices rather than data frames for model building:

> library(ISLR)

> library(glmnet)

> data(Hitters)

> hitters.df = subset(na.omit(Hitters))

> X = model.matrix(Salary ~ 0 ., hitters.df)

> Y = hitters.df$Salary
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Training vs. test set

Here is a simple way to construct training and test sets from the
single dataset:

train.ind = sample(nrow(X), round(nrow(X)/2))

X.train = X[train.ind,]

X.test = X[-train.ind,]

Y.train = Y[train.ind]

Y.test = Y[-train.ind]
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Ridge and lasso

Building a lasso model:

> lambdas = 10^seq(-2,3.4,0.1)

> fm.lasso = glmnet(X.train,

Y.train, alpha = 1,

lambda = lambdas, thresh = 1e-12)

Setting alpha = 0 gives ridge regression.
Make predictions as follows at λ = lam:

> mean( (Y.test -

predict(fm.lasso, s = lam, newx = X.test))^2 )
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Results
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What is happening to lasso?
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Lasso coefficients

Using plot(fm.lasso, xvar="lambda"):
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